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Abstract

In this paper, we focus our attcntion on the processing
of the uncertainty encountered in the natural language.
Firstly, we explore the uncertainty concept and then we
suggest a new approach which cnables a representa-
tion of the uncertainty by using linguistic values. The
originality of our approach is that it allows to rcason
on the symbolic uncertainty interval [Certain, Totally
uncertain]. The uncertainty scale that we use here,
presents some advantages over other scales in the rep-
resentation and in the management of the uncertainty.
The axiomatic of our approach is inspired by the Shan-
non theory of cntropy and built on the substrate of a
symbolic many-valued logic. So, the uncertainty man-
agement in the symbolic logic framework leads to gen-
cralizations of classical inferences rules.

Introduction

In the common sense reasoning, the uncertainty is
usually expressed by using the linguistic expressions
like “very uncertain”, “lotally uncertain”, “almost cer-
tain”... The main feature of this uncertainty is its qual-
itative nature (Chachoua & Pacholczyk 1996). So, sev-
eral approaches have been proposed for the process-
ing of this unceriainty category. Among these, we
can quote the qualitative possibility theory (Dubois
1986), the qualitative evidence theory (Parsons & Mam-
dani 1993) and some qualitative probabilities theo-
ries (Savage 1954; Gérdenfors 1975; Wellman 1988;
Aleliunas 1988; Bacchus 1990; Pacholczyk 1992; Dar-
wiche & Ginsberg 1992; Pearl & Goldszmidt 1996;
Lehmann 1996). Thesc approaches offer better formal-
ism for uncertainty representation of the common-sense
knowledge. Nevertheless, in the natural language, the
human subject uses generally two forms to express his
uncertainty (Kant 1966): (1) ezplicitly, as for example
in the statement “I am totally uncertain of my future”
where, the term “totally uncertain” expresses an igno-
rance degree and (2) smplicitly, very often in the belief
form as for example in the statement “It is very proba-
ble that Patty is Canadien”. The term “very probable”
designates a belief degree (Kant 1966). However, all
approaches quoted previously concern rather the un-
certainly expressed under belief form.

In this paper we suggest a new approach ! whose
objective is to contribute mainly to the qualitative pro-
cessing of uncertainty expressed in the ignorance form.
But it can also process the belief form. For example
we can translate the statement “It is very probable that
Patty is Canadian” as “It is almost certain (i.e. kttle
ignorance) that Patty is Canadian”, whereas, a state-
ment expressed in the ignorance form can not always
be translated under the belief form. This is the case of
the statement “I am totally uncertain of my future”.

In this approach, the uncertainty is represented by
using the linguistic values in the interval [Certain, To-
tally uncertain]. This graduation scale presents at least
two advantages. The first one concerns the represen-
tation of the ignorance situation that the scales used
in other qualitative approaches do not allow. The sec-
ond advantage concerns the management of the uncer-
tainty. Indeed, in the qualitative management of un-
certain knowledge, one often leads to intervals of belief,
certainty... Then the question is to choose one value
from these intervals. In our approach, to palliate this
problem, we can choose the greatest value of an interval.
The choice corresponds to the principle of maximnum
entropy (Jaynes 1982).

In section 2, we explore the uncertainty concept and
we show the difference between ignorance form and be-
lief form of the uncertainty concept.

Besides, the uncertainty concept is gradual. So, to
take account of this feature, our approach is built on the
substrate of a many-valued logic suggested by Pachol-
czyk (Pacholczyk 1992). This logic will be presented in
section 3.

In section 4, we discuss our method of uncertainty
representation. This method consists of the defini-
tion in the logical language of a many-valued predi-
cate called Uncert. This predicate satisfies a set of ax-
ioms which governs the uncertainty concept, that we
present in section 5. Thanks to this, in section 6 we ob-
tain some theorems and particularly new generalization
rule of Modus Ponens. These properties offer a formal
framework for the qualitative management of the uncer-

!An earlier version of this has been presented in (Cha-
choua & Pacholczyk 1996).
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tainty. In section 7. we presents the mains differences
between our theory and others qualitative approaches
of uncertainty. Finally, in section 8, we presents an
application example.

