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Abstract

1-~.levance reasoning in Bayesian networks can be la~ed
to improve efficiency of belief updating ",dgorithaL~ by
identit~ing and pruning those parts of a network that
are irrelevant ibr the computation. Relevance reaqon-
ing is based on the graphical property of d-separation
and other simple and efficient techniques, the compu-
tational complexity of which is usuaUy negligible when
compared to the complt~xity of belief updating in gen-
eral.
This paper describes a belief updating technique based
on relevance reasoning that is applicable in practiced
systems ia which observations are interleaved with be-
lief updating. Our technique invalidates the posterior
beliefs of those nodes that (h~pentl probabilisdcalb" oa
the new evidence ~md focuses the subsequent belief up-
dating on the inv~didated beliefs rather than on all bc-
liet~. Vexy often observations inwflidate only a small
fraction of the beliefs and our scheme can then lead to
substaatial savings in computation. We report rcsuks
of empirical tests that demomstratc practical signiii-
canre of our approach.

Introduction
Emergence of probabilistic graphs, sucJl as Bayesian1
belief networks (BBNs) (Pearl 1988) mid clos~.ly 
lated inlluence diagrams (Howard mid Matheson 1984)
has made it. possible to base uncertain iuference in
knowledge-based systems ou the sound foundations of
probability theory mid decision theory. However, as
many practical modeL~ tend to be large, the main
problem faced by the decision-theoretic approach us-
ing probabilistic graphs is the complexity of probabili.~-
tie reasoning, shown to be NP-hard both for exact in-
ference (Cooper 1990) and for approximate inference
(Dagum and Luby 1993). The critical factor in exact in-
ference schemes is the topology of the underlying graph
and, more specifically, its connectivity. The complex-
ity of approximate schemcs may, in addition, depend
on factors like the a-priori likelihood of the observed
evidence or asymmetries hi probability distributions.
There are a number of ingeniously efficient algorithms
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that allow for fast belief updating in moderately sized
models.2 Still, each of them is subject to the growth in
complexity that is generaJly exponential in the size of
the model.

Belief updating algorithms ca~t be enha~ced by
sdmmes based on relevance. Relevazlce reasoning in
Bayesim~ networks can be used to improve the etficiency
of belief updating algorithms by identi~’ing and pruning
those parts of a network that are irrelevant for the com-
putatkm. This approach helps to reduce the size aml
the connectivity of the network. Relev~mce reasoning
is based on tile graphical prolmrty of d-separation and
~l,her simple and efficient techuklues, the computati, ual
complexity of which i.~ usually negligible when ,’om-
par(<l to the complexity of belief updating in general.
Relevance reasoning is always eonduc.ted with r,’slmct t..
a set of nodes of interest, that we will call subsequently
I, aL’qet nodes. Target nodes are ~dl nod¢~ whose posterior
probability will be queried by the user. For exampk,,
in a medical decision support system, target nodes may
be all disease nodes, as the user umy be only iuteres! ed
in how likely these dise,~es are given (,bserw~d evidence
(i.e., symptolm~ and/or test results). In addition to re-
moving computationally irrelevmlt nodes that are l~rob-
abilistically independent from the target nodes T given
lhe observed evidence £, relevm~ce-ba-sed lllethods cltn
also remove passively relevant nodes, for example, nui-
sance tlodt~ (Suermoudt 1992; Druzdzel and Suermondt
1994). Furthexmore, the technique called rclcvancc.-basc
deeomposition proposed hi (Lin and Druzdzel 1997) de-
composes networLs into l)artially overlapping subnet-
works by focusing on their parts, then updates beliefs
in each subnetwork. This technique makes reasoning in
some intractable networks possible and often results in
significant speedup. In this paper, we show the speedup
in belief updating of a new tedlnique which is dealing
with a different situation: when belief updating is in-
terleaved with cvidence gathering. We wouhl like to
make it clear that the trurrent technique is significantly
different from the previously protmsed methods and it
ran be combined with them fiJr a further speed-up of

2For aa overview of various e~xact and approxima[ e ;Lp-
preaches to algorithms in BBNs see (IIenrion 199[J).
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belief updating.
Some decision support systems based on graphical

probabilistic models are used in environments where
evidence is collected gradually rather tlian coming all
at once and is interleaved with belief updating. It is
desirable in such systems to incrementally update be-
liefs rather than recomputing the posterior probabil-
ity distribution over all nodes. In this paper, we de-
scribe a belief updating technique based oil relevance
reasoning that is applicable in such systems. Our
technique, called relevance-based incremenLal updaLing,
is based on invalidating the posterior beliefs of those
nodes that depend probabilistically on the new evi-
dence. The result of previous computations remain
valid for the rest of the network. Subsequent belief
updating focuses on updating those nodes whose be-
liefs are invalid. In most reasonably sparse topolo-
gies, only a small fraction of the beliefs are invali-
dated. The sub-networks that need updating, as d~.
terinizzed by our scheme, can be significantly smaller
than the entire network and our scheme can then lead
to substantial savings in computation. We demon-
strate empirically that our scheme can lead to signif-
icant speedups in large practical models even in the
clustering algorithm (Lauritzen and Spiegelhalter 1988;
Jensen et al. 1990), that is believed to be the best
suited for sequential evidence processing.

