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Abstract

The increasing number of knowledge-bo-~ed systems
that build on a Bayesian belief network or influence di-
agram acknowledge the usefizlne~s of the.~e frazneworks
for addrez~sing complex reM-life proble.ms. The usually
large munber of probabilities and utilities required for
their application, however, is often considered a ma-
jor obstach:. The use of qualitative abst.~ur’tioT~ may
t.o some extent remove this obstacle. Qualglal.ive belief
networks and associated algorithms haw~ been (level-
,)ped before. In this paper, we auldre~ q,.algtative, in-
fluence dia.qTnras and outline aa efficient algorithm for
qualitative decision making.

Introduction
In the late 1980s, the framework of Bay~.sian belief net-
works was introduced for reasoning "wiH~. uncertainty
(Pearl 1988). The framework provides a fbrmalism
for encoding a joint probability distribution on a set
of statistical w~riables and offers algorithms fi)r prob-
abilistic inference. In practice, reasoning with uncer-
tainty is often performed to support a decision maker in
solving complex real-liR ~. l)robh.ms. Th,, belief network
framework in itself does not provide fbr decision mak-
ing underr uncertainty, as (le(:ision making involves not
only knowledge of the uncertainties in a problem under
study, but also knowle.dge of the decisions that are at a
decision maker’s disposal and of the desirability of their
uncertain consequences. The framework of influence
diagrams is tailored to decision making (Howard and
Matheson 1981). It provides a formalism tot capturing
the various types of knowledge involved in a decision
problem and offers algorithms fi)r (’oml)uting preferred
decisions. The framework is closely related t.o the belief
network framework; in fact, influence diagrams may be
looked upon as enhanced belief networks.

The belief network and influence-di.’tgram frame-
works have demonstrated their practk:ability in a wide
range of problem domaiiLq. Experience shows, however,
that the usually large number of probabilities and utili-
ties required poses a major obstacle to their application
(Druzdzel and Van der Gaag 1995). Motivated by this
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experience, the framework of qualitative belief networks
was introduced in the early 1990s by M.P. Wellman
(1990). A qualitative be|ief zmtwork abstracts from
numerical probabilities l)y encoding qualitative proba-
bilistic ivlatio.nships among its variables. For reasoning
with a qualitative, belief netv, x)rk, an elegant algorithm
is available from M.J. Druzdzel and M. Henrion (1993).
As belief networks may be extended to influence dia-
grams, qualitative belief uet.w,)rks may be enhanced to
qualilatiw: i’n.flucnce dia!llums (~Velhnan 1990). A qual-
itative influence diagram abstracts from the numerical
quantities involved in a decision problem under study
by encoding qualitative probabilistic and pre.fe,~ential re-
lationsh.ips antong its v~riables.

Since their introduction, research has focused mainly
on qualitative belief networks, with less attention for
qualitative influence diagrams. As we consider decision
making a ~fluable additkm to reasoning with uncer-
tainty, we re-introduce qualitative influence diagrams
and outline a new algorithm for efficient qualitative de-
cision making, that builds on Druzdzel and Henrion’s
algorithul fbr qualitative rea,~oning with uncertainty.

The paper is organised as foUows. In Section 2 we
review the belief network and influence~diagram frame~
works. In Section 3 qualitative belief net.worL~ are pre-
sented. In Section 4 we introduce qualitative influ-
ence db~grams; in addition, we outline our algorithm
for qualitative decision making. In Section 5 we give
some conchtsions and directions for further research.

Belief networks and influence diagrams
The framework of Bayesian belief networks for reason-
izg with uncertainty is rooted in probability theory
(Pearl 1988). It offers a formalism for encoding a joint
probability distribution on a set of statistical variables,
in which infbrmation about independences is explicitly
separated from numerical quantities.