Uncertainty concept

Generally, in the universe of discourse, kuowledge is
considered to be certain if it is either true or false. Oth-
erwise, it is considered as uncertain. Let us consider the
following example.

Example 1 Let A, B,C,D, E, and F be six towns:

1. All the inhabitants of the town A always say the
truth,

2. All the inhabitants of the town B are liars,

3. A minority of inhabitants of the town C' always says
the truth,

4. A majority of inhabitants of the town D always says
the truth,

5. Half of inhabitants of town F are liars.

Supposing we don't have any knowledge about the
town E. Let us designate by H(X) an ordinary inhabi-
tant from the town X (X € {A,B,C, D, E, F}) and let
us assume that we will be interested by the truth value
of the sentence: “H(X) is a liar”.

It is clear that the sentence “H(A) is a liar” is false
and the sentence “H(B) is a liar” is true. So these
two sentences are certain. In probability terms, we
have Prob( “H(A) is a liar”)=0 and Prob(“H(B) is a
lier")= 1.

Nevertheless, the determination of the truth value
of some sentences like “H(X) is a liar” with X €
{C, D, E, F} is impossible with the available knowledge.
Thus, these sentences are uncertain. However, note
that the ignorance is maximal about inhabitants of the
towns E and F. Nevertheless the probability (belief) of
“H(E) is a liar” is not estimable. Indeed, we can not
attribute Prob(H(E) is a liar) = Prob(H(E) is not
liar) =~ % as in the town F, because in this town there is
no ignorance about quantity of liars as in the town E.
Note again that, intuitively, the ignorance about the
inhabitants of the towns C and D are approximately
equal, but their probabilities can be very different.

It results that one of the main features of the un-
certainty concept is the ignorance of the truth values.
According to Shannon’s entropy theory (Shannon &
Weaver 1949), the uncertainty concept refers also to
the information deficiency. Indeed, Shannon has shown
that a measure of information can also be used for mea-
suring ignorance. It follows that the ignorance degree
expresses the degree of the information deficiency to
determine the truth value. However, the belief degree
refers rather to the information available.

In the natural language, to evaluate uncertainty, the
human subject refers to a set of adverbial expressions
like almost certain, very uncertain... This set allows
him to build a subjective scale of uncertainty degrees.
In our approach we reproduce the same method. So, in
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the following section we introduce the algebraic struc-
tures on which our methad will be ronstructed.

Algebraic structures

The algebraic structures and the many-valued logic that,
we present here have been already presented by Pachol-
czyk in (Pacholczyk 1992; 1994).

Chains of De Morgan

Let M > 2 be an integer. Let us designate by W the
interval [1, Af] completely ordered by the relation “<7,
and by “n” the application such that n(3) = M + 1 —
8. In these conditions { W, A,V,n} is a lattice of De
Morgan with: aA3 = min(a, ) and aVj3 = mar(a, ).
Let Lpr = {m,72....,7as} be a set where: o < 3 —
Ta < 73. Thus, {£ar,<} is a chain in which the least
element is 71 and the greatest element is Tas.

We define in Ly, two operators “A” and “V” and a
decreasing involution “~” by the relation: 7, A 73 —
Tmin(a.8)» Ta V T8 = Toaz(a,d) and ~ 7o = Tnfa)-
Likewise, operators v, (y € W) are defined as Lps in
the following way:

If a = b then v,1p = Tas else 1,73 = 71.

Remark 1 In the context of the many-valued logic
uscd here, v, and 7, are associated by the relation?:
Sris v, A" — zisva A — “zis A" i5 74 — true
where r and A designates respectively an object and a
concept.

Example 2 For M = 5, one could introduce one
possible set of linguistic degrees totally ordered like:
L5 ={not-at-all, little, enough, very, totally}.

