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Abstract

In this paper, we focus our attention on the processing
of the uncertainty encountered in the natural langusge.
Firstly, we explore the uncertainty concept and then we
suggest a new approach which enables a representa-
tion of the uncertainty by using linguistic values. The
originality of our approach is that it allows to reason
on the symbolic uncertainty interval ~Certain, Totally
uncertain]. The uncertainty scale that we use here,
presents some advantages over other scales in the rep-
resentation and in the management of the uncertainty.
The axiomatic of our approach is inspired by the Shan-
non theory of entropy and built on the substrate of a
symbolic many-~-alued logic. So, the uncertainty man-
agement in the symbolic logic framework leads to gen-
eralizations of classical inferences rules.

Introduction

In the common sense reasoning, tile uncertainty is
usually expressed by using the linguistic expressions
like "very uncertain", "totally uncertain", "almost cer-
tain"... The main feature of this uncertainty is its qual-
itative nature (Chachoua & Pacholczyk 1996). So, sev-
erai approadxes have been proposed for the process-
ing of this uncertainty category. Among these, we
can quote the qualitative possibility thcory (Dubois
1986), the qualitative evidence theory (Parsons & Mam-
dani 1993) and some qualitative probabilities theo-
ries (Savage 1954; G~irdenfors 1975; Wellman 1988;
Aleliunas 1988; Baechns 1990; Pacholczyk 1992; Dar-
wiche & Ginsberg 1992; Pearl & Goldszmidt 1996;
Lehmann 1996). These approaches offer better formal-
imz for uncertainty representation of the common-sense
knowledge. Nevertheless, in the natural language, the
human subject uses generally two forms to express his
uncertainty (Kant 1966): (1) ezplicitly, as for example
in the statement "I am totally uncertain of my fature"
where, the term "totally uncertain" expresses an igno-
rance degree and (2) implicitly, very often in the belief
form as for example in the statement "It is very proba-
ble that Patty is Canadian". The term "very probabk)’
designates a belief degree (Kant 1966). However, all
approaches quoted previously concern rather the un-
certainty expressed under belief form.
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In this paper we suggest a new approach z whose
objective is to contribute mainly to the qualitative pro-
cessing of uncertainty expressed in the ignorance form.
But it can also process the belief form. For example
we can translate the statement "It is very probable that
Patty is Canadian" as "It is almost certain (i.e. little
ignorance) that Patty is Canadian", whereas, a state-
meat expressed in the ignorance form can not always
be translated under the belief form. This is the case of
the statement "I am totally uncertain of my f~ture".

In this approach, the uncertainty is represented by
using the linguistic values in the interval [Certain, To-
tally uncertain]. This graduation scale presents at least
two ad~mtages. The first one concerns the represen-
tation of the ignorance situation that the scales used
in other qualitative approaches do not allow. The sec-
ond advantage concerns the management of the uncer-
tainty. Indeed, in the qualitative management of un-
certain knowledge, one often leads to intervals of belief,
certainty... Then the question is to choose one value
from these intervals. In our approach, to palliate this
problem, we can choose the greatest value of an interval.
The choice corresponds to the principle of maximum
entropy (Javnes 1982).

In section 2, we explore the uncertainty concept and
we show the difference between ignorance form and be-
lief form of the uncertainty concept.

Besides, the uncertainty concept is gradual. So, to
take account of this feature, our approach is built on the
substrate of a many-valued logic suggested by Pachol-
czyk (Pacholczyk 1992). This logic will be presented 
section 3.

In section 4, we discuss our method of uncertainty
representation. This method consists of the defini-
tion in the logical language of a many-valued predi-
cate called Uncert. This predicate satisfies a set of ax-
ioms which governs the uncertainty concept, that we
present in section 5. Thanks to this, in section 6 we ob-
tain some theorems and particularly new generalization
rule of Modus Ponens. These properties offer a formal
framework for the qualitative management of the uncer-

rAn earlier version of this has been presented in (Cha-
choua & Pachoiczyk 1996).
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tainty. In section 7", we presents the mains differences
between our theory and others qualitative approaches
of uncertainty. Finally, in section 8, we presents an
application example.

