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Abstract

We present a 1heory for evaluating decisions under risk
when the availuble information is indeterminate. The
probability and utility estimates involved in such a
situation is expressed as sets of distributions, repre-
senting beliefs in various vectors in the decision space.
We also demonstrates some consistency requirements
bhetween beliefs in local values, i.e. vectors represent-
ing values for a singleton probability or utility vari-
able, and beliefs in global values, i.e. beliefs in vectors
in the decision space. The evaluation of the differcnt
strategies is performed wilh respect to a generalisation
of the principle of maximising the expected utilivy, We
show that, despite the possible complexity of the var-
ious inputs, the computational efforts for evaluating
stralegies are traclable.

Background

A number of models with representations allowing im-
precise statements have heen suggested. Some of themn
use slandard probability theory while others contain
some specialised formalisin, c.f. [Choquet, 1953/54].
[[Tuber. 1973, Huber and Strassen, 1973], [Good. 1962,
Smith. 1961], [Dempster, 1967]. One particular mod-
elling approach is fuzzy set theory for handling the
vagueness in subjective estimates of values and prob-
abilities. As argned in [Ekenberg and Thorbidrnsson,
1997]. theories based on this will have several consis-
tency problems as soon as lincar construints are in-
volved. This is the case already when representing
probabilities. so the fuzzy sel. theory is less suitable
for theories based on classical decision analysis. 1'uzzy
approaches are also restricted in the sense that they
do not. handle qualitative aspects such as. e.g.. com-
parisons between different components involved in de-
cision situalions. Other approaches are investigated in
[Gérdenfors and Sahlin, 1982, 1983, Levi. 1974, 1980},
The authors take a more global viewpoint nf heliels,
but nevertheless restrict themselves to the probabil-
ity case and, like the [uzzy models, interval repre-
senlations. Another limitation is thal they neither
investigate the relation between global and local dis-
tributions nor introduce methaods for determining the
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consistency of user-asserted sentences. The work hy
[Dauielson and Ekeuberg, 1997, Ekenberg. ot al., 19496,
1997, Malmnés, 1994] is vestricted in the sense that no
distributions over the intervals are taken into nceount .
The next. sections deseribe o representation muodel for
impreciseness. und disenss some general properties of
global and local beliel distributions. Tn particular. it
is deseribed how global beliel distributions can he de-
fined and in what sense such distributions can define
solution sets to a sel of constraimts, and huw classes
of wadmissible local beliof distributions can be derived
from projections of such global distributions. There-
after we show how sets of belief distributions can be
evaluated with respect to a generalisation of the ex-
pected utilify.

Representation

The motivation behind the present. work is to extend
the expressibility when represeuting and evuluating
vagne and munerically impreeise information in Jdeci-
sions sitnations. To achieve a basic intuition of what.
will be presented below, consider a decision situation
ecomsisting of a set of » alternatives

{ {""I }.I=l-----"‘. }:=l.... n

where each allernative is represented by o set of n;
consequences  We will refer 1o the latter as a con-
sequence sel. In such a decision situation. wumeri-
cally itnprecise sentences like “the probahility of con-
sequence cpp I8 greater than 40%7 or comparative
sentences like “ronsequence ¢y is preferred to conge-
quence 2" ocenr. These sentences cin he represented
in a numerical format [Daniclson and Ekenlerg. 1997).
dxamples of vague sentences in that medel are: " The
consequence ¢;; is prohable™ or *The ovent ;) or ci;,
is possible”™. Such sentences are represented by suit-
able infervals. Another kind of sentenees are interval
sentences of the forin: " The prabability of ¢,; lies be-
tween the munbers ax and 5", which are translated
to pi; € [ax.be]. Finally, comparative sentences are
of the form: "The probability of ¢, is greater than
the probability of ¢ ™. Such a sentence is translated
into an inequality p;; 2 py. Each statement is thus
represented hy one or more constraints. The conjunc-
tion of constraints of the types above, together with
Z".’:l pi; = 1 for each consequence set {4} i=1.....m,




involved, is a probability basc 7. A value base V con-
sists of similar translations of vague and numerically
imprecise valuec estimates. In a sense, a probability
base can be interpreted as constraints defining the set
of all possible probability measures.

