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Abstract

A method for improving search-based inference
techniques in Bayesian networks by obtaining a
prior estimation of the error is presented. The
method is based on a recently introduced algo-
rithm for calculating the contribution of a given
set of instantiations to the total probability mass.
If a certain accuracy for the solution is desired,
the method provides us with the number of repli-
cations (i.e., the sample size) needed for obtain-
ing the approximated values with the desired ac-
curacy. In addition to providing a prior stopping
rule, the method substantially reduces the struc-
ture of the search tree and, hence, the computer
time required for the process. Important savings
are obtained in the case of Bayesian networks
with extreme probabilities, as it is shown with the
examples reported in the paper. As an example
of several possible applications of the method, the
problem of finding a maximal posteriori (MAP)
instantiation of the Bayesian network variables,
given a partial value assignment as an initial con-
straint, is presented.

Introduction

In recent years probabilistic networks, mainly Bayesian
and Markov networks, have emerged as effective tools
both, for graphical representation of the dependence
relationships among a set of variables, and for exploit-
ing the resulting graph to easily define a consistent
joint probability distribution (see, e.g., Pearl (1988)
and Castillo, Gutiérrez and Hadi (1997)). Among
these models, Bayesian networks have captured the in-
terest of many scientists in several fields, from medicine
to engineering, due to their simplicity and soundness.

A Bayesian network on a set of variables X =
{X1,...,Xn} is a pair (D,C), where D is a directed
acyclic graph over X, which represents the depen-
dence relationships among the variables in X, and
C = {p(zi1|m),...,p(zn|7n)} is a set of n condi-
tional probability distributions (CPD) determined by
the topology of the graph, one for each variable X,
where the conditioning set, II;, is the set of parents of
node X; in D. Then, using the chain rule, a Bayesian
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network defines a joint probability distribution (JPD)
on X in a simple way:

p(z) = plz1,...,za) = [[plmlm). ()

=1

Inference, or evidence propagation, is one of the
most important tasks in the area of probabilistic rea-
soning. It consists of calculating the prior and pos-
terior distributions of some event of interest (usu-
ally, associated with a single variable). When no evi-
dence is observed, inference consists of calculating the
prior probabilities p(x;). When a set of evidential
nodes E have shown to take the values £ = ¢, in-
ference consists of calculating the conditional proba-
bilities p(z;|e). Several exact and simulation-based ap-
proximated methods have been developed Lo efficiently
calculate these probabilities (see, for example, Lau-
ritzen and Spiegelhalter (1988), Pearl (1988), Henrion
(1988), and and Castillo, Gutiérrez and Hadi (1997)).

Recently, a new type of propagation algorithms
which search for instantiations of the variables with
high probability through the space of all possible in-
stantiations, {(zy, ..., Ty) | z; is a feasible value for X;},
have been introduced. These methods have been
shown to be efficient alternatives of the above exact
and simulation algorithms in some cases, such as in
presence of extreme probabilities (Poole (1993) and
Bouckaert, Castillo and Gutiérrez (1995)).

In this paper we present a method both for estimat-
ing the error produced when using these algorithms,
and for improving their efficiency in cases where a cer-
tain accuracy is required. The savings are shown to
be very important in the presence of extreme proba-
bilities, where the computation time can be reduced
substantially. The proposed method is based on a re-
cently introduced algorithm (Castillo et al. 1995) for
calculating the contribution of a given set of instanti-
ations to the total probability mass.

The rest of the paper is organized as follows. We
start by giving a formal statement of the problem.
Then, we introduce a simple method for solving this
problem. As an example of application, the proposed
method is used to improve one of the search-based in-
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ference methods. Finally, we analyze the MAP proh-
lem comparing both the standard and the improved
search algorithms.