So, in these conditions, if the assertion “Tom is very
young” is true, then it is equivalent to “Tom is young”
is very-true.

In the following, the chain { Ly, <, A, V, ~} will be used
as the support, of the representation of truth degrees.

Interpretation and satisfaction of formulae

The formal system of many-valued predicate logic used
here can be found in (Pacholczyk 1992; 1994).

Definition 1 We call an interpretation structure A of
the language £, the pair < D, R, > for n € N, where
D is a non-empty sct called domain of 4 and R, a
multi-sct? in A.

Definition 2 Let V = {z.22, .., 24,..} be the infinite
countable set of individual variables of the formal sys-
tem. We call a valuation of vaeriables, a sequence de-
noted r =< zg,..., £n,... > where Vi, z; € D. So, if z is
a valuation, then z(n/a) =< g, ..., En—1, 0. Tnt1. ... >-

2These equivalences can be viewed as gencralizations of
Tarski criteria (Pacholczyk 1992; 1994).

3The notion of multi-set was introduced by M. De¢ Glas
in 1988 (scc (Akdag, De-Glas, & Pacholczyk 1992)). In this
theory z €a Rn < z belongs to degree 7o to the multi-
set R,. Note that this multi-set theory is an axiomatics
approach to the fuzzy scts theory of Zadeh. In this theory
z €Ea A in the formal representation of pa(z) = a.



Definition 3 Let & be a formula of SF* and z a valu-
ation. The relation “x setisfies ® to o degree v, in A”
denoted as A =% @ is defined recursively as follows:

.AES Prl2igyees 2i) — < Zigyeens 2y, €0 Rn
AR 8 - A|=3 &, with1g =~ 7,
AL Vad - Al=2 @
CAEZOUT - A= ad AR T |y Vg =Ta
AR ENT - A|=3dand AEZ ¥ |1y ATp =T
CAEZEDO TV - A= Pand AL ¥y 2 Ty =T,
. AEZ 32,8 ~ 74 =Max {1, | AFZ™/® &, a € D}
. A|EE VYzu® — 7, = Min {r, | A E2™/* &, a € D}

G =~ O O ¥ W N =

Definition 4 Let ¢ be a formula. We say that ¢ is v,
-true in A if and only if we have a valuation z such that
T Vo -salisfies ¢ in A.

Uncertainty representation

Let £ be a first order language, A an interpretation
structure of £ and § a set of formulae of SF such that:
Q= {6 € SF, A b or AT 0}

In other terms, for a valuation z, all formulae of
are either satisfied, or not satisfied in A (ie. true or
false in A). The uncertainty of a formula ¢ of Q is
treated thanks to a particular many-valued predicate
called Uncert which has been added in the first order
many-valued predicate logic.

Definition 5 Uncert is defined as follows:

e Uncert, is a many-valued predicate such that:
Vi € Q Uncert () € SF.
e Given an interpretation A4, for all y of 2 one has:
A |=§(°/ 2 Uncert(Vyp)
<= Uncert(Vy.¢) is v, —truein A
<= “¢is ty — true” is u,-uncertatn in A
with 7., € [y, 7m] and 7, € {11, ™™}

Notations: In the following, we use respectively
A =y Uncert(Vy¢) and A =, Uncert(¢) instead of

A Uncert(Vyp) and A =, Uncert(Varg)-

Example 3 By choosing M = 5, one could introduce
the following ordered set of linguistic degrees.
Dy, :{not-at-all-true, little-true, true-enough, very-true,
totally-true} which corresponds to v, — true.
Dy, :{not-at-all-uncertain, little-uncertasn, uncertain-
enough, very-uncertain, totally-uncertain} which corre-
sponds to u, — uncertain, with a = 1,2, ...,5.

Besides, in the natural language, one normally uses
“certain” and “almost certain” rather than “not at all
uncertain” and “little-uncertain”. So, with these terms
we obtain the following uncertainty scale®.

