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Abstract

We present a ! heory for evaluating decisions un<le.r risk
when the available inforrnation is indelerminate. The
probability and utility estimates involw~d in such +t
situation is expressed tm sets of distributions, tel)re-
senting beliefs in various vectors in tim decision space.
We also denlonsirates some consistem:.v requirements
between beliefs in local values, i.e. vectors represent-
ing values for a singleton probability or utility wu’i-
able, and beliefs in global values, i.e. beliefs in vectors
in the decision space. The evaluation of tim (lifferez~t
s! rategies is performed with respect to a gelmralisat ion
uf the principle of maximising the eXl)e<’t.~d utilit.y. Wc
show that, despile the possible ccunplexity of lhe v’tr-
ious inputs, the comput.ational eff(.t’l.s fill" evaluating
strategies are tractable.

Background

A mnnber of models with rel)reseltt.al.ious allowing im-
precise statements have been suggesl.ed. Sonm ,ff them
use sl.andard probalfility theory while others contain
some specialised form’,.fiism, c.f. [Choquet, 1953/54].
[Iluber. 1973~ Huber and Strasscn, 1973], [Good. 1962.
Smith. 1961], [Dempster, 1967]. One particular mod-
elling approach is fuzzy sat t lmory for handling the
vagueness in subjective estimates of values and prol~-
abilities. As argued in [I,;keuberg and ThorbiSrnsson.
1997]. t lmories ba.sed oa this will have several co~Jsis-
lency proble.ms as soon as linear constraints are in-
volved. This is lhe case already when representing
probabilities, so the fuzzy set theory is le.ss suitable
for theories based on classical decision analysis. Fuzzy
approaches are also restricted in the sense I.hat tilt*,)"
do not handle qualitative aspects such ~).~. e.g., cmn-
parisons bef.weell different COml)oneJits involved in ,te-
cision situal ions. Other approaches are inwrst igated in
[GSrdenfors and Sahlin, 1982, 1!)83, I,evi. 197,1, 1980]
Tile authors take a more global viewpoint nf beliefs.
but nevertheless restrict themselves to I.he probabil-
ity case and, like the fuzzy models, interwfl repre-
sentations. Another limitation is that they neither
investigate tim relation between global and local dis-
tributions nor introduce methods for determining the
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consistency of user-a-,~sPrtcd SOlttent’es. The work by
[[)auielstm and lSkeab/,rg~ 1 !)97, Ekt,nberg. et :d.. lg!)[i.
1997. lklalmniis, 1994] is rest rioted in tilt, st,use that n<,
disl.l’ibtlt tolls over the ilLtervals are t:tk<,li ild o Ht’¢’lHIIil.
The next secti-ns de,~cril)e ;t repre.~entation m,d(’l l’~,r
inll)re.ciSOlU~Ss, and discuss SOlllO gt’ll(?lqll iJrop(.ll.it.’s ~f
?,lol)al and ltJc;.tl belief distributions, lu l);:tl’|ivul:tr, 
is described how global belief dist ributi.ns can I,, d<.-
fined and in what sense such distributions t’ttll d(rfinv
solution sets to ;t set. of f’onsl.r:tilllS, and huw classc,.~
of admissible local belief distributions can I,, doriw,d
frmn pr.jcctions of such gl.b~t[ disl.ril)ulions. ’I’her,,-
aft.or wc show how str|s of 1),~liof ¢lislril.nltic)ll.~ vnll 
evalualed wilh respect t.lJ :, genej’alisati.n m,f thv ox-
t>o("t cd ul ilil y.

Representation

The mnt.iwttion tmhind t.lm prosonl, work is to oxtoml
the expressibility when rt’lJr<~seutiJLg and evahmfiug
vague ~m<l mlm++rically iml)recise int’-rnmtion il, deci-
siOILS sitllalious. "J.’o achiew, :t h;tsit: ild.uition of wh;tl.
will be presented below, consider it decision sil.u;tl toll
c.nsisting of ;t set of n alternalives

t {";, }.,=l ......... },=~ .......