A belief network consists of a qualitative part and an
~msociated quantitative part. The qualitative part is a
graphical representation ,)f the independences holding
among the variables in the encoded probability distri-
bution. It takes the form of an acyclic directed graph
G. Each node A in G represents a statistical variable
that takes one of a finite set of values. We assume all
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variables to be binary, taking one of the values true and
false; for abbreviation, we use a to denote A = true and
~2 to denote A = false. The arcs of G with each other
model the independences among the represented vari-
ables. Informally, we take an arc A --~ /3 to represent
an influential relationship between the variables A and
B; the arc’s direction marks B as the effect of the cause
A. Absence of an arc between two nodes means that
the corresponding variables do not influeuce each other
directly and, hence, are (conditionally) indepemlent.

Associated with the qualitat.iv,~ part ,,f a belief net-
work are mmmrical quantities from the rncoded distri-
but.ion. With each node A in G is associated a set of
conditional probabilities Pr(A [ ,-r(A)), describing 
joint influence of ~flues for the causes rr(A) of A on tlm
prohabUitk~.s of A’s values. These sets of probabilities
constitute the quantitative part of the n,,twork.

Example I Consider the belief network shown in Fig-
ure 1. The network represents a fragment of fictitious

Pr(r) = 0.2 ~)N
/ ~ I’r(t) = 0.1

r./) = 0.4Pr(s ’ft.)= 1.0 Pr~
Pr(s Ct) H) = 0.01

Figure 1: The Sore "l’hzvat 1)eli(:f uetwork.

medical krmwledge in pediatrics. Node S represents the
presence or absence in a child of a severe sore throat,
R represents the presence or absence of an upper re~
piratory tract infection, and T r(,presents whether or
lint a child suffers from tonsillitis. Upper respiratory
tract infectk)ll and tonsillitis are modelled as the po~
sible causes of a sore throat. Note that the presence of
any of these (.auses suffices to considerably increase the
probability of a severe sore throat in a chikl. []

A b(,lief network uniquely represents a probability dis-
tribution. It thus provides for computing ru\v probabil-
ity of interest. To this end efficient algorithms are avail-
able (Pearl 1988; Lauritzen and Spiegelhalter 1988).

A Bayesian belief network may be extended to an in-
fluence diagram to Mlow for decision making under un-
certainty (Howard and Matheson 1981). The formalism
of influence diagrams provides fbr encoding not only a
l~robal)ility distribution on a set of variables, but also
the decisions that a decision make.r can take and the
desirability of their uncertain consequem’es.

As a be.lief network, an influence diagram consists of
a qualitative part and a quantitative part. The qual-
itative part again is an acyclic directed graph. Three
different types of node are discerned. A node represent-
ing a statistical variable is terrned a cha.nce node.; it is
generally depicted mq a circle. A decision node models
a decision variable, representing the various decision al-
ternatiw~.s that are at the decision maker’s disposal; the
node’s value is under control of the decision maker. A
decision node is depicted as a square. Tlu, third type of
node is the value node. It rel)resents the desirability of

the consequences that may arise from the various deci-
sions. There is only o~m value node and it does not have
any outgoing arcs; it is depicted as a hexagon. The arcs
between the chance nodes again encode the indepen-
dences among the represented statistical variables. An
arc from a decision node into a chance node expresses an
influem:e on the represented statistical variable, exerted
by the decision maker through a decision for the deci-
sion variable at hand. The incoming ares of a decision
node capture the infornmtion that is available before a
decision is made. To conclude, an incoming arc of the
value node expresses an influence on desirability.

The quantitative part of an influence diagram again
associates with each chance node A in the diagram’s
digraph a set of conditional probabilities Pr(A I 7r(A)).
With the value node V is associated a set of utilities
u(~r(V)), specifying for each combination of values for
V’s parents zr(V) a number expressing the desirability
of this x.~alue combination to the decision maker.