4Note that S.F designates the formulae set for the system
of many-valued predicates calculus.

8Plecase note that this scale and linguistic terms are cho-
sen subjectively by a human cxpert.
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[Certain, Almost-certain, Uncertain-enough, Very-
uncertain, Totally-uncertain]

So, if Uncert(Va¢) is very true, then “9 is true” is
very uncertain.
Besides, to manage rationally the uncertainty, it is nec-
essary that the predicate “Uncert” satisfy an axioms set
which governs this concept.

Axioms of Uncert

According to the sense that we have given in the pre-
vious section, a formula is certain if its truth value® is
known. From this, we derive the first axioms:

Axiom 1 V¢ € Q, 4 Epm ¢ = A =1Uncert(Varo).
Axiom 2 V¢ € 0, A=, ¢ =3 A =1 Uncert(Vi4).

Besides, two equivalent formulae have the same truth
value. By this fact, their uncertainty is the same. So,
the third axiom is:

Axiom 3 Vo € U,V € 2, if A=pr (0 =)
then {A =, Uncert(¢) < A =,Uncert(yp)}.

Let us consider now two non contradictory formulae ¥
and ®. Knowing the uncertainties on ¥ and &, what
will be the uncertainty on their conjunction?

If ¥ is true (thus no uncertainty on ¥) the determi-
nation of the truth value of (¥ N®) will depend only on
that of ®. In these terms, the uncertainty on (¥ N &)
is equal to the uncertainty on &. It follows that, if one
of the formulae is totally uncertein, their conjunction
is also totally uncertain. So, the resulting uncertainty
from (¥ N®P) is, according to Shannon theory of entropy
(Shannon & Weaver 1949), equal to the sum individual
uncertainties of ® and ¥. In the qualitative domain,
we use this same property. So, instead the numerical
operator “+”, we use a qualitative additive operator S
defined bellow. Thus we have the fourth axiom:

Axiom 4 V& € Q, VT €, if ¥ £ &
and {A |F.Uncert(®), A =3Uncert(¥)}
then A =y Uncert(¥ N &)with 7, = (74, 73).

Definition 6 The operator S is defined in order
to satisfy the following properties of classical sum:
Y(Ta, 78, Ty, T5) € [T1.TM],

81. 8(Tay 1) = Ta,

82. 8(7a, 78) = S(78, Tar),

83. 8(1a, S(78, 7)) = S(S(7e,78), T)

84. To < Tpand 7y, < 75 => 8(74,7y) < S8 < 7).

The formulae ¢ and —¢ are mutually exclusive. How-
ever, if the formulae ¢ and —~¢ are uncertain, then con-
sidering the available information, one will choose the
most relevant formula (ie. the most certain formula).
The last axiom is then:

Axiom § V¢ € Q,

if {A |=aUncert(¢) and A =5Uncert(—¢)}

then A EaagUncert(V,¢) with { if 7, < 73 then
Ty = Ta1, else iy =71}

SNote that the truth values “truc” and “ falsc” corre-
spond respectively to Tas and 7.

Uncertainty Reasoning
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Uncertainty management

In this section we present and prove the fundamental
theorems regarding the management of uncertainty.

Theorem 1 Conjunction of several formulae.

V®; € Q,i € {1,..,n}, if the formulae &, , are
non contradictory and for all i we have &; is ug,-
uncertain, then the conjunction (; n..N&,) is
uy-uncertain with r, = S(73,....5(73,_,, 73, )---)-

Proof 1 Consequence of the aziom 4.

Corollary 1 If V®;eqy... o} € 9,
A B Uncert(®iza) and A |=q Uncert(®oeq,..n})-
Using the thevrem 6.1 one obtains:
A, Uncert(®,N..N&, N...NS,) with 7, = 7,.

In other terms, the conjunction of several jormulge
18 ug-uncertain if none of them is less uncertain than
Uq-uncertain.