whol’O oa(’h allOrllaiivf, is r(’|ll’e½(~llto(l h): :t sot ()f Ill;

collseqllellces ~,V(, veill refer t+, I.ho latter n.,~ ;t con-
seqll(,lleO sol. In StlC[i ;4 decision sil.u:tt.iolL mmmJ’i-
tally imlffoci.~e, sentences like. ’" the i~rob~thilil.y ~f v~m-
Se(ltlt~lW(’ t11 [8 greater l.h:tll ,l(le,/t: ": or (’Olllp;tl:ttivo

8enlellCeS like "’f’t)nseql.lelic(¢ "’l isl)r eferrod I,~ COll S~,-

<lll(.~li(.c t’12~" OCClll’. ’l’hese N(’III(~IICL’S t’;I1i I|o l’i’|ll’<’S(’Iltell

in :+. numerical format [l)ani+,l.~ou and Ekvul,,.rg. t!)97].
]<,’xanil)les of v~tgue selll.(’llC<’S ill I hat model :ut.: ""I’],"
COllsequf.’lLt.’e t’i.i iS l~rt~bable"" or "The <’x’,’,121. t’;j or t.;t.

is Imssil.,h,’’. Such sentences arc U’l,lesenr,’d I,y suit-
abh, inlerwds. Am~t her kind of sel:l,*’ll<’f’s ;tl’t’ interval
sentences n[ the. form: "The prolmbility of +’,i lio.~ be-
I.wt,en Ihe mm~bets ax. anti hx", which arc tr~tnsl~tted
to P~.i C- [ah.ha]. Finally, con~parative sentences are
of the form: "The pr,bability of ,’~ is greal.or than
the probability of t’kt "’. Such a sentence is Irnnslated
into an in+,qualily Pi.i ~ pl,.I. Each statement is thus
represented by one or lllOle/:[Jnst taints. The conjunc-
I,ion of constraints of the type~ above, l.oge!her with
E’/-~L ~’;.’i = 1 ft’ir .tl,(+’l’l f:onsl?ql.leliCe st."| {f’./.jJj=l .........

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



invoh, ed, is a probability base TL A value base 1,’ con-
sists of similar translations of vague and numerically
imprecise value estimates. In a sense: a probability
b,~e can be interpreted an constraints defining the set
of all possible probability measures.
tIowever, a decision maker does not necessarily be-
lieve with the same intensity in all the epistemologi-
cally possible probability distributions E. To enable a
refinement of the model to allow for a differentiation
of distributions in this respect, a global distribution
expressing various beliefs cml be defined over the set
E. In the following subsections, we define and inves-
tigate some features of global azad local distributions
and how these are related to sets of linear constraints.

Global Belief Distributions
The basic entities in tile kinds of decision situations
we will consider are the sets of consequences involved.
Over these sets, different flmctions can be defined, ex-
pressing, for instance, classes of probability or value
measures. To enable for a differentiation of functions
and to take constraints into account, a global distri-
bution expressing various beliefs can be defined over
a multi-dimensional unity cube. Each dimension cor-
responds to a consequence.

Definition 1 Let a ultity cube B = (hl ..... bk) 
given. By a global belief distribution over B, we mean
a positive dist~bu~.iona g defined on the unity cube B
such that

fBg(~.)dVB(.0 = 1,

where VB is sorae k-dimensional Lebesque measure on
B. The set of all global belief distributions over B is
denoted by GBD (B).

Global belief distributions can be used to represent
subsets of a unity cube by considering the support of
the distributions. However, if we want to represent
a subset which is of lower dimension than the unity
cube itself we cvamot use distributions that are upper
bounded since a mass under such a distribution will
be 0 while integrating with respect to some Lebesgue
measure defined on the unity cube. This probleln is
solved in detail in [Ekenberg m~d ThorbiSrnson.. 1997],
mad will not be treated here. We will be content to
demonstrate the general idea by the example below.

Example 1: Let a unity cube /3 = (bl,b2,b.~)
be given. Let A denote the subset of B, where
¯ .1 + z2 + x.a = 1, and let f(xl,~2) = .r.l ..~:2 
defined on A. Then f ¯ GBD(A) with respect
to the 2-dimensional Lebesgue measure on A, but

]a(z) GBD (B), be cause / L, (.T),IVB(.~) = 0.
tB

However, / IA(X)gA(x),IVB(.r.) = 1, so ]A(x)g,~(.z) 
IB

G]3D (B), and ]A (z 1, .T.2. x.~ ).qA (.-c t, ~2, :ra ) = 0, except.

