From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

ProbSy - A System for the Calculation of Probabilities in the Card
Game Bridge

Anders L. Madsen
Aalborg University
Department of Computer Science

Lars M. Nielsen
Hugin Expert A/S
Niels Jernes Vej 10

Finn V. Jensen
Aalborg University
Department of Computer Science

Frederik Bajers Vej 7E Box 8201 Frederik Bajers Vej 7E
DK-9220 Aalborg @ DK-9220 Aalborg @ DK-9220 Aalborg O
Denmark Denmark Denmark

anders@cs.auc.dk In@hugin.dk fvj@cs.auc.dk

Abstract

We present an application designated to the cal-
culation of probabilities in the card game bridge.
The application can be used by bridge players to
improve their decisions in the game. We describe
in detail how a Bayesian network is dynamically
generated depending on the case presented to the
application. We also present a communication
language which makes the specification of all kinds
of relevant evidence simple. The communication
language also makes it easy to specify requests for
probabilities of complex properties of the distri-
bution of cards. We explain how the probability
of a strategy for declarer’s play being successful
is calculated by transforming the corresponding
condition to disjunctive normal from. Finally, we
give examples showing the use of PROBSY.

Introduction

Bridge is a card game played by four players which are
initially dealt 13 cards each. Each player is usually asso-
ciated with one of the four directions of the world and
they are organized in two pairs such that North and
South are partners and similarly are East and West.
The game consists of two phases, an auction and the
play of the cards. During the auction each partner-
ship bids to get a contract. The pair who makes the
highest bid gets a contract to win a certain number of
tricks. The two players who get the contract are called
declarer and dummy while the players of the other pair
are called the defenders (Francis, Truscott, & Francis
1994). Throughout this paper we assume South to be
declarer.

After the auction declarer’s left hand opponent makes
a lead and dummy places her cards face up on the ta-
ble and she no longer participates in the game. Now,
only two hands are unknown to the three players still
remaining in the game. Based on information revealed
during the auction, each player has an opinion about
the hands he or she cannot see. That is, each player
is uncertain about the distribution of the hidden cards,
because each player has imperfect information about
the state of the game (Blair, Mutchler, & Liu 1993).
After the lead is made, declarer (the decision maker)

Copyright © 1998, American Association for Artificial Inteligence (www.aaai.org). All righls reserved.

should decide on a strategy (also referred to as a plan)
for playing the two hands he controls.

Many bridge players use much time to perform after-
game analysis. In particular, declarer’s play is often
heavily discussed. Such discussions are often focused
on the probability of the cards held by the defenders
being distributed in a certain way. Therefore, many
bridge players could benefit from a tool which can be
used to perform after-game analysis. PROBSY (short
for probability calculation system) is such a tool.

PROBSY is primarily a tool for calculating the prob-
ability of a strategy being successful given some knowl-
edge about the distribution of cards. A strategy is suc-
cessful if declarer wins at least the number of tricks bid
during the auction. Given a strategy declarer makes his
contract if the cards are distributed in a certain way.

In the rest of the paper we describe how a Bayesian
network is dynamically generated each time the user
wants to calculate probabilities of properties of the dis-
tribution of the defenders cards. We also present a lan-
guage to communicate with the inference engine. Us-
ing the communication language it is possible to spec-
ify properties of the distribution known to the decision
maker and conditions under which a strategy will suc-
ceed. Next, we describe how probabilities of conditions
specified in the communication language is calculated.
Two examples are used to show what kinds of decisions
PROBSY can be used to support. Finally, we compare
PROBSY with another system and provide a discussion.

Bayesian Networks

A Bayesian network is an acyclic graph whose nodes
represent random variables and whose edges repre-
sent causal dependencies between these variables. A
Bayesian network is a well suited representation of a
joint probability distribution over a set of variables.
The representation can be simplified by exploiting
causal independences among the variables.

We use Bayesian networks to represent the joint prob-
ability distribution of the cards initially distributed be-
tween the defenders only. It is not necessary to rep-
resent the cards initially held by declarer and dummy,
because as declarer we are only interested in properties
of the cards distributed between the defenders.

