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Abstract

Clessical statistical inference is nonmonotonic in na-
ture. We show how it can be formalized in the default
logic framework. The structure of statistical inference
is the same as that represented by default rules. In
particular, the prerequisite corresponds to the sample
statistics, the justifications require that we do not have
any reason to believe that the sample is misleading,
and the consequent corresponds to the conclusion sanc-
tioned by the statistical test.

Classical Statistical Inference

Classical statistical inference, which is to be contrasted
with Bayesian statistics, is a pervasive form of uncer-
tain inference. Most statistical inference is done in a
classical framework. It is inference, despite what some
authorities say.! Furthermore, it is nonmonotonic. New
data — an expansion of the premises — could lead to
the withdrawal of the conclusion. In fact it is this very
nonmonotonicity that leads some writers to deny that
nonmonotonic logic is logic at all (Morgan 1997).

As the practitioners of classical statistical inference
insistently remind us, it is NOT probabilistic: the out-
come of a statistical inference is not the assignment of a
probability to a statistical hypothesis, but the categor-
ical acceptance or rejection of such an hypothesis.2 To
be sure, inferences of this form are often characterized
by a number: a significance level, a confidence coeffi-
cient, a size,... But while this may make it reasonable to
assimilate such inferences to the class of “quantitative”
inference, that is not at all the same as to force them
into the mold of assigning probabilities to statements.
This would be resisted by the majority of statisticians
— all but the “Bayesians”, who are still a minority. On
the other hand, these inferences fit rather neatly into

!Neyman (Neyman 1950), Lehman (Lebman 1959), and
others insist that it is not inference, but decision. But even
those authors must admit that the “decision” that is the
result of research is often a decision to believe, or to publish
rather than to take some more direct action.

2Here is a sampling of texts in which this classi-
cal viewpoint is affirmed: (Neyman 1950; Fisher 1956;
Mood & Graybill 1963; Lehman 1959; Alexander 1961;
Wilks 1962).

Copyright © 1998, American Association for Artificial Inteligence (www.aaai.org). Al rights reserved.

Choh Man Teng
teng@cs.rochester.edu
Computer Science
University of Rochester
Rochester, NY 14627, USA

the framework of nonmonotonic logic. The validity of
such inferences strongly depends on the fact that cer-
tain items of information are not in our body of knowl-

edge.

Example

The robot fireman needs to keep track of the ambi-
ent temperature of the air that surrounds him. He is
equipped with a temperature measuring device that has
been calibrated. The corrected temperature reading
is T. Our firerobot may infer that the true ambient
temperature is in the interval T;. &+ 1.960,, where o, is
the standard deviation characteristic of measurements
made with the instrument he employs. Why is this a
reasonable inference for him to make? Why should we
design our firerobot to make this inference?

As is the case with most measurements, it may be as-
sumed that the distribution of errors of measurements
is normal, with a mean of 0 (for corrected readings) and
a variance o,2. There are many reasons for this even
beyond the simplicity of that assumption; ever since
Gauss there have been arguments that purport to show
that minimal assumptions about the measurement pro-
cess lead to this conclusion. In most cases the mea-
suring instrument can be calibrated so that the mean
error of a “corrected” measurement can be taken to be
0. The mean of the population of possible measure-
ments is the true value of the quantity being measured.
Therefore that true value, the mean, is just what we
want to obtain confidence limits for.

R. A. Fisher, one of the founding fathers of modern
statistics, held that the inference to the mean of a nor-
mal distribution was one of the few cases in statistics
in which “inverse inference” could be made to work.
The crucial factor is that there exists a “pivotal quan-
tity” with known distribution independent of the value
of the unknown quantity. Suppose that the quantity X
is normally distributed with known standard deviation
ox and unknown mean u in the population P. It fol-
lows that the quantity |X — u| is normally distributed
with mean 0 and standard deviation ¢x in that same
population. Let us now take a random sample con-
sisting of a single member a of the population P, and
observe the value of X (a).
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According to Fisher, provided that a is not known to
belong to any specifiable subset of the population about
which we have different informalion, the existence of a
pivotal quantity entitles us to derive a “fiducial” proba-
bility density for u that is normal, has mean X(a), and
variance 0% . From this density we can calculate the in-
terval of minimum length that has a fiducial probability
of 0.95 of including the value of u: X(a) £+ 1.960.