Uncertainty concept

Generally, in the universe of discourse, knowledge is
considered to be certain if it is either true or false. Oth-
erwise, it is considered as uncertain. Let us consider the
following example.

Example 1 Let A, B, C, D, E, and F be six towns:
1. All the inhabitants of the town A always say the
truth,
2. All the inhabitants of the town B are liars,
3. A minority of inhabitants of the town C always says
the truth,
4. A majority of inhabitants of the town D always says
the truth,
5. Half of inhabitants of town F are liars.

Supposing we don’t have any knowledge almut the
town E. Let us designate by H(X) an ordinary inhabi-
tant from the town X (X ¯ {A,B,C,D,E,F}) and let
us assume that we will be interested by the truth value
of the sentence: "H(X) is a lind’.

It is clear that the sentence "H(A) is a liaC is false
and the sentence "H(B) i,~ a line’ is true. So these
two sentences are certain. In probability terms, we
have Prob("H(A) is a liar")=O and Prob("H(B) is a
liar")= 1.

Nevertheless, the determination of the truth value
of some sentences like "H(X) is a liar" with X ¯
{C, D, E, F} is impossible with the available knowledge.
Thus, these sentences are uncertain. However, note
that the ignorance is maximal about inhabitants of the
towns E and F. Nevertheless the probability (belief) 
"H(E) is a liar" is not estimable. Indeed, we can not
attribute Prob(H(E) is a liar) = Prob(H(E) is not a
liar) ~ ~ as in the town F, because in this town there is
no ignorance about quantity of liars as in the town E.
Note again that, intuiti~qely, the ignorance about the
inhabitants of the towns C and D are approximately
equal, but their probabilities can be very different.

It results that one of the main features of the un-
certainty concept is the ignorance of the truth x~lues.
According to Shannon’s entropy theory (Shannon 
Weaver 1949), the uncertainty concept refers also to
the information deficiency. Indeed, Shannon has shown
that a measure of information can also be used for mea-
suring ignorance. It follows that the ignorance degree
expresses the degree of the information deficiency to
determine the truth value. However, the belief degree
refers rathex to the information available.

In the natural language, to evaluate uncertainty, the
human subject refers to a set of adverbial expressions
like almost certain, very uncertain... This set allows
him to build a subjective scale of uncertainty degrees.
In our approach we reproduce the same method. So, in

the following ~ction we introduce the algebraic struc-
tures on which our method will be constructed.

Algebraic structures
The algebraic structures aml the mmty-x~lued logic that
we present here have Ix~n already presented by Pachol-
czyk in (Pacholczyk 1992; 1994).

Chains of De Morgan
Let M > 2 be an integer. Let us designate by V¢ the
interval[I, M] completely ordexcd by the relation "_<",
and by "n" the application such that n(,5) = M + I 
,q. In t.he~ conditions { ~V, A, V, n } is a lattice of De
Morgan with: aA/J = rain(a, fl) and ~Vfl = ma.x.(~, ;~).
Let £M = {rx,r2 ..... rM} be asct where: ct _< /~ -
ra < ra. Thus, {£.~r,_<} is a chain in which the least
element is rx arid the greatest element is vM.
We define in £M, two operators "A" and "V"’ and a
decreasing involution "~"’ by the relation: r~ A r~ --
rmin(cz,B), To= VT# rmaz(n,13), and ,~, rr = = %~{a).
Likewise, operators v~ (7 ¯ ],V) are defined as E.~1 
the following way:
If a = b then Varb = "rM else va~ ---=- ft.
Remark 1 In the context of the many-valuc~i logk:
used here, vo and ro are associated by the relation2:
"xis va A" - x is va A - "x is A" is ra - true
where x and A designates respectively an object and a
concept.
Example 2 For M = 5, one could introduce one
possible set of linguistic degrees totally ordered like:
£s ={not-at-all. little, enough, very, totally}.
So: in these conditions, if the assertion "Tom is very
young" is true, then it is equivalent to "Tom is young’
is very-true.
In the following, the chain {£M, <_, A, V, --~} will be used
as the support of the representation of truth degrees.