Statement of the Problem

A natural way of approximating marginal, or condi-
tional, probabilities consists of summing only on the
(small) set of instantiations I, which includes all in-
stantiations with associated probability larger than a
given value ¢. Then, the total error produced is given
by 3 g1 P(%) = 2 ;p(2)<q P(%). Thus, for estimating
error bounds, we need to determine the contribution
of all instantiations with probability lower than ¢ to
the total probability mass. To do this, we consider the
error function

s(a)= ), plx). (2)

xp(x)<q

We are also interested in calculating the ratio of
the number of instantiations z included in the set
{z : p(x) < q} to the total number of instantiations,
since these are the instantiations we can skip in the in-
ference process by paying a total error s(q). This ratio
is defined by

fto) = L=2nB < dll, ®)
X!

where Ix is the set of all possible instantiations r =
(1, ..., zn) of the variables in the set X and | A| stands
for the cardinal of the set A. Thus, for a given value g,
f(q) gives the ratio of instantiations with probability
lower than q and s(gq) gives the contribution of all these
instantiations to the total probability mass.

Figure 1 shows both f(g) and s(q), for a ten-node
Bayesian network with random probabilities taken
from (0,1). This figure shows, for example, that 80%
of the instantiations contribute only 16% to the total
probability mass. In Bayesian networks with extreme
probabilities the contribution is much smaller. For ex-
ample for a ten-node Bayesian network with random
extreme probabilities taken from (0,0.1} U (0.9,1) we
found that 85% of the instantiations contribute less
than 0.02% to the total probability mass. Therefore,
it is possible to obtain substantial savings in the com-
putation time by paying only a small error. Moreover,
the more extreme the probabilities, the smaller the er-
ror produced.

The main problem for implementing the method
consists of estimating the left tail of s(g) in an effi-
cient way. This tail contains the instantiations that
contribute the least to the total probability. Since we
need to estimate not the central part, but the left tail
of the distribution, we need to use extreme value the-
ory (see Castillo (1988) for a general introduction to
extreme value theory).
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Figure 1: Distributions f{q) and s(q) for a ten-node
Bayesian network with probabilities taken from (0, 1).

The Proposed Method

Castillo et al. (1995) show that the function s(q) is
the Lorenz curve of p, which is a CDF that can be as-
sociated with a new random variable ¢ with the same
domain as p. Given a threshold value u, they showed
that the distribution s{q), for ¢ < u, can be approxi-
mated by the product of a function s(u) and the CDF
of q — u, g{qg — u), in the following way:

s(q) = s(u)g(q — u). (4)

Since it is the left tail of a distribution, g(gq — u) can
be approximated by the Reversed Generalized Pareto
Distribution (RGPD) when u is reasonably small. The
RGPD U(z;6,0), introduced by Pickands (1975), is
defined by

1
Uzda) = (1+2)7; 1+= 20,  (5)

where o and o are the scale and shape parameters,
respectively.

Then, given a threshold value «, the proposed model
for the left tail of s(q) is

s(q) = S(’U.)U(q - u;a,a); q<u, (6)

which depends on s(u) and two parameters, & and o,
for each threshold value u.

The problem for estimating s(u) and U(q — », «, 0)
is that the associated random variable q is not directly
observable. However, we can observe p and obtain an
ordered sample (p1,...,pm) from p(z). Then, a natu-
ral estimator for s(u) based on this sample is

ooy _ Hpi 1 pi <u}
i(u) = - . (M
There is a vast literature on estimating the parame-
ters § and o for a RGPD (see Castillo and Hadi (1994),
and the references therein). Any of these methods can
be used to estimate the parameters. For illustrative
purpose, we use here the conceptually simple method



of moments (MOM) estimates of the parameters which
are given by

. 1 (z? . z (%2
“-5(3-1)’ ”——E(Sz“)’

where Z and s2 are the sample mean and the sample
variance, respectively.

Given a sample size m and a threshold value for
the accumulated probability e (the maximum error
bound), we can estimate s(g) using (6) for those values
of the function lower than e. The threshold value u for
the probabilities for the left tail of the distribution is
chosen to be the me-th lower probability in the sample.
In this way the values s(g) lower than ¢ will correspond
tog <wu.