1A distribution on a set ~’~ is a linear functional defined
on C~°(12) which is continuous with respect to a certain
topology.

when xl + .T2 + z.~ = 1. ’lb put this informally; ]A" ga
represents the same proportional belief over B as f
does over A.

Linear Constraints
it should be noted that one property of a global belief
distribution is that it in some sense defines the solution
set to a set. of constraints.

Definition 2 Let a unity cube B = (bl,....b~.) be
giver,. We will use the term. constraints for the union
of the .following:

¯ [--construints are constraints on the form a > .z~ or
a _< .r.i, where a is a veal number in. [0, 1], and .T~ is
a variable..

¯ L- constraints are constrain.ts on the tetra. ~’~:=i =
a, where a is a real number in [0.1].

¯ C-constraints are constraitTts on the form x, <_ :~:j -}
a, where a .is a real number in [0, 1].

Definition 3 Let a unity cube B = (bl,...,b~) and
a distribution g over" B be given. The support of
g (suppg) is the closure of the set {(a:l ...... rk) 
g(.~..... ~A) > 0}.

Derived Belief Distributions
This section introduces local distributions and briefly
discusses consistency of user-asserted sentences.

Definition 4 Let a unity cube B = (hi ..... I,~) 
given. By a local belief distribution older" B, we mean
a positive distribution f deft.ned on the unity cube b,
such that

fb ft.ri) dVb,(:r4) = 

wher~ Yb, is some Lebesque measure on bl. The set
of all local belief distributions over" b, is denoted bU
LBD (b,).

Local belief distributions over the axes of a unity cube
B can be derived fi’om a global belief distribution over
B.

Definition 5 Let a unity cube B = (Iq,...,bk) and
F ¯ GBD (B) be given. Let

wh.ere B~ = (bl ..... b,-1.bi+l,... ,bt,). We. say that
f~(x;) is deri~ed from 2

~In the following¯ we use :r Io denote the vector
(:,’~ .....x~,).
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In I.he section Evaluation we sllow h¢)w lhe use of cen-
t roids Iogarirhmic:dly r’edut:os tile computational eom-
ph,xily in thr, ovaluations ,ll" a genero.lised expected
utility, hltuitiw~ly, the centroid of a t]islribution is a
poinl, in space where some of I.he. leoulel.ric:ll prop-
erlies of tile i’lisiribul.ion (.’an lie regarded ;is conceri-
l.ral ed.

Definition 6 Let a unity cube B - (hi ..... hA:) and
.qu 6 GBD (B) be given. The centroid of gu is t.hc
point .r#B = (ill ..... fl~) in B whose i:t5 component
is

fl; : / x; ¯ !/u(.i:) dVti(.~).
Ju

Definition 7 Let a unity (’ubc B = (Iq,...,h~) an.d
fb, E I,BI)(b,) bc g~ven. The con(reid of fh, is the
point in b, defined by

= [ ’’~ "A, (.r,),n.’~,(.~,).

l:S6*

db

(’ent.roids are inwu’iant itnder firojec’l.ions on the local
unity cubes in the sense that the. l)roje(:tion of the
ten(reid of tim global belief distribution on the local
uitity ellt)t, I1~,~ the same conrdinates Im Ihe centroids
of the corresponditlg derived local belief (list ributions.

Lemma 1 Let a unity cube B :: (hi .... ,h~.) and
1,’ E GBI)(B) be given. Let fi(:rl) b~’ derived from
F. Furthermore, let

G(:ri ..... .~t,) = fz(.rl) .... fj,(:irk).

Then.

(/) f;(.r.;) E LBD (tl~), .. .. . k.

(it) G 6 GBD (B)a

(iii) :re: .-= .~:F(iv) lf Yc: = (~z,..-.¢1~) therl <), = :rib’ .

(v) f,(:r,) is derived .h’om G for all i --= 1 ..... k.

Relations Between Constraints and
Belief Distributions
Of particular interest is to what extenl, local belief dis-
tributions can eoznbine l.o a global belief distribution,
so that the global disl.ribution in some sense relire-
seni.s tim local belief disl.ritiutions as well iLs a set of
eonsl.raints imposed on tile decision situation.