Example 2 Consider the influence diagram shown in
Figure 2. The diagram embeds the Sore Throat belief

Pr(s rt = 0.,1
Pr(s
Pr(s I ’~t) = 0.01 u(/e) --- 0.5

u(tc)=0.2 ~ u(fe)= 

Figure 2: The Sore Throat influence diagram.

xletwork from Figure 1. In addition, it includes the deci-
sion node E and the vahle node V. Node E models the
decision alternatives that are at the decision maker’s
disposal: these are the decision to perform a tonsillec-
tom)" and the decision to refrain from performing one.
A decision is made only if it is known with certainty
whether or not a child is suffering from a severe sore
throat. The [)referred decision is to perform a tonsillec-
tomy in tim l)resence of tonsillitis and to refrain from
performing one in the absence of tonsillitis. []

An influenc.e diagram uniquely represents a decision
problem. A solution to the problem is a decision or,
in case of multiple decision nodes, a sequence of deci-
sions that ma~.’imises desirability of consequences. To
compute a solution, for each sequence of decisions, the
utilities of its uncertain consequences are weighted with
the probabilities that these consequences will occur; the
expected utility of the sequence x is thus computed from

~̄.(:r) :-~ E, ",~(~’,,(Y)). Pr(,,(V) I 

where 7ri(V) is a combination of values for the par-
ents of the value node V and u(Iri(V)) is its utility;
Pr(~ri(V) ! x) is the probability of re(V) given that 
decisions x are taken. The preferred sequence of deci-
sions is a sequence with highest expected utility. Effi-
cient algorithms are available for decision making with
influence diagr~m (Shachter 1986).
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Qualitative belief networks
Qualitative belief networks, introduced by M.P. Well-
man a.s qualitative abstractions of belief w’tworks, bear
a strong resemblance to their quantitative counterparts
(VVellman 1990). A qualitative belief network comprises
a graphical representation of the in(lepcnth,nces among
a set of statistical variables, one(, more hLking the form
of an acyclic digraph. Instead of conditional probabil-
it.ies, however, a qualitative belief network ~ksso(.iat.es
with its digraph qualitative probabilistic, wlationships.

A qualitative influence between two m,l(’s expresses
how the values of one node influence tlm I)robabilities
of the wtlues of the other node. For example, a positive
qualitative influence of node A on its effect B, denoted
S+(A, B), expresses that observing higher values for A
makes higher values for B more likely, r,,gardless of any
other direct influence on B, that is,

Pr(bIax) > Pr(b I hx)

for any combination of values x fi)r the set rr(B) \ 
of (:ause.~ of B other than A. A .negativv qualitative in-
flue.nee, denoted S - (A, B), and zetv qualitative in flu-
cnce, denoted S°(A, B), are defined anah,gously, r,,plac-
ing .> in the above formula by "-" mid =, r(,spet’tively. If
the influence of A on B is not monotonic.., we say that
it is ambiguous, denoted S’¢ (A, B).

The set of influenc.es [)f a qualitative belief network
exhibits ~trious convenient properties (Wolhnan 1990:
Renooij 1996). The property of symmct.t:q guarantees
that, if the network irmludes the influence S+(A,B),
then it also includes S+ (B, A). The property of transi-
tivity asserts that qualitative influences ahmg a chain,
that specifies at most one incoming art’. h)r each imde,
combine into a single influence with the .~,-operator
from ’Fable 1. The property of composition asserts that
multiple qualitative influences b(,tween two nod(:s along
parallel chains combine into a single influence with the
~-operator. Note that combining qualitative influences
may yield an ambiguous result. While for a qualitative
influence along a singh~ arc ambiguity indicates non-
inonotonicity, for a combined influence ambiguity may
also indicate that. its sign is unknown.

® + - 0 ? ~: + - 0
+ + - 0 ? -+ + ? + "~
- - + 0 ? - ? - - "~
0 0 0 0 0 0 + - 0 ?
? ? ’> 0 ’: ? ? " ~ ’~

2’,able 1: The ~,- and :..i)-ol)erators.