However, a decision maker does not necessarily be-
lieve with the same intensity in all the epistemologi-
cally possible probability distributions E. To enable a
refinement of the model to allow for a differentiation
of distributions in this respect, a global distribution
cxpressing various beliefs can be defined over the set.
E. In the following subsections, we define and inves-
tigate some features of global and local distributions
and how these are related to sets of linear constraints.

Global Belief Distributions

The basic entitics in the kinds of decision situations
we will consider are the sets of consequences involved.
Over these sets, different functions can be defined, ex-
pressing, for instance, classes of probability or value
measures. To enable for a differentiation of functions
and to take constraints into account, a global distri-
bution expressing various beliefs can be defined over
a multi-dimensional unity cube. Each dimension cor-
responds to a consequence.

Definition 1 Let o unity cube B = (h..... by} be
given. By a global belief distribution over B, we mean
a positive distribution’ g defined on the unity cube B
such that

/ g(x)dVp(r) =1,
B

where VB is some k-dimensional Lebesque measure on
B. The set of all global belief distributions over B is
denoted by GBD (B).

Global belief distributions can be used to represent
subsets of a unity cube by considering the support of
the distributions. However, if we want to represent
a subset which is of lower dimension than the unity
cube itsell we cannot use distributions that are upper
bounded since a mass under such a distribution will
be 0 while integrating with respect to some Lebesgue
measure defined on the unity cube. This problem is
solved in detail in [Ekenberg and Thorbidrnson, 1997],
and will not be treated here. We will be content to
demonstrate the general idea by the example below.

Example 1: Let a unity cube B = (b1,b2,b3)
be given. Let A denote the subset of B, where
1+ 72 + 3 = 1, and let f(x1,72) = =1 - 22 be

defined on A. Then f € GBD({A) with respect
to the 2-dimensional Lebesgue measure on A4, but

fa(zr) ¢ GBD(B)., because / fa(x)dVa(z) = 0.
+ B

However, / fa(x)ga(z)dVp(s) = 1,50 fa(x)ga(x) €
/B

GBD (8), and fA(ml,mz.mn)_qA(ml,.1:2,:7.'3) = 0, cxcept.

when 1 + 12+ 13 = 1. To put this informally; fA “gA
represents the same proportional belief over B as f
does over A.

Linear Constraints

It should be noted that one property of a global belief
distribution is that it in some sense defines the solution
set to a set of constraints.

Definition 2 Let a unity cube B = (b;,....0) he

given. We will use the term constraints for the union
of the following:

e [-—constraints are constraints on the form a > =; or
a < r;, where a is o real number in [0,1], and 7, is
a variable,

o - constraints are constraints on the form E:r,- =
a, where a is o real number in [0.1].

o (C-constraints are consiraints on the form x, < x;4
a, where a is a real number in [0, ].

Definition 3 Let a unity cube B = (by,..., ) and
a distribution g over B he given. The support of
g (suppg) is the closure of the set {(x1.....7%) :
g(xy.... 1) > 0}

Derived Belief Distributions

This section introduces local distributions and briefly

discusses consistency of user-asserted sentences.

Definition 4 Let a unity cube B = (by..... hi) he
given. By a local belicf distribution over B, we mean
a positive distribution f defined on the unity cube b,

such that
/ f(.'r,-)lﬂ-’bi(:r,- = l.
b,

where V,,, is some Lebesque measure on b;. The set
of all local belief distributions over b, is denoted by

LBD (b).

Local belief distributions over the axes of a unity cube
B can be derived from a global belief distribution over
B.

Definition 5 Let a unity cube B = (hy,... ) and
F € GBD (B) be given. Let

Si(mi) -_-/ F(x)dV,,. ()
B .

where B = (by,....bi_1.big1,...,bi). We say that
fi(x:) is derived from F 2

A distribution on a set £ is a linear functional defincd —_—
on Cp°(f2) which is continuous with respect to a certain ’In the following. we usc & to denote the vector
topology. (r1.....Tk)-
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(i) fi(x;) € LBD(h;), i

In Lhe section Evaluation we show how the use of cen-
troids logarithmically reduces the comnputational com-
plexity in the evaluations of a generalised expected
utility. Intuitively, the centroid of a disiribntion is a
point. in space where some of the geometrical prop-
erties of the distribution can be regarded as conecen-
trated.