Many statisticians find Fisher’s notion of “fiducial
probability” unclear; most insist that “0.95” does not
represent a probability at all, but a “confidence”: our
confidence that in the long run the procedure outlined
will not, in a particular case, lead us astray (Walpole &
Myers 1978, 195) (Mood & Graybill 1963, 249). Thus
it is the procedure of forming a 0.95 confidence interval,
under the circumstances outlined, that is characterized
by a long run frequency (a genuine frequency probabil-
ity) of success of 0.95. More precisely, a 95% confidence
interval for a parameter is an interval-valued function
of the sample that will cover the parameter 95% of the
time in the long run. This is a property of the function,
not of its value for a particular sample.

Mood writes “Confidence intervals and regions pro-
vide good illustrations of uncertain inferences.” (Mood
& Graybill 1963, 151) This is an understatement. Al-
most every quantitative statement we make is based on
one or more measurements. Every measurement is sub-
ject to error. In almost all cases, errors of measurement
are assumed to be distributed normally with a known
mean (usually, but not always, taken to be 0) and a
variance o2 taken to be a known characteristic of the
method of measurement. In such cases, the true value
of a quantity being measured is the mean of a normally
distributed quantity (measurement observations) hav-
ing a mean equal to that true value, and a variance
equal to that same o2. The mean is the true value,
and what we can (uncertainly) infer is that it falls in
a certain interval: a confidence interval determined by
our obsecrvation and the level of confidence we want to
employ.

Thus whenever the result of measurement enters into
our deliberations in planning or acting or deciding {or
anything else in Al) it does so as an instance of con-
fidence interval estimation of the mean of a normally
distributed quantity. Whether we refer to the level as
a “confidence” or a “probability” or a “fiducial proba-
bility” the import of the inference is clear: infer that
the quantity in question lies in the interval calculated,
pending further evidence.

But how are we to understand the italicized proviso?
Statisticians have not been clear, and have often left it
as a matter of common sense or good statistical prac-
tise. We will argue that it functions precisely as a jus-
tification in a default rule, and that doing so allows us
to construe the inference as defeasible and to make its
conditions of defeat clear.

426 Kyburg

Default Logic as a Framework for
Statistical Inference

Default logic provides a formalism within which the
principles of statistical inference can be codified and
evaluated. It provides a general framework within
which particular applications of statistical inference, for
example measurement, can be handled as nonmono-
tonic inferences. We can spell out the conditions under
which an observation supports a claim about the value
of a quantity, and the conditions under which that claim
must be withdrawn, despite the observation.

Default Logic

Default logic is intuitively appealing and easy to under-
stand, at lcast at first sight. There are some subtleties
that need to be addressed, but for the time being, let us
leave them aside. We refer to “default logic” in a very
loose way, as a prototypical non-monotonic framework
which allows us to express various reasoning methods
in terms of the uniform syntax of default rules. We
do not necessarily follow the semantics of the specific
version of default logic as advocated by Reiter (Reiter
1980), or for that matter any particular variant of de-
fault logic proposed in the literature (Lukaszewicz 1988;
Brewka 1991; Gelfond et al. 199 1; Delgrande, Schaub,
& Jackson 1994; Mikitiuk & Truszczynski 1995, for ex-
ample).

A default rule d is an expression of the form 121_'_1_;&,

where a, 8,..., Bn, 7 are logical formulas. We call a
the prerequisite, 8y, ..., B, the justifications, and « the
consequent of d. A default theory A is an ordered pair
(D, F), where D is a set of default rules and F is a set
of logical formulas.