Theorem 2 Disjunction of two formulne.

V¢ € Q,Vp € (1, if we have:

i is uy-uncertain and ¥ is ug-uncertain,
then (p U ¢) is u,~uncertain, with =, < 7, A 1.

Proof 2 V¢ € (2, Y € S, we have:

(1) AEM (¢ =(pU-p)N(9Uyp)) and

(2) AFEM (p=(pU—¢)N(¢U )

Let suppose that: A |=, Unceri(yp),

z A =g Uncert(¢), A = Uncert{;p U ¢),

A =g, Uncert(¢ U ~p), A =, Uncert(ip U ).

The azioms 3, { and the equations (1) and (2) gives:
Ta = (Te1 . Ty) and 73 = (Toy, Ty) = Ty S Ta AT

Theorem 3 Disjunction of several formulae .

V®; € 2,i € {1,...,n} if we have several formulae
®;-;..n such that, for all i, ®; is ug,-uncertain,
then the disjunction (&,U...U®,) is uy-uncertain
with 7, <73, A A T3,

Proof 3 Consequence of the theorem 2.

Corollary 2 V®;),.» € , if 38, | &, € §), and
A =1 Uncert(®,). then using the theorem 3 one has:
A=, Uncert(®, U, U ...UP,) withr, =7.

So, the disjunction of formulae is certain if only one of
them is certain.

Theorem 4 Generalized Modus Ponens rule.

V¢ € 1,Vyp € Q, if we have:

@ is n,-uncertain and (¢ D ¢) is ug-uncertain,
then ¢ is uy-uncertain with 7, < S(74,73).

Proof 4 ¥(¢,9) € Q, A=um ((6N9) = ((» D 8)N¢))
According to the aziom 2 if A=, Uncert(¢ N yp)

then A =4 Uncert((p D ¢) N)).

Using the axiom 4 one can wrile:

A =y Uncert((p D ¢) N) = A =g Uncert(yp D ¢) and
A o Uncert(yp) such as:

Ty = S(73, 7). Always according the aziom 4:

Vo € A,V € Q, if A |=aUncert(¢), then 1\ < 7.,
Finally 7x < S(74,78)-
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Theorem 5 Combination of uncertainties

Vo € Q,¥p € , if we have:

¢ is uy-uncertain, and (¢ O &) is ug-uncertain
¢ is u,-uncertain and (p O @) is u,-uncertain
then & is u,-uncertain

with 7, < S(7a,73) A S(7y.75).

Proof 5 According to the Modus Ponens the equations
(1) and (2) give respectively:

A =, Uncert(®) with 1, < S(7a,78) and

Ty < 8(7y,75). Therefore 7, < S(74.73) A S(7y,74)-

Corollary 3 V¢ € ),V € Q,V® € () if we have:

A =, Uncerl(¢), and A |53 Uncert(¢p D &) (1)
A = Uncert(yp) and A =, Uncert (o D -®) (2)
Then, using the Modus Ponens, the equalions (1)
and (2) give respectively: A |=,Uncert(®) and

A =y Uncert(—®) with 7, < S(14.73) and

v < S(74,75). According the aziom 5, one obtains:
A =9 Uncert(Vy ®) with 9 < S(1y,7,) A S{74,73) and
T =7um if S(Ta.13) < S(7,7,) else 1, = 1.

Theorem 6 Propagation of uncertainty.

Vo € Q,Vp € V8 € Q, if (¢ DO &) is ug-uncertain
and (® D ) is u,-uncertain then (¢ D ) is -
uncertain with 7, < S(73.7,).

Proof 6 V¢,0,® € ) if A EgUnceri(é DO ®) and
A EsUncert(® D ), then according to the axiom 4
we have: A |=5Uncert((¢ D )N (& D p))with 5 =
S(13,7) and A=ar (6 D )N (2 D)) D (¢ D))
= A |= Uncert(((¢ D )N (2 D ¢)) D (¢ D ¥))

Using the rule of Modus Ponens, one obtains:

A |=u Uncert(¢ O @) with 7, < S(5,71) = 5.