Definition 6 Let a unity cube B — (b1....,by) and
gp € GBD(B) he given. The centroid of qp is the
point rgp = (F..... ) in B whose i:th component
i3

A —/ x; - gae)dVe(r).
B

Definition 7 Let o unity cube B = (by,..., ) and
Jo, € LBD (1) be quven. The controid of fi, is the
point in b, defined by

xrf,

=/ T -fb‘ (.It.)ll"’hi(.l:i).

b,

Centroids are invariant under projections on the local
unity cubes in the sense that the projection of the
centroid of the global belief distribution on the local
unity cube has the same coardinates as the centroids
of the corresponding derived local belief distributions.

Lemma 1 Let a wnity cube B = (b....,b) and
IF € GBD (B) be given. Let f:(r;) be dervived from
F. Furthermore, let

G(:If], e ,ﬂ‘k) = fl(-r'l) Tt fk("-'k)-
Then.
1.....k

(ii) G € GBD (B)?
(iii) re = 2F
(in) If ver = (ovq, .. .. i) then o, =7y, .

(v) fi(ry) is derived from G for alli=1,.... k.

n general, measure properties defined locally are not.

ne
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Relations Between Constraints and
Belief Distributions

Of particular interest is 1o what extent. local belief dis-
tributions can combine to a global belief distribution,
so that the global distribution in some sense repre-
sents the local belief distributions as well as a set of
consiraints imposed on the decision situation.

Definition 8 Let a unity cube 3 = (h,.... ) and
a consistent sct C' of constraints in B be given. The
global belief distribution F' is called C-admissible iff

xr is a solution vector to CC iff » € supp F.

Usually a decision maker has access only to local in-
formation and a set of relations between differenr pa-
rameters and, consequently, has no explicit idea aboul.

cessarily preserved globally, cf. [Thorbiérnson, 1996].
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the global distribution. Tn many cases, it may be that
the only accessible relations hetween the local disiri-
butions are in lterms of constraints.

If the decision maker is able to define a ser of lneal
belief distributions and a set. of constraints describing
the decision problem. these must be congruent in o
cortain respect. Given a set of constraints, a decision
maker is restricted concerning which combinations of
local belief distributions Lhat are possible tn impose. il
she wants 1o be consistent in a reasonable sense. This
is expressed by the following definition.

Definition @ Let a unity cube B = (hy..... by) and
a consistent set C of constraints in B be given. A set
L={/i(r;) € LBD (b)) }iz1.. .k is called C admissi-
ble iff the vector (g, ... .00 ) is a solution vector to
C, where vy, denotes the centroid of f;.

From Lemma 1, we can derive the following theorem.

Theorem 1 Let a unity cube B = (hy.... b)) and a
consistent set C' of constraints, such that «(C'y C B
he given. Let G be a C-admissible global distribution
and let q;(bi).i = 1,... k, be derived from G. Then
{a:(x)}iz1.... & is @ C—admissible sct of local belief dis-
tributions.

Theorem 1 implies that if a decision maker defines a
sel of lucal belief distributions describing a problem,
and if these are admissible w.r.t. the constraints in-
volved, a global belief distribution can be determined.
This distribution has the property of having the same
centroid (and the same support relative o the local
belief distributions) as any global belief distribution
from which the user-asserted local belief distributions
can be derived.

Evaluation

The evaluation principle treated in this section is
based on the principle of maximising the expected
value. Given a decision situation D, let P and V
be a probability base and a value base for D, respec-
tively. The expected value E(C;) denotes the expres-
sion Z;’:lp,_,-v,,-. where pi; and #;; ure variables in
P and V. To evaluate the expected value [Danielson
and Ekenberg, 1997, [lkenberg, el al., 1996, Malmnos,
1994] investigates the set {E(C)}i=1.... JP UV in
a varicty of respects. However, in the present frame-
work, distributions are included. and we will suggest
how these can be 1aken into account. in the evaluations.

Generalised Mean Values

We will now describe how helief functions can he im-
posed on evaluations of a generalised expected mean
value.

First. we a define a decision scenario as conlaining a
nunmber of global belief distributions. Informally. these
express various beliefs in vectors in subsets of the solu-
tion sets to probubility-, and utility bases. For a given
consequence set, there is one global belief distribution
for the probabilities, and one global belief distribution
for the utilities, with respect 1o this set.