Loosely speaking, a default rule 2_2137_1& conveys the
idea that if o is provable, and —f,,...,—8, are not
provable, then we by default assert that « is true. For
a default theory A = (D, F), the known facts consti-
tute F, and a theory extended from F by applying the
default rules in D is known as an eztension of A. Basi-
cally, a default extension contains the set of given facts,
is deductively closed, and all default rules that can be
applied in the extension have been applied. In addition,
an extension has to be minimal, that is, every formula
in an extension either is a fact or a consequent of an
applied default rule, or is a deductive consequence of
some combination of the two.

The Prerequisite and Justifications

A default rule, ﬁﬂl,,—'h, can be applied to conclude the

consequent v when the conditions associated with its
prerequisite o and justifications Sy, ..., O, are satisfied.
The prerequisite condition « is satisfied by showing that
a is “present”, and each of the justification conditions
B is satisfied by showing that -/ is “absent”.

In the classical logic framework (which is what de-
fault logic is based on), the presence or absence of
a formula is determined by deductive provability: a
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is “present” iff a is provable from a set of sentences,
and -8 is “absent” iff -8 is not provable from the
same set of sentences. However, logical provability need
not be the only way to determine whether a formula
is “present” or “absent.” In particular, formulas ob-
tained by the application of default rules may qualify
as “present.”

This is particularly important in the present context,
as we will see when we examine the justifications for
statistical inference.

Justifications vs. Assumptions

One advantage of the default approach to statistical in-
ference can be brought out by focusing on the distinc-
tion between a “justification” and an “assumption”. An
assumplion is a statement that we add to our body of
knowledge, and use as if it were part of our data or set
of premises. The justifications 8y,....8, of a default
need not be treated as positive knowledge: their role is
hypothetical: If we do not know that any of them are
Jalse, then we can go ahead with our inference. The ac-
ceptability of a defeult depends on the fact that we do
not know something, rather than on the fact that we are
pretending to know something. In a default rule, the
justification 8 need never occur in our body of knowl-
edge, or as a premise. We require only that its negation
not be either deductively or nonmonotonically accept-
able.

For example, in making an inference from a measure-
ment to the true value of a quantity, we are making
an inference from a sample of size one to the mean of a
normal distribution. We assume that the errors of mea-
surement are distributed approximately normally. But
we need as justification the fact that we do not know
that there is anything wrong with that measurement:
that the balance hasn’t been dropped, that the mea-
surement wasn’t made by a notoriously sloppy worker,
etc. The assumption of approximate normality is a
(presumably) well justified premise. That there is noth-
ing wrong with the measurement in question is not a
premise, but a justification in the default sense. We do
not have to know that the measurement was made by a
careful worker; it is only necessary that we do not know
that it was made by a sloppy worker.

This has been somewhat confused by our tendency to
focus on “normal” defaults, in which the justification is
the same as the conclusion, for example,

Tweety is a bird : Tweety flies
Tweety flies )

But there are many well known defaults that are not
normal, for example3,

Tweety is an adult : Tweety is not a student
Tweety has a job )

We do not, at any point, add “Tweety is not a student”
to our premises.

3(Reiter & Criscuolo 1981, a variation of).

Assumptions are sometimes invoked in statistical in-
ference. An example is the “Simple Random Sampling”
(Moore 1979) assumption often mentioned, and con-
strued as the claim that each equinumerous subset of
a population has the same probability of being drawn.
According to this assumption, every sample must have
the same chance of being chosen; but we know that that
is false: samples remote in space or time have no chance
of being selected.

We cannot choose a sample of trout by a method that
will with equal probability select every subset of the set
of all trout, here or there, past or present, with equal
frequency. Yet the population whose parameter we wish
to evaluate may be precisely the set of all trout, here
and there, past and present.

This is also true of the sampling assumption men-
tioned by Cramér (Cramér 1951, 324) (and also by
Baird (Baird 1992, 31)) which requires that each el-
ement in the domain has an equal probability of be-
ing selected.* What is really required (perhaps among
other things) is that we not know that there is some-
thing special about the sample that vitiates the conclu-
sion we hope to draw from it. This is the standard form
of a “justification” in default logic, which requires that
we do not know something.