Uncertainty Reasoning 435

Each of the cards known to be held by one of the
defenders initially are represented by a random variable
with two states, one for each of the defenders (Fast
and West). As we do not represent the cards held by
declarer and dummy in the network, PROBSY has to
dynamically gencrate a new Bayesian network each time
the user wants to calculate the probability of a set of
conditions.

Figure 1 shows a simplified version of a Bayesian net-
work generated by PROBSY. The network is simplified
compared to the actual network generated in the sense
that no intermediate nodes are included in the figure.
Only the nodes necessary to get an impression of how
the model is build are shown.

(o) (i) (i) (@ult) - -+ (&2 (e

Figure 1: An example of a simplified version of a
Bayesian network generated by PROBSY.

The figure contains three different blocks of nodes.
Block 1 contains 26 nodes. Each node in this block
represents one of the cards held by the defenders. We
call the nodes in block 1 the card nodes.

Block 2 contains four nodes. These nodes are used
to represent the number of cards initially held by West
in each of the suits. If there are n card nodes in block
1 of a particular suit, the corresponding node in block
2 has n + 1 states labelled Q,1,... ,n. Note that when
we know the number of cards held by West it is casy
to calculate the number of cards held by East and vice
versa. We refer to the nodes in block 2 as the suit
counting nodes.

All card nodes in block 1 representing cards in the
same suit are parents of the corresponding suit counting
node. This makes it easy to determine the state of the
suit counting node given a configuration of the parent
nodes. Given a configuration of the parents, the state
of a suit counting node reflects the number of cards held
by West in the parent configuration.

Block 3 contains five nodes. Each of the four bottom-
most nodes represent the number of high card points
(Aces(4), Kings(3), Queens(2), and Jacks(1)) initially
held by West in the corresponding suit. These four
nodes are the parents of the fifth node, and they are re-
ferred to as the suit hcp counting nodes. The fifth node
represents the total number of high card points initially
held by West and is referred to as the hep counting node.
The five nodes have states reflecting the possible num-
ber of high card points held by West in any suit and
totally. Again, if we know the number of high points
held by West either in a certain suit or totally, then it
is easy to calculate the number of high card points held

436 Madsen

by East and vice versa. The state of the fifth node is
determined in a fashion similar to how the state of a
suit counting node is determined.

Finally, the node labelled Constraint is not part of
any block. This node is used to insure that the proba-
bilities calculated are conditioned on the fact that each
player initially holds 13 cards. The constraint node has
two states yes and no. The parent nodes of the node
are the suit counting nodes. For each configuration of
the parent nodes the state of the constraint node is yes,
if the configuration reflects a situation where West ini-
tially holds 13 cards. Otherwise the constraint node is
in state no. This makes it easy to condition on the fact
that each player initially holds 13 cards: select state
yes in the constraint node, see (Jensen 1996) for details
on the technique of using constraints in Bayesian net-
works. Please note that the card nodes are the only
nodes without parents. The prior probability distribu-
tion of a card node is uniform, and all other probability
distributions are logical in the sense that the state of a
node is deterministically determined by the configura-
tion of the parent set.

To support the use of Bayesian networks we use
Hucin. HuGIN performs the propagation of evidence
in a secondary structure known as a junction tree, see
(Jensen 1996) for a description of junction trces. We en-
countered practical problems related to the size of the
junction tree generated by the HUGIN inference engine.
The problem is that the size of the cliques in the junc-
tion tree grows exponential in the number of parents
of each node in the Bayesian network. One solution to
this problem is to use modelling techniques as described
in (Jensen 1996).

A number of intermediate nodes is added to the net-
work to minimize the amount of space needed to store
the joint probability distribution and to ease the spec-
ification of certain kinds of evidence. The connections
added are all logical, so the conditional probability ta-
bles are easy to specify. We have in particular used
the technique called divorcing. Assume a node B has

a set of parents 4;,...,4,. Then A,,...,4; is di-
vorced from A;4;....,4, by introducing a new me-
diating node C with A4;,... ,4; as parents and B as a

child. The assumption behind this technique is that the
set of configurations of 4;,...,4; can be partitioned
into sets ¢;,...,c, such that whenever two configura-
tions a;,... ,a; and a}, ... , a} are elements of the same
set ¢;, then P(B | a,,... ,a;) = P(B|a},...,a}). The
divorcing variable C' has states ¢y, ... , ¢k, sce (Jensen
1996) for further details.