We have performed several experiments to analyze
the quality of the estimation given by this method.
For example, Figure 2(a) shows the exact value of s(q)
together with its approximation §(q) for a 20-node
network with probability tables selected from (0, 1).
The sample size taken to obtain this estimation is
m = 10000 and ¢ = 0.05. Figure 2(b) corresponds
to a 20-node network with extreme probabilities taken
from (0,0.1)U (0.9,1). In both cases, the value u ob-
tained by considering the 500-th lower probability in
the sample, corresponding to the threshold error value
s(u) = e = 0.05.
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Figure 2: Error estimation for a 20-node (a) non ex-

treme and (b) extreme Bayesian network with m =
10000 and e = 0.05.

Improving Search-Based Inference

The algorithm introduced in the previous section can
be applied to estimate the error produced when ap-
proximating the probabilities of an event using one
of the existing deterministic approximation methods.
On the one hand, the deterministic stratified method
(see Bouckaert et al. (1995)) works by dividing the
sample space into several regions and then choosing
an optimum number of instantiations from each re-
gion. In this way, rare instantiations can be avoided.
A sample of size m obtained with this algorithm will
contain all the instantiations with probabilities larger
than -,,1—1 Therefore, the error estimation method can
be used to calculate the number of replications needed
to obtain an approximation with any desired accu-
racy. For example, if we wish to obtain an approxi-
mation of the probabilities of any event in the above
Bayesian network associated with Figure 2(b), with
error lower than 0.02, then the estimation of the left
tail of the distribution shown in this figure would al-
low us to obtain the necessary number of replications,
n < 1/(3.6 x 1078) < 105,

On the other hand, search-based propagation meth-
ods work by creating a search tree whose branches are
associated with partial instantiations of the variables.
In every iteration step, the search process chooses one
of the branches of the tree associated with an instan-
tiation (zi,...,z%). If the associated instantiation is
complete, that is, if £ = n, then the branch is pruned
from the tree and the instantiation is included in the
sample. Otherwise, the tree is augmented with as
many new branches as values of the next variable,
Zk+1. Thus, the original branch, (zi,...,z}), is re-
placed by the branches (z%,...,x%, Tx+1) for all possi-
ble values of X . Several search methods have been
proposed in the literature (see, for example, Henrion
(1991), Poole (1993), and Santos and Shimony (1994)).
The main difference among them is the selected crite-
rion for choosing the branches in each iteration step. In
the next two sections we describe one of these methods
and introduce a modified algorithm based on the error
estimation method presented in Section . However, the
same ideas can be applied to improve the efficiency of
any other search method.

Maximum Probability Search Algorithm

The algorithm of maximum probability search (Poole
(1993)) uses the criterion of maximum probability
to choose the branches in every iteration step. In
this case, besides providing a stopping criteria, the
above error estimation method reduces substantially
the computational complexity of this algorithm since
branches with lower probabilities than the threshold
value can be pruned from the search tree.

The maximum probability criterion for choosing the
branches used in this algorithm makes it suitable for
solving the MAP problem, since it obtains the instan-
tiation with highest probability in each step of the pro-
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cess. Thus, this algorithm combines both inference and
abductive inference in an intuitive way.

If a given accuracy ¢ is required for the solution,
then the structure of the search tree can be reduced
by skipping those instantiations in the left tail of the
distribution that contribute less than ¢ to the total
probability mass. Although the probability associated
with this set is very low, it can contain a large number
of instantiations. This modification leads to important
reductions in both, the structure of the tree and the
computation time.

We perform some experiments to evaluate the per-
formance of the modified maximum probability search
algorithm as compared to the performance of the
standard algorithm. A Bayesian network consisting
of ten binary variables is randomly generated. In
the first experiment, the random numbers associated
with the CPDs are selected from the unit interval
and in the second experiment the numbers are uni-
formly selected from [0,0.1] U [0.9,1] to obtain a JPD
with extreme probabilities. The experiments are per-
formed by running the algorithms with values of the
minimal accumulated probability 6 from the values
{0.8,0.9,0.95,0.975,0.99}. The performance is mea-
sured by (a) the number of complete generated instan-
tiations, (b) the maximum size of the queue, and (c)
the time to execute the approximation.