Incremental Updating

Incremental updating that we implemented in our
framework is a practical application of the lazy evalua-
tion principle. Each piece of evidence cau be viewed as
invalidating some of the previously computed marginal
distributions (we compute the marginal probabiliti~ of
all nodes in the network beforehand), namely those to
which it is relevant. Eacli network node in our system is
equipped with a flag valid that is set to the value true
when the node’s marginal probability is computed and
set to the value false when it is invalidated by a new
piece of evidence. Invalidating the distribution is based
on the condition of d-separation -- a marginal distribu-
tion of a node is invalid if the observed evidence node is
not d-separated from it given the previously observed
evidence. Given a subsequent query, the system ex-
cludes from the computation those target nodes whose
marginal probability distributions are still valid (i.e.,
those for which valid=true ). In addition, the system
does not recompute the distributions of nodes that are
invalid but are not nt~ded in updating the distributions
of the target nodes that need updating. The algorithm
used in incremental updating is listed in Figure 1.

A decision support system based on this scheme can
improve its reactivity by producing the requested an-
swer in a much shorter time if this answer is available
(note that generally not all nodes in the target set are
invalidated by every new piece of evidence). The system
can also update its beliefs in a generally shorter time
by focusing only on invalidated part of the network.

Given: A Bayesian belief network ne~,
a set of target nodes T,
a set of evidence nodes £,
new evidence node e.
Each node has a flag valid that is true

if the node’s marginal distribution
is valid and false otherwise.

void New_Evidence(net, £, e)
For all nodes n that are not d-separated

from e by £,
perform n. valid= :faise .

end
void Incremental-Update(net, T, £)

Construct a set T*:
by removing from T all nodes l
such that t.valid=:true .

Using relevance reasoning, remove from net all
nodes that irrelevant to updating 7" given £

end
main()

Construct a junction tree ff for net.
Initialize the set £~ to be empty.
For each e in £

New_Evidence(net, £’: e);
Add e to £’;
Incremental_Update(net, T, £’);
If (predicted cost for inference on pruned net

> the cost for incremental updating on 3"
Perform belief updating on ,7.

otherwise
Perform inference on net.

end

Figure 1: The algorithm for relevance-based incremen-
tal updating.

It is believed that enviromnents in which evidence is
gathered incrementally are particularly well supported
by clustering algorithms (e.g., (Zhang and Poole 1996)).
While we agree with this statement, we believe that this
can be enhanced even more by the incremental updat-
ing scheme proposed above. Maintaining the validity
flags and pruning parts of the network before the real
inference adds very little overhead, while it can sub-
stantially reduce the size and the connectivity of the
network, hence reduce the computational complexity.
The cost that has to be paid for using this scheme is
the need for recompiling the relevant sub-network into
a clique tree each time computation needs to be per-
formed. However, we cvaz reasonably predict this cost
with a very fast (not necessarUy optimal) triangulation
algorithm guided by a simple heuristic. That is, we
can predict the computational complexity of inference
on the pruned sub-network by the number of poten-
tials generated from a triangulation algorithm. If the
predicted cost plus the overhead of relevm~ce reason-
ing outweight the complexity of incremental evidence
updating on the original junction tree. (which was con-
structed and saved initially), we simply discard the rel-
evant sub-network mid reason on the original junction
tree. instead. The overhead introduced by relevance tea-
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soiling and simple triangulation is very small, and can
often pay off by a very fast inference on the resulting
pruned sub-network.

Empirical Results
In this section, we present the results of an eml)ir-
ical test of relevance-, based incremental updating fur
Bayesian belief network inference. We focused our tests
on the enhmicement to incremental updating in the
clustering algorithm. The clustering algorithm that we
used ill all tests is aa efficient i,nplementation that was
made available to us by Alex Kozlov. See Kozlov and
Singh (1996) for the details of the implemeutatio,,. 
have euhauced Kozlov’s implementation with relevance
teclmiques described in (Lin and Druzdzel 1997) ex-
cept for the relevance-base deeomposition~ We tested
our algorithms using the CPCS network, a nn,ltiply-
connected multi-layer uetwork consisting of 422 mt, lti-
valued nodes mid c~vering a subset of tl,e do,nain of
internal umdicine (Pradhan el al. 1994). Among its
422 nodes, 14 uodes describe diseases, 33 nodes de-
scribe history and risk factors, and the remaining 375
nodes describe various findings related to the diseases.
The CPCS network is among the largest real networks
available to the research community at present time.
Our computer (a Sun Ultra-2 workstation with two
168Mhz UltraSPARC-1 CPU’s, each CPU has a 0.5MB
L2 cache, the total system RAM memory of 384 MB)
was unable to load, compile, and store the entire net-
work in memory mid we decided to use a subset consist-
lug of 360 nodes generated by Alex Kozlov for earlier
benchmark,s of his algorithm. This network is a sut)-
set of the full 422 node CPCS network without predi~
posing factors (like gender, age:, smoking, etc.). This
reduction is realistic, as history nodes cmi usually be
instantiated and absorbed into the network following
aa interview with a patient. We updated the marginal
probabilities of all nodes in this model, i.e., all nodes in
the networks were treated as target uodes.