Figure 2 shows in more detail how divorcing is used
in the Bayesian networks dynamically generated.

The Language

To ease the specification of information known to the
decision maker (declarer) and the requests for probabili-
ties of various properties of the distribution of defenders
cards, a communication language has been developed.

Figure 2: An example of a Bayesian network generated
by PROBSY.

The language is based on a small set of operators with
two important properties. First, the operators make it
possible to specify all kinds of information the decision
maker might have about the distribution of the defend-
ers cards. Second, all kinds of properties of the dis-
tribution are easily specified using the operators of the
language. PROBSY is not intelligent, so the user has to
extract and specify all the information she might have
about the distribution of the defenders cards. This in-
formation can either be extracted from the auction or
from previously played tricks. Furthermore, if the user
wants to know the probability of certain properties of
the distribution, then she has to specify these properties
as a condition herself.

The language contains five fundamental operators.
These operators can be used to indicate the number of
cards a certain player holds in a certain suit, to indi-
cate the number of high card points a certain player
holds, and to indicate the location of a certain card.
Because the language basically only consists of three
simple operators the more complex the evidence and
the properties are, the more complex conditions have
to be specified as input. The precision of the calculated
probabilities depends on how careful the user is when
specifying the evidence and the properties. Below we
explain the special operators of the language. In the de-
scriptions <suit> indicates one of the four suits (&, ¢.
0, #) and <direction> indicates one of the two defend-
ers (West or East). The operators have the following
syntactical form:

<suit> (<direction>) eg. diamonds(West)=3. This
operator refers to the number of cards initially held
by the player indicated (<direction>) in the suit in-
dicated (<suit>).

hep (<direction>) eg. hcp(West)=12. This operator
refers to the total number of high card points initially
held by the player indicated (<direction>).

hep(<direction>, <suit>) eg. hcp(West, spades) in
[1,3]. This operator refers to the number of high

card points initially held by the player indicated
(<direction>) in the suit indicated (<suit>).

hand(<card>)=<direction> eg. hand(dA)=West.
This operator can be used to specify that the player
indicated (<direction>) initially held the card indi-
cated (<card>).

hand(<card; >, <card;>)=<direction> eg.

hand(sK, sQ)=West. This operator can be used
to specify that the player indicated (<direction>)
played the first card (<card; >), when he just as well
could have played the second (<cards>), if he held
both cards. That is, this operator is used to handle
situations where one of the defenders might have
had a restricted choice.

The first four operators are pointers to specific sets
of states in specific variables of the Bayesian networks.
The last operator shown is the only operator which re-
quired addition of nodes to the Bayesian network gener-
ated. When this operator is used, the nodes correspond-
ing to the two cards indicated gets a common child with
two states: one to indicate that <direction>> played the
first card and one to indicate that she played the second
card. Now choosing the state corresponding to the card
actually played makes the two card nodes d-connected.
This new node is used to handle situations where the
rule of restricted choice applies. This topic is elaborated
further later on.

The communication language is based on the set of
Boolean combinations of the operators. The rules of
precedence are such that parentheses are calculated first
following in order by negations, conjunctions and dis-
junctions. This implies that aVbAc is short for aV(bAc).

To ease the specification of complex conditions it is
possible to define macros. Macros make it possible to
build more complex conditions in a bottom-up fashion.
Consider the two examples below showing how macros
are defined:
finesse_sp=hand(sJ)=West or

hand(sJ)=East and spades(East)=1;

lof2_finesses_in_cl=hand(cJ)=East or hand{(cK)=East;

First we define the macro finesse_sp' to equal a con-
dition specifying that West holds #J or East holds
#J and precisely one spade. The second macro
(10f2-finesses_in_cl) is defined to equal a condition spec-
ifying that East holds &J or $K.

To make PROBSY calculate the probability of prop-
erties of the distribution of the defenders cards a string
and a condition corresponding to the properties has to
be specified. The string is used when the results of the
computations are displayed.

The following example shows how to make PROBSY
calculate the probability of a condition build as a con-
junction of the macros defined above.

1A finesse in bridge is defined as the attempt to win a
trick with a lower ranking card by taking advantage of a
favorable position of higher ranking cards held by the de-
fenders (Francis, Truscott, & Francis 1994).