Interpretation and satisfaction of formulae
The formal system of many-valued predicate logic usc’d
here can be found in (Pacholczyk 1992; 1994).
Definition 1 We call Pal interpretation structure ,4 of
the language £, the pair </), T~n > for n ¯ N, whexe
2) is a non-empty set called domain of ‘4 and 7~n 
multi-sets in ,4.

Definition 2 Let V = {zt,z2,..,zn,..} be the infinite
countable set of individual variables of the formal sys-
tem. We call a valuation of variables, a sequemx: de-
noted x =< x0, ..., xn .... > where Vi, zi ¯ D. So, if x is
a valuation, then x(n/a) =< xo .... ,x,-l,a, xn+x .... >.

~These equivalences can be viewed as generalizations of
~arski criteria (Pacholczyk 1992; 1994).

SThc notion of multi-se~ was introduced by M. De Gins
in 1988 (see (Akdag, De-Glas, & Pacholczyk 1992)). In 
theory x Ea T~ ¢=~ x belongs to degree ra to the multi-
set R.~. Note that this multi-set theory is an axiomaticq
approach to the fuzz)- sets theory of Zadch. In this theory
x Ea A in the formal representation of pA(X) Ct.
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Definition 3 Let ¯ be a formula of 83-"4 and z a valu-
ation. The relation "z satisfies @ to a degree va in -4"
denoted as -4 ~ffi~ ¯ is defined recursi~ly as follows:
I. A ~: ~%(zi,,...,zi~) - < z~, .... ,zi~ >~o 

3. ,4 ~ t%# - ,4 I=~
4. A ~: ¢ U ~ - A l=~ ¢ and A ~f, ~J l r~ V rB = ro
5. A ~: ¢n~ - A I=~ ¢ and A~Y, ¢ I TT^ T~= T~
6..4 ~: ¢ D ¢ - A I=~ ¢ and ,4 ~: ~,[ra ~ r, = ra
7..,4 I=: 3,.,,¢ - To = Max {~-,, I A I=-~C’/’) ¢, a ̄  z~}
8..4 p= Vz.@ - r~ = Min {r~ 1,4 P:<"/’~ ~, a e v}

Definition 4 Let ~b be a formula. We say that ~b is va
-true in .4 if and only if we have a valuation z such that
z vc, -satisfies ~ in -4.

Uncertainty representation
Let £ be a first order language, .4 an interpretation
structure of £ and f~ a set of formulae of 8~" such that:

In other terms, for a ~duation z, all formulae of f/
are either satisfied, or not satisfied in ,4 (ie. true or
false in -4). The uncertainty of a formula ~b of f~ is
treated thanks to a particular many-valued predicate
called Uncert which has been added in the first order
many-valued predicate logic.

Definition 8 Uncert is defined as follows:

¯ Uncert is a many-valued predicate such that:
V~ E ~l Uncert ($o) E S~’.

¯ Given an interpretation -4, for all ~ of f~ one has:
,4 ~(o1#) Uncert(Vx~)

4==~ Uncert(Vx~) is v~ - true in .4

~=~ "~ is t x - true" is u~-uncertain in ,4
with r~ E [n,r~] and rx ~ {rl,’rM}.

Notations: In the following, we use respectively
.4 ~ Uncert(Vx4~) and -4 [=~ Uncert(4) instead of
.4 ~(o/#) Uncert(Vx~) and -4 ~v Uncert(VM#).

Example 3 By choosing M = 5, one could introduce
the following ordered set of linguistic degrees.
Dt~ :{ not-at-ail-true, little-true, true-enough, very-true,
totallptrue} which corresponds to va - true.
Du~ :{ not-at-all-uncertain, little-uncertain, uncertain-
enough, very-uncertain, totally-uncertain} which corre-
sponds to ua - uncertain, with a = 1, 2, ..., 5.