Figure 3 shows the results for the case where the
probability tables are selected from the unit interval.
Figure 4 shows the results for the case of Baycsian net-
works with extreme probabilities chosen in the interval
[0,0.1] U [0.9,1]. As could be expected, the execution
time and the maximum size of the queue rises when
the accumulated probability rises. Note that the num-
ber of instantiations for a given accumulated proba-
bility is the same for the standard and modified algo-
rithms. When Figures 3 and 4 are compared, one sees
that all measured criteria are larger for the distribu-
tions that have their probabilities from the unit inter-
val, confirming that the maximum probability search
method works better for cases where extreme proba-
bilities are involved (see Poole (1993)). This is caused
by the large size of the largest intervals that appear
when distributions contain extreme probabilities.

Figures 3 and 4 show that the modified algorithm
produces important savings both in the computation
time and in the complexity of the search tree (the max-
imum number of instantiations in the queue) as com-
pared with the standard method. These figures also
show that the savings increase when extreme probabil-
ities are involved.

The MAP Problem

In this section we analyze the problem of finding a max-
imal posteriori (MAP) instantiation of the Bayesian
network variables. Several exact and approximate
methods have been proposed in the literature for this
task (see Shimony (1994) and the references therein).
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Figure 3: A scatter plot of three performance measures
versus § for the cases in which probability tables are
chosen from (0, 1).
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Figure 4: A scatter plot of three performance measures
versus 6 for the cases in which probability tables are
chosen from (0,0.1)U (0.9, 1).

As we already mentioned, the maximum probability
search algorithm provides an intuitive and efficient
method for finding the first m instantiations in the
network with highest probabilities. If we are only in-
terested in the most probable explanation, then we can
run the method until the first branch in the tree is com-
pleted.

To improve the efficiency of this method, we are in-
terested in obtaining an estimation of the probability u
associated with the (m+ 1)-th instantiation with high-
est probability, since we can skip all the instantiations
with lower probability in the search process. The re-
duction of the complexity of the search tree will be very
important, since we are neglecting not only the left tail
of the distribution, but also most of the instantiations.
Thus, in this case we are interested in estimating f(q).
Following the ideas used in Section we can obtain a
uniform sample {p;,...,p,} and take the (m + 1)-th
value with highest probability as a natural estimation
of w.



Figure 5 compares both the standard and the
modified algorithms by using a randomly generated
Bayesian network consisting of twenty binary variables
with the CPDs selected from the unit interval. The ex-
periments are performed by running the algorithms to
find the m most probable instantiations for different
values of m. The performance is measured by (a) the
maximum size of the queue and (b) the time to exe-
cute the approximation. It can be shown that both the
structure and the computation time are substantially
reduced in the modified algorithm.
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Figure 5: A scatter plot of two performance measures
versus m for the MPA problem.

Summary and Conclusions

A method for improving search based inference proce-
dures in Bayesian networks is presented. The method
consists of determining a threshold value for the proba-
bilities associated with the instantiations, below which
they can be ignored without influencing the required
error for the estimates. A reversed generalized Pareto
distribution is used to estimate the tail of the distribu-
tion of the instantiation probabilities, combined with
MOM estimates of its parameters. To this end a sam-
ple is simulated and its tail values used for the estima-
tion. Once the tail is known, the desired percentiles
are obtained and used as threshold values. Several
examples of Bayesian networks are used to illustrate
the method. In particular Bayesian networks with as-
sociated extreme conditional probabilities are shown
to lead to substantial savings in both the required
memory (to store the search tree) and the computa-
tion time. The method is able to improve several well
known techniques such as the MAP problem.
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