Finally, 7, < 8(13,70).

Strategy

In the previous theorems, by using the maximumn en-
tropy principle (Jaynes 1982), one can replace the sign
“<” by “=" . As Jaynes suggests it, this choice is a
kind of assurance which protects against the false pre-
dictions. This principle enables us to palliate the diffi-
culty of the management of the uncertainties intervals.

Some differences with other approaches

The axiomatic of our approach is built to process the
uncertainty expressed under ignorance form. How-
ever qualitative probabilitics approaches (Savage 1954;
Girdenfors 1975; Wellman 1988; Aleliunas 1988; Pa-
cholczyk 1992; Darwiche & Ginsberg 1992; Pearl &
Goldszmidt 1996; Lehmann 1996) and the qualitative
approach of the evidence theory (Parsons & Mamdani
1993) allow rather to process especially the expressed
uncertainty in the belief form. So, in uncertainty rep-
resentation point of view, our approach presents the
advantage to represent explicitly the situation of total
ignorance such that it is expressed in the natural lan-
guage. In the uncertainty management, one can make
emerge main two differences between our approach and
others qualitative approaches. The first concerns the
implication (or the inclusion in set terms). So, if A and



B are two formulae of (1, one has: A D B=> C(4) <
C(B), where C() can designate a measure of, probabil-
ity, possibility, necessity or credibility. However, in our
approach one has: A O B = I(A) > I(B), where I()
designate a mesure of ignorance (ie the truth degree of
the formulae Uncert(A) and Uncert(B)).

The second difference is relative to the conjunction
of formulae (or intersection in set terms). So, generally
in all qualitative approaches quoted in the former, one
has: C(A N B) = C(A) ® C(B), where ® designates
a multiplicative qualitative operator. In our approach
one has: I(AN B) = I(A) ® I(B), where & designates
an qualitative additive operator.

As we have underlined it, the qualitative processing
of the uncertainty ends very often to intervals of un-
certainties. However, when the uncertainty is repre-
sented in the belief form (propability, credibility..), the
exploitation of these intervals is problematical. Thus,
when the uncertainty is represented in the ignorance
form, one can choose the maximal value of the interval.

Application

In this example, we will use the uncertainty scale de-
fined in the example 4 and in order to lighten the no-
tation, in the following example we will use:

Uncert(®) = ug—uncertain instead of A |=gUncert(®).

Example 4 Let us the following knowledge:

(1) Uncert(Patty is CanadianDPatty doesn’t speaks
French) = almost certain.

(2) Uncert(Patty is QuebecerDPatty is Canadian) =
certain.

(3) Uncert(Patty is QuebecerDPatty speaks French) =
certain.

Let us assume now that we obtained the following
information: It is certain that Patty is Quebecer, thus:
(4) Uncert(Patty is Quebecer)=certain.

Using the knowledge (2), (3) and (4) with the Modus
Ponens we obtain:

d;. Uncert(Patty is Canadian)=certain.
d2. Uncert(Patty speaks French)=certain.

Beside, the knowledge (1) and [di] give with the
Modus Ponens:
ds. Uncert(Patty doesn't speaks French)=almost cer-
tain.

Finally, using the combination of uncertainties (corol-
lary 8) of the knowledge [d2] and [d3] we obtain finally:
dy. Uncert(Patty speaks French)=certain.

Conclusion

In this paper we were interested to the processing of un-
certainty encoded into a qualitative way. We have ex-
plored the uncertainty concept and we have presented
the last results obtained with a new qualitative ap-
proach of uncertainty processing. This approach offers
the possibility to represent explicitly the uncertainty,
as it could be evaluated subjectively, by using linguis-
tic values. The graduation scale used here allows us
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to handle several special cases of uncertainty, including
the situation of total ignorance.
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