Besides, in the natural language, one normally uses
"certain" and "almost certain" rather than "not at all
uncertaiN’ and "little-uncertain". So, with. these terms
we obtain the following uncertainty scale~.

4Note that S~= designates the formulae set for the system
of many-valued predicates calculus.

~Please note that this scale and linguistic terms are cho-
sen subjectively by a human expert.

[Certain, ALmost-certain, Uncertain-enough, Very-
uncertain, TotaUy-tmcertain]

So, if Uncert(VM~b) is very true, then "~b is true" 
very uncertain.
Besides, to manage rationally the uncertainty, it is nec-
essary that the predicate "Uncert~ satisfy an axioms set
which gos~rns this concept.

Axioms of Uncert
According to the sense that we have given in the pre-
vious section, a formula is certain if its truth values is
known. From this, we derive the first axioms:

Axiom 1 V~b E N,,A ~M ~b ==~ -4 ~lUneert(VM~).

Axiom 2 V~b e f~,-4 ~t ~ ==~ -4 ~lUncert(]~ ~b).
Besides, two equivalent formulae have the same truth
S~d~ue. By this fact, their tmcertalnty is the same. So,
the third axiom is:
Axiom 3 V~b E ~],V~ E ~, if .4 ~M (~b --_-- ~o)
then {-4 ~aUncert(~) ¢=~ -4 ~aUncert(~o)}.
Let us consider now two non contradictory formulae q~
and ~. Knowing the uncertainties on ¯ and ~, what
will be the uncertainty on their conjunction?

If ¯ is true (thus no uncertainty on q~) the determi-
nation of the truth ~lue of (~n@) will depend only 
that of ~. In these terms, the uncertainty on (~J N @)
is equal to the uncertainty on ~. It follows that, if one
of the formulae is totally uncertain, their conjunction
is also totally uncertain. So, the resulting uncertainty
from (¢2n~) is, according to Shannon theory of entropy
(Shannon & Weaver 1949), equal to the sum individual
uncertainties of ¯ and ~. In the qualitative domain,
we use this same property. So, instead the numerical
operator "+", ~ use a qualitative additive operator S
defined bellow. Thus we have the fourth axiom:

Axiom 4 V~ e f~,V~ 6 ~, if ¢2 ~ ~%
and {-4 ~aUneert(~),-4 ~Uncert(¢~) 
then -4 ~Uneert(~ 13 ~)with % S(r~, rs ).
Definition 6 The operator S is defined in order
to satisfy the following properties of classical sum:
V(ro, ra, r~, r~) e [r,,rM],
s~. S(ro, n) = to,
s~. S(r~, ra) = S(r~, r~),
~. S(r,, S(r~, r,)) sCS(r~, r~), r~
s~. r~ <_ re and r~ < ra =~ S(r~, r~) < S(ra < r~).

The formulae ¢ and ~ are mutually exclusive, ttow-
ever, if the formulae ~ and --~ are uncertain, then con-
sidering the a~ailahle information, one will choose the
most relevant formula (ie. the most certain formula).
The last axiom is then:

Axiom 5 V~ E ~,
if {-4 ~aUncert(~) and -4 ~Uncert(--~b)}
then -4 ~o^#Uncert(Vx~b) with { if ro <_ r~ then
rx = rM, else rx = rz }.

SNote that the truth values "tr~e" and " .false" corre-
spond z~spectively to rM and n.
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Uncertainty management

In this section wc present and prove the fundamental
theorems regarding the management of uncertainty.

Theorem I Conjunction of several formulae.
V~i E ~l,i E {1,...,n}, if the formulae ~i=l,..,n are
non contradictory and for all i we have ~i is u a~-
uncertain, then the conjunction (~t n .. q ~n) 
u~-uncertain with Tx = S(T!~I,...S(TIJ .... Tl~a)...).

Proof 1 Consequence of the axiom 4.

Corollary 1 IS V~i~{ L.,n} E ~!,
.A ~t Unce..rt(d2iga) and .,4 ~a Uncert(cba~U ..... })-
Using the theorem 6.1 one obtains:
A ~x Uneert(igl n ... n ff~ n ... N ~,) with r~ = re.