We cannot, therefore, take simple random sampling
as a premise or an assumption of our statistical argu-
ment. We not only have no reason to accept it, but,
usually, excellent reasons for denying it. But the ar-
guments go through anyway, and justifiably so. The
structure is the classical default structure: Given the
prerequisite of a sample statistic, we may infer the con-
clusion with confidence 1 —a, provided that it is possible
for all we know that ... what? Not that the sample is a
simple random sample, for we know it is not. Not that
the population parameter is in the interval m/n X ¢,
because this would be possible even if we knew the
sampling method to be biased. Not that the sample
might have been selected by a simple random sampling
method, for this is true of all samples.

We might ask that it must be possible, relative to
what we know, that the sample is a good sample, or
an unbiased sample, or a mere member of the class
of equinumerous samples. But this is not quite right.
A grossly biased sampling method could yield just the
same sample as a perfectly random method (if such were
possible). What is required is that we have no reason
to believe that the sampling procedure is biased, where
the procedure is biased just in case it has long run prop-
erties that undermine the applicability of the statistics
on which we are basing our inference.

More specifically, it must be possible for all we know
that the sample belongs to no subclass of the set of
equinumerous samples that would serve as a reference
class for a conflicting inference regarding representa-
tiveness, that is, we have no reason to believe that the

4Actually this condition is not sufficient; we also must

require independence of selections.
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sample is drawn from a subclass in which the frequency
of representative samples is less than that among the set
of samples on which the statistical inference is based
(ordinarily the set of all equinumerous subsets of the
population). If we draw a sample of coffee beans from
the top of a bin in order to make an inference concerning
the proportion of bean fragments, we will almost surely
be wrong: the cracked beans will fall to the bottom on
the drawer.

While we should take precautions in sampling, we
should do so, not because we can ensure getting a good
sample, but because we can in that way defend our-
selves against certain kinds of bad sample. The mere
possibility of having gotten a bad sample should not
inhibit our inference. In the absence of evidence to the
contrary, the inference goes through. When there is ev-
idence against fairness - - and note that this may be
statistical evidence — the inference is blocked.

The Example Worked Out

Consider the inference to the mean of a normal distribu-
tion when we regard the standard deviation as known;
for example the case of the robot fireman. Suppose we
want to conclude with confidence 0.95 that Q@ — the
ambient temperature — lies in the interval V £ 1.960.
The prerequisite is that our observed value is V. The
justifications might be that:

o This is the only relevant data we have concerning Q;
otherwise we should also take account of that other
data.

¢ We have no reason to believe that the measuring in-
strument is not well calibrated.

o We have no reason to think that the observation was
careless.

¢ We have no reason to think that the observation was
made in an abnormally warm or abnormally cool part
of the space we want to characterize.

e We have no reason to think that the sample was atyp-
ical in any other way.

Each of these defaults could be made the basis for
a defeating default: that is, for example, if we have
other data concerning Q, then we should take that other
information into account, and not base our inference
only on the single observation.

The second justification might be thought of as a jus-
tified assumption, but often we do not calibrate our in-
struments: we take them to be well calibrated unless
we have reason to believe otherwise.

Third, if we know that the measurement was made
by a notoriously sloppy technician, we will not use it as
a basis for believing that Q € V + 1.960.

Fourth, if we are seeking the average temperature in
a closed vessel, we will avoid measurements near the
walls of the vessel, or near heating elements, or ....

Fifth, if the result of the observation was an observa-
tion recorded as 312 degrees Centigrade, but we know
that liquid water was present and the pressure was one
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atmosphere, we will not perform the suggested infer-
ence: we will know that something is fishy.