Definition 8 Let a unity cube II = (hi ..... bk) and
a consi.~tent set C of construints in B be given. Th.e
global belief distribution b’ is called C-admissible iff

x is a solution vector to C’ iff .r E supp F.

Usually a decision maker has access ollly i(.i local in-
formation and a set of relations between different pa-
rameters and: consequently, has no explicit idea about

aIn general, measure properties defined locally are not
necessarily preserved globally, ef. [Thorbibrnson, 1996].

the global disl ribulion. Ill nuuiy cases, it. may lie thai.
the ollly aecessihle relalions between lhe local dislri-
Inllinns are in I.ernls of constrainls.

If the decision nlaker is able to define it set (if Irlc;l[
belief distributions and a set. of constraints desc’rihing
Ihe decision problem. Ihese I1MISl bP congruent ill :l

eert.ain respecl.. (.liven a set (if c(msl.rainl.s, a decisbm
maker is reslrieted concerning which eomliina/.ions c,f
local belief disl.ribut.ions I.hal. are possibh, if) impose, if
she wants I(l be eolisisl.enl in a reasonable sense. This
is o.xpt’ossed by the, following defillilion.

Definition !1 Let a un.ity cube B = (Ill ..... bl~) ond
ct consistent set C of (.on.stTvmlt.~ in. B he given.. A s~’t
L = {f,(.,’;) I. ,BD (b;)},=l .. .. ~. .is ,’ alled (’ ,xdmissi-
hie iff the vector (xA ..... :rt’~) is a solution vector to
C, where y r, denotes the r,’nf~md of f;.

l~-om Lemma 1. we can derive the following theorem.

Theorem 1 Let a unity cube B = (bt ..... bt.) and 
consistent set C of eon.straints, ,~u(’h that..~(C) C B
be .qiven. Let G be a C-admissible global distribution.
and let .o~(bi).i = 1 .... k, be derived from G. Then
{.q;(.Ti)}i~l ..... k is a C-ad,dssible set of local belief di.~-
tvibutions.

Theorenl I implies thai, if ix decision nlaker defines ;1
set. of h~cal belief distributions describing a probleni,
and if these are mln-lissibh, w.r.l., the constraints in-
volved, it global belief (lisl.ributicln Call be dt.t.crnline(l.
This tlisl.ribul.ion lla.,~ lilt, property of having the salne
eentroid (and tim same support, relal.ive l.o the local
belief distributions) its any global belief distribution
fl’om which the user-asselie(I local belief distribulions
can be derived.

Evaluation
The evaluation l)rinciple I.reated in this section is
based on tim principle of maximising the expected
value. Given a decision situation D, let 79 and V
be a probability base and a value base for D, respec-
lively. The expected value E(Ci) den¢)les the expres-
sioli Em;

.i=l P"iV’i" where P~.i and ’Li are. variables in
79 and V. ’Ib evaluate the expected v,’due [Danielson
mad Ekenberg, 1997, i’]kenberg, el. al., 1996, M alnmbs,
1994] investigates the set {E(C,)},=t ....... ij 79 U V in
a variety of respects. However, in the present frame-
work, distributions are inchlded, and we will sugge.~r
how these can be I aken into account in the evaluations.

Generalised Mean Values
We will now describe how belief fimetions can he ira-
prised on evahlations of a generalised expected mean
va] I10.

First. we a define a decision scenario as containing a
mmlber of global belief dist ribulions, hfformally, these
express various beliefs in vectors in subsets of tlm solu-
tion sets to probability-, and utility bases. For a given
consequence set, there is one global belief distribution
for the probabilit ies, and one global belief distribution
for the utilities: with respect Io this set.



Definition 10 A decision scenario is a structure
(/), P, V, {pl};=l ........ {v,}i=l ....... ), ,,,he,v,
¯ D is a decision situation {{ci.i}j=l ........ },=l .......

¯ P = (PlI,PI2 ..... pro,) is a unity cube.
¯ V = (vtl,rl2 ..... v.,.,) is , unity cube.
¯ p~ is a global belief distribution over the unity cube

P~ = (pll ..... pi,~,) such that pi(.T) = 0, when
Ej=I p~i ~ 1.