In other tefw~s, the conjunction of several formulae
is u,-uncertain if none of them is less uncertain than
uc,-uncefCain.

Theorem 2 Disjunction of two formulae.
V~ E ll, V~ E ~1, if we have:
99 is u~-uncertain and @ is n#-uncertain,
then (99 U ~b) is u~-uncertain, with T~ _< ra ^ a.

Proof 2 V~ E ~I,V~ E ~1, we have:
(1) .A ~M (¢ -- (q~ U .~) n (~b U ~)) and
(e) .4 I=~ (~ -- (~ u ~¢) n (4,u ~))
Let suppose that: .4 ~ Uncert(~),
x .4 ~a Uncert(.¢), .4 ~’r Uncert(~ U ¢~),

The truisms 3, 4 and the equations (1) and (~) gives:
ra = (r,,,%) and rs = (Taa, r~.) =~ 7 _< r~ r̂#.

Theorem 3 Disjunction of several formulae .
V~i ~ f~,i E {1, ...,n} if we have several formulae
~i=l....n such that, for all i, ~i is u&-uncertain,
then the disjunction (<lii U... U~n) is ux-uncertain
with r~ < ro~ ̂  ... ^ r~..

Proof 3 Consequence of the theorem ~.

Corollary 2 V~ifl,....n E ~1, if ~ [ ~ E 11, and
.A ~l Uncert(~a), then using the theorem 3 one has:

.,4 ~ Uncert(~t U ~a U ... U ~n) with x =r~.
So, the disjunction of formulae is certain if only one of
them is certain.

Theorem 4 Generalized Modus Ponens rule.
V~b E ll,V~ ~ ~l, if we have:

is us-uncertain and (~ D ~) is u0-uncertain,
then ~b is ux-uncertaln with rx < S(ra,rd).

According to the axiom 3 if A ~ Uncert( .¢ n ~)
then .4 ~ Uneert( (~ D eb) D ~) 
Using the axiom 4 one can write:
A D~. Uncert((~ D <.b) n 99) ~ A ~a Uncert(~ D ~) and
.,4 ~a Unce~9~) such as:
r~ = S(r0,r~). Always according the a.~iom 4:
V~b ~ II,V~ ~ 11, iS A ~xUncert(~), then rx < 7.
Finally rx < S(r~,ra).

Theorem 5 Combination of uncertainties
V~b E fl,V~ Eft, if we have:

is us-uncertain, and (~b D ~) is us-uncertain
is u~-uncertain and (~ D ~) is u~-uncertain

then ~ is u~-uncertaln
with Tu <_ S(ra, r~j) A S(r~, r.).

Proof 5 According to the Modus Ponens the equations
(1) and (~) give respectively:
.4 ~uUncert(~) with u <S(ra,rs) an
ru <_ S(r~,r~). Therefore. r,, <_ S(r~,,ra) ^S(rv, 

Corollary 3 V~b ~ ~l, V99 E fLY@ ~ fl if we have:
.4 ~ Uncert(eb), and .A ~s Uncert(~b D ~) 
.4 ~-~. Uncert(99) and ,4 ~ Uncert (~ D ’~’~) 

Then, using the Modus Ponens, the equations (1)
and (~) give respectively: .4 ~uUncert(,~) 
,4 ~ Uncert(-,,~) with t, <S(ra, ra ) an
r~ < S(r~,r~). According the axiom 5, one obtains:
,4 ~s Uncert(V~) dth TO < S(%,r,)^ S(r=,r~j) and
T~. = ru iS S(r~,, rt~) <_ S(Tv, T~,) else x =ft .

Theorem 6 Propagation of uncertainty.
V~b E ~,V99 E fl,V~ ~ ~1, if (~b D ~) is u~-uncertaln
and (~li D ~) is u~-uncertain then (~b D ~) is u-
uncertain with ru _< S(r,a,r~).