Uncertainty Reasoning 437

"Plan 1 : " : finesse_sp and lof2_finesses_in_cl

Probability Calculation

Statements in the communication language can refer to
suits, cards, and high card points. It is easy to deal with
statements only involving a single variable as its prob-
ability distribution is available when the network is ini-
tialized. It gets a little more complicated when dealing
with composite conditions (conjunctions and disjunc-
tions of literals? or other composite conditions). Com-
posite conditions consisting of conjunctions only can be
entered as evidence in the Bayesian network by entering
the literals one by one. The probability of the condition
is equal to the probability of the evidence entered. The
probability of the evidence entered is achieved as a side
effect of propagation. That is, Bayesian networks sup-
port calculation of the probability of a composite con-
dition consisting of conjunctions only very well. The
probability of a composite condition including disjunc-
tions cannot be calculated as casily.

To calculate the probability of a composite condition
we transform it to disjunctive normal form. A condition
C is in disjunctive normal form if: C' = VL (A}Z, L),
where the [;;'s are literals. Any condition can be trans-
formed to an equivalent condition in disjunctive normal
form, where two conditions C| and C; are equivalent if
a model for C) is also a model for C> and vice versa.

To calculate the probability of an arbitrary condition
in disjunctive normal form we use the following fact:

POV (A i) =
i=1 j=1

>, ()WFHEDPCA (A),

XC{z€Z|1<z<n} ieX j=1

where the [;;’s are literals.

When faced with a composite condition including dis-
junctions PROBSY transforms it to an equivalent con-
dition in disjunctive normal form and calculates the
probability of the equivalent condition using the prob-
abilities of conjunctions only. The transformations are
performed using a set of rules based on the DeMorgan
laws and the distributive laws. The time complexity
of the transformations is exponential in the number of
disjunctions.

An alternative approach to the calculation of the
probability of an arbitrary logical formula is to create
a node (or a set of nodes) in the network representing
the formula. This will eliminate the need to transform
the formula into disjunctive normal form, but it will in-
crease the complexity of the junction tree constructed
from the Bayesian network considerably as new depen-
dencies are introduced. If more than one statement is
specified on input, then either we get a larger more com-
plicated Bayesian network and therefore a larger maybe

*We refer to conditions involving only one variable as
literals. We also refer to negations of literals as literals.

438 Madsen

intractable junction tree or we have to construct a new
Bayesian network and therefore a new junction tree for
each statement. With the approach we have taken it is
possible to use the same junction tree to calculate the
probability of all the statements specified on input.

Each time PROBSY has to calculate the probability
of a conjunction it has to perform a propagation. To
reduce the number of propagations performed we com-
pare the number of propagations needed to calculate
the probability of a condition C' with the number of
propagations needed to calculate probability of ~C. We
choose to calculate the probability of the condition re-
quiring the fewest number of propagations.

Another practical opportunity to speedup the calcu-
lation of a composite condition in disjunctive normal
form is to exploit that a conjunction might appear more
than once in the composite condition. Furthermore, one
conjunction might be implied by one of the other con-
junctions in the composite condition. We have not in
the current implementation of PROBSY exploited these
opportunities for speedup.

Examples

We now give two examples showing what kinds of deci-
sions PROBSY can be used to support.
Consider the distribution of cards shown below:

&£#AKT3

VAQTE
SIT
$543
N

W E
S
Q2

OKJIO87
OK2

$AQT?2

We are as South declarer of a contract to make 12 tricks
with hearts as trumps. The lead made by West is a
heart. After playing an additional round of trumps
where everyone follows suit we have to decide between
two different strategies. The first strategy is based on
a successful finesse in spades through West while the
second is based on playing for a drop of &J. If we
succeed in establishing four tricks in spades, then the
two diamonds held by declarer can be discarded on the
third and fourth round of spades. This implies that we
only need one out of two finesses in clubs to make the
contract. On the other hand if #J does not drop, then
we can make the contract if both finesses in clubs are
successful.