¯ vi is a global belief distribution over the unity cube
X~ = (,,,, . . . , ,,~,,,.).

The next definition suggests a generalised expected
value. This is summed over all possible expected val-
ues weighted by the global belief distrilmtions over the
solution sets to the probability-, and utility bases.

Definition 11 Let a decision scenario
({C,};=l ...... P, V, {p;};=l ....... {v;};=l ...... ) be given.
The expression

f,(m :,:;.i!/;.i p~(.’r.iz ..... :m,,,i) ¯ viCyiz ..... !/;,~,)
¯ ,xl; k.i=j /

dV (:rit ...... ri,,. )dV (~1il ..... yim, )

is called the generalised e~.pectrd value for Ci, and is
denoted by G(C,).

The next theorem shows how the generalised expected
value of a consequence set can be calculated by using
only the centroids of the global belief distributions.

Theorem 2 Let a decision ,~eenario
(D, P, V, {pl}i=l ........ {Vi}i=l ....... ) be given. Theft

O(C~) (:rp,,:rv,),
where (.~. ~.1) "i~" the standard iTmer prod.uct of :r and !1.

Proof" Let :rpl = (~11 .... , ct;.,;) ill IJ; m~d let .~vl =
(.,"~il ..... fli,,~) in I’~. Since pi E (;BD(P;), 
(IBI) (I5), lhen by definition 

/~.r;.i dV(:r~l).-, dV(:ri,,,) mp i (t i.i 

Analogously we g~t.

~!li.i ̄ ,IV(thl)’’’ ¢lV(y;,,,) = /:ll.i.Vl

Thus, by tile independence of Pi and [.;. we gel.

:r;.i ..... Vi(!lil ..... 11 .....!],.IP,(.Zil ;l’itoi ) )m
i×V,
dV (.r,l ...... r ..... )dV(.~m ..... .v~.~,) = ,.~,~ ;~:i.

Tiros

(;(C,) = ~ ̄  fl,1 + ... + a;,,, ¯/~.,,, = (.,:p., ~’v,).

However. as mentioned above, usually a decision
maker does only have access to local information and

a set of relations between different parameters, and
has no explicit idea about the global distributions. If
the decision maker is able to define a set of local belief
distributions describing the decision problem, and if
these are congruent with the constraints invoh, ed: the
general expected value can be determined. Theorem
3 shows that this is equal to the generalised expected
value of C~ involving any global belief distribution,
which have a positive support on the solutions sets to
7) mad V only, ,’rod from which the local belief distri-
but ions is derived.

Definition 12 A potential decision scenario is a
structure

(O, P, V, { {f,,,~ }j=l ...... i },=1 ........

{{f,,o}.i=a ........ ,}i=t ....... C),

’tl~eT~

¯ D is a decision situation {{ci..i}:i=x ....... ,},=t .......
¯ P = (PH,Px2 ..... pro,.) is a unity cube.
¯ V = (vx~,v~z ..... v,,,,,) is a unity cube.

¯ fo~ E I,BD (vi.i).
¯ C is the sets {Cp };=z ...... a.d {Cv~}i=~ ....... where

Cp. i.~ a set of constraints in the pij variables, and
C~5 is a set of constraints in the v~.~ variables.

Theorem 3 Let a potential decision scenario

(D: P, t~ {{fp,~ }.i=z ......., }i=t .......
{{f,’~ib=~ ........,},=1 .......C)

be given. If p~ E GBD (P~) is Cp,-admissible, vl E
GBD (I,§) is Cv~-admissible, and fp~ and f~.i~ are de-
rived from p, and vi respectively. Ther~ {fp~}.i=~ ......
is C~,~ admissible, {fo.~ }.i=l ....... ~ is Cv~-admissible,
and

.rp, . :rul)

T̄ijYil "

JP, ×x~ \,-I ]
h,Z (.ril) "~fP’ ’i (:r im,)f,,;, (!/ i~)’’" f . .. , (Yi,,,.,)
,IV(z~l ..... z.,,. )dV(y~ ..... U.., )
-~ <(.~s.,, ......,’s,.,., ), (us.,, ..... ,~o,.,, )),

where (;r. y) is the standard inner product of .~ and y.

Proof: The first part is a direct consequence of the-
urem 1. The second part follows from Lemma 1.
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