The nonmonotonic rule of inference might be ex-
pressed in some such form as this:

X(a)=zA|u-X|is N(0,62):B1,...,5n
X(a) —1.960 < u < X(a) + 1.960 ’

where the §'s represent justifications of the kinds just
suggested. Thus, given a default theory, A = (D, F),
where D) contains the above default rule, and F con-
tains, among other information, X(a) = T, |Q —
X|is N(0,0%), we may infer with confidence 0.95 that
Q € T, +1.960,., provided that none of the justifications
are found to be false in the default extension.

Note that these justifications need not take the form
of deductive consequences from our database. What
is required is that we not have reazson to believe the
negations of any of them. The evidence that gives us
reason may in fact have the same source as the evidence
we would base our default inference on. For example
we might find in a large sample from a population that
there is internal evidence that the sample is biased in a
relevant way.

Conclusion

Characterizing statistical inference and other sorts
of specialized reasoning methods in the default logic
framework is beneficial in several ways. The frame-
work has a well defined syntax which provides a versa-
tile and uniform platform for incorporating diverse rea-
soning techniques. A reasoning process is broken down
into steps formalized by default rules. The prerequisite
of the default rule represents the pre-conditions that
need to be true of the reasoning step; the justifications
represent the conditions that underlie the validity of
the reasoning step. These justifications are typically
implicit and given little attention to in normal prac-
tice. However, the justification slot in the default rule
highlights their importance and make them explicitly
available for examination. The default logic structure
also makes it easier to keep track of all the justifications
accumulated during the course of a reasoning process.
The set of collective justifications is readily accessible
for scrutiny when the reasoning process or the results
seem questionable.

The specialized reasoning methods of particular in-
terest are the non-logical “foreign” methods which have
been developed tailored to some particular classes of
problems. Classical statistical inference is an example
of such a specialized quantitative method, designed to
draw conclusions about some population characteristics
based on samples drawn from this population. These
non-logical methods and their specialty areas are nor-
mally not considered in the study of logical systems.
However, by casting these methods as default rules, we
can assimilate them into the logical framework. Hav-
ing a collection of specialized tools vastly expands the
domain of the reasoner, or at least allows the reasoning
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tasks to be done more effectively by using the most ap-
propriate technique, and in a more integrated way by
having a uniform structure of all the techniques.

We can think of the classical logic machinery that de-
fault logic is based on as the meta-problem solver. We
can make use of all the techniques developed for clas-
sical logic for general problem solving. What classical
logic cannot solve easily or quickly, we can invoke spe-
cialized default rules derived from extra-logical methods
to achieve the desired result. This two-tier arrange-
ment can be built in a modular way, in the sense that
new reasoning methods can be transformed into default
rules and plugged into the meta-system with minimal
restructuring.

One may argue we already have lots of fine statistical
programs, which can calculate whatever statistics we
fancy. So what are we doing here?

It is true that the statistical programs that are widely
available nowadays can give us statistical results effi-
ciently. However, performing the calculations is only
the more trivial part of the task of statistical inference.
The programs can do their job only when we have de-
cided what to test, how to test it, and, after the calcu-
lations, how to interpret the results. In other words, we
need to supply the program with precise instructions on
what tests to administer and what statistics to collect.
The statistical program itself is not concerned about
whether the test chosen is appropriate; it just carries
out the calculations.

What we are dealing with here are exactly those parts
in the inference process that are outside of the scope
of a statistical program. Statistical programs should
best be thought of as “statistical assistants”, one of
the tools an autonomous agent has for reasoning about
the world. Formalizing the statistical inference process
in terms of default rules provides a way for specify-
ing the conditions under which an agent can perform
a statistical inference, in the same way that deductive
inferences are extracted from its “theorem prover assis-
tant”. The statistical assistant serves the role of con-
necting the information provided in the prerequisite of
the inference default to the conclusion of the default.
This leaves entirely open the applicability of the default.
The justifications of the default determine whether or
not the agent should accept the conclusion of the infer-
ence. Thus we are not proposing a competing statistical
program; we are formalizing the rules of inference that
can make use of these programs.
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