Below we show how the conditions under which the
first mentioned strategy is successful can be specified:

"Plan 1 : " : finesse_sp and lof2_finesses_in_cl

The second plan can be specified in a similar way.
PROBSY can also handle situations where the rule
of restricted choice is involved (Francis, Truscott, &

Francis 1994). The issue is that the play of a card
which may have been selected as a choice of equal plays
increases the probability of the player initially holding a
card combination in which his choice was restricted. We
use the following example to make things clear. Assume
that we as declarer need one trick in the suit shown
below to make the contract:

4QJ9
N

W E
S

˜

Let us also assume that we have enough entries to
reach the hand held by declarer to lead a small spade
toward dummy twice. On the first round of spades we
lead #2 and West plays low (#6), dummy the queen,
and East wins the trick with the ace. Now we have to
decide between the nine and the jack when the second
round of spades is played from declarer and West once
more plays low (#8). The decision is easily made us-
ing PROBSY. Enter the evidence (the cards played by
the defenders) as a condition and specify two strategies
corresponding to playing &9 and playing &J on the sec-
ond round of spades, respectively. The evidence can be
specified as a condition in the following way:

hand (sK,sA)=East and hand(s6)=West and hand(s8)=West
The two strategies can be specified as:

: hand(sA)=West;
: hand (sT)=West

"Play the jack : "
"Play the nine : "

The result of the computations shows that it is bet-
ter to play #J (0.65) on the second round of spades
than to play &9 (0.47). The number 0.65 indicates the
probability of winning one trick in the spade suit given
declarer follows the first plan. That is, the probability
of West holding #K is 65%. Similarly for the second
plan. If we perform the calculations without noticing
that the rule of restricted choice applies, the probabili-
ties are 48% and 48%, respectively.

Comparison

There exists other systems which can be used to de-
cide between different strategies. Hans van Staveren has
implemented a system named DEALER(Staveren 1993)
which among other things can be used to calculate
probabilities of properties of the distribution. DEALER
establishes the probabilities using sampling. The sys-
tem generates a number of distributions and counts the
number of distributions fulfilling the properties speci-
fied by the user. This implies that the probabilities cal-
culated depends heavily on the number of distributions
generated and especially on the number of distributions
fulfilling the properties. The probabilities calculated by
PROBSY on the other hand are the correct probabilities.
Furthermore, when calculating the probability of very
complex properties or properties with a low probability
of being satisfied DEALER can be very slow compared
to PROBSY. Furthermore, by means of sampling only,

it is not easy to handle situations where the rule of
restricted choice applies.

The time complexity of PROBSY only depends on the
number of disjunctions in the transformed condition,
not on the number of conjunctions. Whereas the time
complexity of DEALER depends on both the number
of conjunctions and the number of disjunctions in the
original condition.

On the other hand DEALER has some functionality
which is not supported by PRoBSY. This is mainly
the ability to sample. PROBSY can however with some
care be extended to support sampling, because this fea-
ture is supported by the HUuGIN Application Program
Interface. To extend PROBSY with facilities support-
ing sampling we have to handle evidence expressed as
a condition including disjunctions.

Conclusion

PROBSY is well suited for bridge players to use for after-
game analysis. This is due to two reasons. The first
reason is that the system calculates the probability of
a condition very fast - usually less than a second on a
PC with an Intel Pentium processor. The easy spec-
ification of the input is the second reason. The user
interface eases the specification of the cards controlled
by declarer and the communication language makes it
easy to specify the evidence and the conditions.

The system can be extended with features such as
sampling, the possibility to specify partnership agree-
ments, and a better support for the specification of com-
plex evidence.

The PROBSY application and a manual which in de-

tail describes how to use the system can be found at
the following URL:

http://wew.hugin.dk/probsy/

References
Blair, J. R. S.; Mutchler, D.; and Liu, C. 1993.
Games with imperfect information. In Proceedings of
the AAAI Fall Symposium on Games: Planning and
Learning, 59-67.
Francis, H.; Truscott, A.; and Francis, D. 1994. The
Official Encyclopedia of Bridge. American Contract
Bridge League, Inc., 5th edition.
Jensen, F. V. 1996. An Introduction to Bayesian Net-
works. UCL Press, London.
Staveren, H. v. 1993. Dealer - a bridge hand generator

program. http://rgb.anu.edu.au/Bridge/Program-
mes/Dealer-Staveren/.

Uncertainty Reasoning 439