Proof 6 V¢,~a,~ E 11 if .4 ~oUne.ert(c~ D ~) and
.4 ~Uncei~(~ D ~), then according to the axiom
we have: .A ~Uncert((~ D ~) n (~ 3 ~))with r~ 

Using the rule of Modus Ponens, one obtains:
.4 ~, Uncert(¢~ D ~) u~th u <S(T~, rl ) =r~
Finally, ru < S(r~j, r~).

Strategy
In the previous theorems, by using the maximmn en-
tropy principle (Jaynes 1982), one can replace the sign
"_<" by "=" As Jaynes suggests it, this choice is a
kind of assurance which protects against the false pre-
dictions. This principle enables us to palliate the diffi-
culty of the management of the uncertainties intervals.

Some differences with other approaches
The axiomatic of our approach is built to process the
uncertainty expressed under ignorance form. How-
ever qualitative probabilities approaches (Savage 1954;
G~irderffors 1975; Wellman 1988; Aleliunas 1988; Pa-
eholczyk 1992; Darwiche & Ginsberg 1992: Pearl &
Goldszmidt 1996; Lehmann 1996) anti the qualitative
approach of the evidermc theory (Parsons & Mamdani
1993) allow rather m process especially the expressed
uncertainty in the belief form. So, in uncertainty rep-
resentation point of view~ our approach presents the
advantage to represent explicitly the situation of total
ignorance such that it is expressed in the natural lan-
guage. In the uncertalnW management, one can make
emerge main two differences between our approach and
others qualitative approaches. The first concerns the
implication (or the inclusion in set terms). So, if A and
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B are two formulae of ~l, one has: A D B ~ C(A) 
C(B), where C0 can designate a measure of, probabil-
ity, possibility, necessity or credibility. However, in our
approach one has: A D B ~ I(A) > I(B), where I0
designate a mesure of ignorance (ie the truth degree of
the formulae Uncert(A) and Uncert(B)).

The second difference is relative to the conjunction
of formulae (or intersection in set terms). So, generally
in all qualitative approaches quoted in the former, one
has: C(A n B) ~ C(A) C(B), where ® designates
a multiplicative qualitative operator. In our approach
one has: I(A N B) = I(A) (9 I(B), where (9 designates
aa qualitative additive operator.

As we have underlined it, the qualitative processing
of the uncertainty ends very often to intervals of un-
certainties. However, when the uncertainty is repre-
sented in the belief form (propabillt~; credibility..), the
exploitation of these inter~ds is problematical. Thus,
when the uncertainty is represented in the ignorance
form, one can choose the maximal value of the inter~.

Application

In this example, we will use the uncertainty scale de-
fined in the example 4 and in order to lighten the no-
tation, in the following example we will use:
Uncert(q,) u~-uncertain in stead of,4 ~aUncert(~).

Example 4 Let us the following knowledge:
(1) Uncert(Patty is CanadianDPatty doesn’t speaks
Prench) = almost certain.
(2) Uncert(Patty is QuebecerDPatty is Canadian) 
certain.
(3) Uncert(Patty is QuebecerDPatty speaks French) --
certain.

Let us assume now that we obtained the following
information: It is certain that Patty is Quebecer, thus:
(4) Uncert(Patty Quebecer)-certain.

Using the knowledge (2), (3) and (4) with the 
Ponens we obtain:
dl. Uncert(Patty is Canadian)- certain.
d.,. Uncert(Patty speaks French)--_certain.

Beside, the knowledge (1) and [dl] give with the
Modus Ponens:
ds. Uncert(Patty doesn’t speaks French)=_almost cer-
tain.

Finally, using the combination of uncertainties (corol-
lary 8) of the knowledge Ida] and [d~] we obtain finely:
d4. Uncert(Patty speaks French)=_-certain.

Conclusion

In this paper we were interested to the processing of un-
cextainty encoded into a qualitative way. We have ex-
plored the uncertainty concept and we have presented
the last results obtained with a new qualitative ap-
proach of uncertainty processing. This approach offers
the possibility to represent explicitly the uncertainty,
as it could be evaluated subjectively, by using linguis-
tic values. The graduation scale used here allows us

to handle several special cases of uncertainty, including
the situation of total ignorance.
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