Definition 10 A decision scenario is a structure
(D, P,V {pi}i=1,...n. {Vi}i=1....,n), where
e D is a decision situation {{ci;};=1.....m, }:=1....n-
e P={(p11,P12,... . Pmn) 18 @ unity cube.
o V= (n1.112,...,0mn) i3 a unity cube.
e p; is a global belief distribution over the unity cube
P = (pi1....,pim,) such that p;(z) = 0, when
m;
j=1Pii # 1.
e v; is a global belicf distribution over the unity cube
Vi= (w1, ...y tim, ).

The next definition suggests a generalised expected
value. This is summed over all possible expected val-
ues weighted by the global belief distributions over the
solution sets to the probability-, and utility bases.

Definition 11 Let a decision scenario
({Ci}i=1,..n. PV {Pi}i=1,...on. {Vi}i=1....n) be given.
The expression

m,
/ z wiiyii f Pi(mine iy ) - Villite - o Wim, )
JP xV,

=1
dV (miy, .o i JdV (in. . L Yim, )

is called the generalised expected value for Ci, and is
denoted by G((",}.

The next theorem shows how the generalised expected
value of a consequence set can be calculated by using
only the centroids of the glohal belief distributions.

Theorem 2 Let n decision srenario
(D.P,V {pi}i=1...n, {Vi}i=1....,n) be given. Then

G(Ci) = (rp,.rv,).
where (r.y) is the standard inner product of + and y.
] I

Proof: Let:rp, = (a1, ... ;) in P and let 2y, =
(Bi1.-...3im,;) in Vi, Since p, € GBD(P;). v, €
GBD (145), then by definition 6

/ ij o pidV{ra) - dV (i) = oy,
P,

Analogously we get

/ Wiy VidV (1)« dV (yim,) = 8ij.

Vi

Thus, by the independence of P; and V; we get.

/ rij " .'l._;P,(-'Fi].- Ce .:l'im,-) vyt ,1/,,,,,)
P AV,

dV (mae oo e MV (i Yim, ) = g 3G
Thus

GC) =ain -8+ ...+ @im, - fian, = (2p,,rv,).

However. as ientioned above, usually a decision
maker does only have access to local information and

a set of relations between different parameters, and
has no explicit idea about the global distributions. If
the decision maker is able to define a set of local belicf
distributions describing the decision problem, and if
these are congruent with the constraints involved, the
general expected value can be determined. Theorem
3 shows that this is equal to the generalised expected
value of C; involving any global belief distribution,
which have a positive support on the solutions sets to
P and V only, and from which the local belief distri-
butions is derived.

Definition 12 A potential decision scenario is a
structure

(D, P| V- {{fp,-j }_i=1....,m,—}1=1....,n|
{{fui_i}_-i:l,....m., }i=1.....n.c)1

where

D is o decision situation {{cij};i=1.....m; }o=1,....n-
P = (p11,m2,....Pmn) 15 a unity cube.

V = (11,012, ..., Umn) is @ unity cube.

J; € LBD (pi;).

fu,-j € LLBD (1-‘;_").

C is the sets {Cp, }i=1,....n and {Cv, }i=1.....n, where
Cr, is a set of constraints in the p;; variables, and
Cv, is a set of constraints in the vy, variables.

Theoremn 3 Let a potential decision scenario

(D, PV, {{fmj }.‘i=1,....m-. }i=1,...,n.
{{f‘-‘i.i}j=1....,1n,-}i=1,...,-n= C)

he given. If p; € GBD (P;) is Cp, -admissible, v; €
GBD (V%) is Cv, —admissible, and fp,, and f.;, are de-
rived from p, and v; respectively. Then {fp,;}i=1....,m;
is Cp; admissible, {[o,,}i=1....0n; is Cv; -admissible,
and

/ (Z -Ti.-i.'liJ)
J P kv
)

=

1
Spa (i) fmmi (xim,; ) iy (uin) - - f""".' (4, )
dV (i, oo i )V (i1, - - .’h‘m,)
i CTARPRIIY S N ¢/7 NS 73 ) B

where (r.y) is the standard inner product of r and y.

Proof: The first part is a direct consequence of the-
orem 1. The second part follows fromn Lemma 1.
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