In addition to influences, a qualitative belief network
includes synergies modeling interactions among influ-
ences. An additive syneryy between three nodes ex-
presses how the values of two nodes jointly influence
the probabilities of the values of the third node (Well-
man 1990). For example, a positive additive synergy
of nodes A and B on their common effect C, denoted
Y+({A, B}, C’), e, xpresses that the joint influence of 
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and B on C is ~re~der than the sum of their separate
influences, regardless (,f o( her influences on C, that is,

Pr(e~ ,.b.,’) I- Pr(e I ~h,’) > er(c ab:r) + Pr(c ] h.bx)

for any combination of values x tbr the set r(C)\ { A, 
of causes of C other than A and B. Negative, zero, and
ambiguous additive s!rm.lyy are. dcfiImd analogously.

A p.tY)duct synergy expresses how the value of one
node influences the t)rol)abilities of the values of an-
other node in view of a given value for a third node
(Hcnrion and Druzdz(’.l 1991); it describes i’n tewausal
influence. For example, a negative prvd.uct, synergy of
node A on node B (mul vice versa) given the value c
for their comnlon effect C’, denoted X-({A, B}, el, ex-
presses that. given e, higher values tbr A render higher
values for B less likely, that is,

Pr(c [ ab.r). Pr(c I ~)i,:,’) 5 er(cl abx). Pr(c I iibz)

[br any combination of wdues x for the set 7r(C)\{A, 
Positive, zerv. and ambi.quo.as p~vduct syneryy again are
defined analogously.

Example 3 We (:onsid(?r the qualitative abstraction 
the Sow Throat belief n(,twork from Figure i. From
the/:oJ)ditional probabilili(,s specified for node S, it 
readily voritie(l that. both R and T exert a positive qual-
itative influence on S. As the joint influence, of R and
T on S is smaller than the sum of their separate influ-
ences: tht T exhibit a n(’gatiw~ additive synergy on S.
Furthermore, either wthm for node S induces all inter-
causal inttuellce betwcett R and T; this intercausal in-
fluence is described by a negative product synergy. The
resulting qualitative belief network is shown in Figure
3. We would like to note that, although in this ex-

Figure 3: The qualitative Sore TMvat belief network.

ample we have comput(,d the qualitative probabilistic
relationships from the probabilities of the original be-
lief network, in real-life ~q)plications, these relationships
are elicited directly from clomain experts. [_3

For re~soning with a qualitative belief :mtwork, an el-
egant algorithm is a~3dlable from M.J. Druzdzel and
M. Henrion (1993). The basic idea of this algorithm
is to trace the effect of observing a node’s value on the
other nodes in the network by message-pa.ssing between
neighbouring nodes. For each node, a sign is deter-
mined, indicating the direction of ctnmge in the node’s
probabilities occasioned l)y the new observation given
all previously observed node values. Initially, all node
signs equal ’0’. For th(, newly observed node, an ap-
propriate sign is entered, that is, either a ’+’ for the
value t~7,e or a ’-’ for the value false. The node up-
dates its sign ,and subsequently sends a message to each



procedure Propagate-Sign(from, to,message):
sig~[to] .-- sign[to] ~ mes,~ge;
for each (induced) neighbour V~ of 
do linksign ~-- sign of (induced) influence

between to and Vi;
message *--- sign[to] @ linksign;
if Vi ~ from and Vi¢ Observed

and sign[t~] ~ sign[R] q9 m.essage
then Propagate-Sign(to,Vi,message)

neighbour and every node on which it exerts an induced
intercansal influence. The sign of this message is the
@-product of the node’s (new) sign and the sign of the
influence it traverses. This process is repeated through-
out the network, building on the properties of symme-
try, transitivity, and compositkm of influences. No node
is visited more than twice.

Qualitative influence diagrams
Qualitative influence diagrams are qualitative abstrac-
tions of influence diagrams. A qualitative influence
diagram, aa its quantitative counterpart, comprises a
representation of the ,,’ariables invoh, ed in a decision
problem along with their interrelationships, once more
taking the form of an axTclic digraph. Instead of con-
ditional probabilities, however, a qoalitative influence
diagram encodes influences and synergies on its chance
variables. Instead of utilities, it specifies qualitative
preferential relationships. These preferential relation-
ships capture the preferences of the decision maker and,
hence, pertain to the diagram’s value node.

A qualitative influence on utility expresses how the
values of a node influence expected utility. For example,
a positive qualitative influence on utilitlj of a parent A
of the value node V, denoted U-’(A), expresses that.
observing higher ~,’alues for A increases expected utility,
regardless of any other influence on utility, that is,

~(ax) >_ u(a.r)
for any combination of values :r. for the set r(V)\ {A} of
parents of V other than A. Negative, zero, and ambigu-
ous qualitative influences on. ~,tility are defined analo-
gously. As qualitative influences, influences on utility
adhere to the properties of symmetry, transitivity, and
composition; the symmetric counterpart of an influence
on utility, however, is a qualitative influence and the
transitive combination of a qualitative influence and an
influence on utility is an influence on utility.

An additive syner.qy on utility expresses how the
values of two nodes jointly influence expected utility.
For example, a positive additive syne.tyyi on utility of
two parents A and B of tim value node V, denoted
Y~+({A, B}), expresses that the joint, influence of the
two nodes on expected utility is greater than the sum
of their separate influences, that is,

for any combination of values x fbr ttw set rr(V)\{A, 
Negative, zero, and ambiguous additive syneryies on

utility are defined analogously. Note that aa the value
node of an influence diagram cannot be observed, prod-
uct synergie~s on utility have no meaning.

Example 4 We consider the qualitative abstraction of
the Sore Throat influence diagram from Figure 2. Since
it embeds the qualitative belief network from Exam-
ple 3, we focus on its preferential relationships. From
the specified utilities, it is readily verified that node T
exerts a negative qualitative influence on utility. The
qualitative influence on utility of the decision node E
is ambiguous as the desirability to the decision maker
of a tonsillectomy depends on whether or not a child
suffers from a tonsillitis. ’Ib conclude, T and E exhibit
a positive additive synergy on utility. The resulting
qualitative influence diagram is shown in Figure 4. []

Figure 4: The qualitative Sore. Throat diagram.

For decision making with qualitative influence dia-
grams, M.P. Wellman has designed an algorithm based
on the idea of recursively reducing a diagram (Wellman
19901. Untortunately, this algorithm tends to create
more ambiguities titan necessary and, hence, is able to
compute a preferred decision for fewer problems than
possible (Druzdzel anti Henrion 1993). We propose
a new algorithm for qualitative decision making, that
builds on, and includes. Druzdzel and Henrion’s algo-
rithm fi)r qualitative probabilistic inference. As the al-
gorithm of Druzdzel and Henrion creates fewer ambi-
guities than Wellman"s. our algorithm is able to solve
more decision problems.

We recall that the algorithm of Druzdzel and Hen-
rion traces the effect of observing a Imde’s value on
the other nodes in a qmditative belief network. As a
qualitativc influence diagram embeds a qualitative be-
lief network fi~r representing tlm relationships among its
chance nodes, tim algorithm can be applied straightfor-
wardly to the diagram’s probabilistic part. In addition,
the algorithm can be us~d to trace the, effect of the ob-
servation on the value node, yielding the sign of change
in expected utility occ.’~sioned. The. algorithm cannot
be used, however, with regard to decision nodes, as it
would ignore control of the decision maker.

To provide for decision nodes, we extend Druzdzel
and I-Ienrion’s algorithm by including a second, sim-
ilar process of rnessagt~-passing between neighbouring
nodes. This process is initiated by sending a ’+’ from
the value node towards every decision node. Note that
this message captures the decision maker’s aim of may
imising expected utility. The sign that thus reaches a
decision node D reflects this node’s influence on utility.
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procedure l’refc.rred- Deciskms(from.mes.su.gt:):

I ~rop~tgate-Sign u,~ ...... .,. (fi~)m...frn.m, essa9, ’)
l’ropagute-Sign,,tu,tu(V.V,’+’);
for e~tt:h decision node D
do if sign[utility, D] = ’?" and ¢~(I)) (’~LIIS<’H the ambiguity

then sign[util~t.y,D] .... ,1), (sign[influ,’n,’r.Ad 6,’. J~),
whex’e AI G ~t(I)) and Ji is determined
from ~;’~’ ({ D. A, ~)

So, if a’ :-" reaches D, the l>refi’rred decisiua ix d; if a ’-’
reaches it, d. is the prefi~rrcd decisitm. It" D receives a ’0’,
the.n both decision alternar.iw,s art, equally preferred. If
D, however, receives an ambiguous sign. the preferred
decision c~mnot l>e (letermine(l fr~un the influence 
utility of the node by it, self. Iu i’~mt., the ambiguity may.,
indicate that the represented rl(,(’ision pr,)l)lem involves
a true tzude-oJJ: By ext)loiting the signs ~)t inlhtence 
the nodes that model the t.r~td[,-off and their additive
synergies on utility with node D, the an.lfiglfitv may be
resolw~(I; we illustrate the I)asic idea by means of our
running example. Further details of our alg~)rithm and
a fbrmal proof of its correctness will be provided in a
forthcoming technical p~,per.

Example 5 Consider once more the qualit~tive. Stay
Throat influence diagram from Figure 4. Suppose that,
after lu~ving observed a sore throat, we cd~serve tonsil-
litis in a child. To reflect the new c~bservation, a ’+’ is
entero(l fi~r node T. T updates its own sign to ’+’ and
sends a ’-’ to nodes R anti V; uo(lc R subsequently
updates its sign of influence to ’-’. ()ur ~dg~uritlun now
lm)ceeds by sending a ’+’ from the value node V to the
decision node E. Because of its ambiguous qualitative
influence on utility, E receives a ’?’ alld the preferred
decision e~mnot yet be determined. From U’?(E), w(,
conclu(le, however, that either

,,(tc~) > u(t~) ~md ~di,) < .fir). 
¯ u(tc) < u(t~) and uifc) > u.(Fr)

nnlst hold. The first set of inequaliti,s woukl corre-
spond with a positive additive synergy on utility of
nodes E and T, as it induces

The second set of inequalities woul(t correslmnd with 
negative additive synergy on utility. Since the diagram
specifies a positive additive synorgy on utility of T and
E, we know that the first set of inequalities holds. The
preferred decision can now b(’ determilmd: from the
synergy, we have that in case of a positiw, sign of influ-
ence tbr T, the preferred decision is ~:, :m(l in the case
of a negative sign., the decision i; is preferred. Since
tonsillitis has actually been observed in the child un-
der consideration, the algorithm yields the decision to
perform a tonsillectomy as the pref~rre(I decision. []

Conclusions and further research
Qualitative abstractions of belief networks and influ-
ence diagrams have been introduced to remove the ob-
stacle of acquiring a largc number of probabilities and
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utilities. Research so I’~tr has focused mainly on quali-
tative I)<,li(,f networks. Since we consider decision nu~c-
ing a vahmbh, addition to reasoning with uncertaint.~;
we haw’ r(’-inl roduc(~d (h(~ framework qualitative in-
flue.nrr dia!pmn.s. ’We lu,ve proposed a new algorithm
for (lualil.ativo decision nmking under uncertainty, that
buikls on a similar algorithm for qualitative t)robabilis-
tic: reasoniug. In deveh)ifing our algorithm, we have ~s-
sumed that a qualitatiw, influence diagraln under study
includes 1)ilmry variables truly. Our algorithm is readily
extended, however, to apply to inore general diagrams.

One (,f the major dr;Lwbac:ks of qualitative abstrac-
ticms is their coarse level .f detail. Although for some
problem c lcmndns this h,w,l will suffice, there are deci-
sion i)robh’ms fi)r which a liner level of detail is required.
We would like to test our algorithm for qualitative de-
cision makino on various real-life applications to gain
insight as to the level of detail generally required.
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