We constructed 50 test cases, each of which con-
sists of twenty randomly generated evidence uo(les from
among the finding nodes defined in the network. For
each of the test cases, we flint constructed a junction
tree. for the whole network and comlmted the prior
probability distributions. Then we recorded the time
for be.lief updating when each piece of evidence was
entered mid, at the end, computed the tot,xl time for
20 sequential evidence processing interleaved with be-
lief updating by adding these times. We compared
the relevanc~, based incremental updating with the in-
cremental updating directly on the original junction
tree.. In case of relevance-based incremental updating,
when each piece of evidence came in, we (1) ran the
relevance-based incremental updating algorithm to ob-
tain a pruned relevant subnet, (2) predicted the size 
the junction tree for this subnet (in terms of the ntun-
ber of potentials in the junction tree), compared it with
the size of the original junction tree, (3) if the estimated
time for updating on the subnet was less than the time

445 Lin

needed to update on the original junctiolt tree, we ran
clustering algorithm on the subnet, otherwise, we dis-
carded the subnet mul ran the incremental updating on
the original junction tree.

Our earlier experiumuts ha~l showu that it takes
roughly three times less to update beliefs ,.m m, ex-
isting junction tree than to buihl a juact, ion tree. We
used this finding in estimating the ul-lating time. ()m"
siniple heuristic used in the tests was to continue with
relevance-based incremental updating only when the
pre<licted number of potentials generated from au ideu-
tiffed subnetwork was less than one third of the utun~er
of potentials in the original junction tree. This heuristic
ca~l be tuned up for the best performmice in individual
uetworE~.

o
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Figure 2: Comparison of the performance of relevance-
b~med incremental belief updatiag (whi,:h "R’" stan,ls
for) with plain clustering algorithul (which "’D" stauds
for). (a) The total computing time fi~r each of the 
test cases mid (b) time series of one case with 2fl incre-
tnentally coming evidence.

The results of our tests are presented in Figure 2 with
tile summary data hi Table 1. Note that relevance-
based incremental belief updating introduces negligible



overhead and practically always leads to faster belief
updating than the plain clustering algorithm. There
is only one case of an outlier in Figure 2-a. It is ap-
parent that the relevance-based schemes in combination
with the clustering algorithm performed on average 15%
faster than direct incremental updating using cluster-
ing algorithm. The individual case ill Figure 2-b shows
that the overhead of relevance-based schemes is almost
negligible, even when the belief updating is not cho-
sen on the resulting relevant subnets (or the subnets
are not small enough). But a few big savings from in-
ference on small relevant subnets improves the overall
performance. A question that one might ask is whether
conditional dependencies introduced by multiple obser-
vations will enhance or reduce the benefits of relevance-
based incremental updating. We performed tests that
aimed at investigating this question but we did not find
any evidence for the influence of the amount of evidence
on the performance of the algorithm.

Relevance Direct
# 1145.22 1349.66
a 135.18 50.40

Min 810.22 1315.09
Median 1167.93 1329.07

Max 1647.25 1534.18

Table 1: Summary simulation results for the CPCS net-
work, n = 50.

In addition to the CPCS network, we tested the
relevance-based incremental updating algorithm on sev-
eral other Bayesian networks. One of these was a ran-
domly generated highly connected network A.ergo (Ko-
zlov and Singh 1996). Stunmary results of this test are
presented in Table 2. Here, the savings introduced by
our scheme were even larger.

Relevance Direct
p 188.23 344.83
a 63.26 16.57

Min 90.19 325.66
Median 180.85 342.16

Max 341.11 425.12

Table 2: Smmnary simulation results for the A.ergo
network, n : 50.

Discussion
In this paper, we introduced an incremental belief up-
dating technique based on relevance reasoning that is
applicable ill systems in which evidence is collected
gradually in different phases of interaction with the sys-
tem mid interleaved with belief updating. Our tech-
nique, called relevanc~-based incremental updating, is
based on invalidating the posterior beliefs of those
nodes that depend probabilistically on the new evi-
dence. Subsequent belief updating focuses on updat-

ing those target nodes whose beliefs are invalid. Our
algorithm identifies the smallest subnetwork that is
relevant to those target nodes that need updating,
predicts the cost of inference on the identified sub-
network, and then decides whether to perform infer-
ence on this subnetwork or to perform incremental be-
lief updating on the original junction tree. Because
the complexity of relevzmce algorithms is linear in the
number of arcs in the network (Geiger et. al. 1990;
Druzdzel and Suermondt 1994; Lin and Druzdzel 1997),
our ~cheme can predict its speed at ahnost no cost.
Whefl applied, it obtains sigafificant gains by re,htcing
the size and the connectivity of the network. In those
cases where no target nodes are influenced by the new
evidence, the answer may be available with no compu-
tation. Even in case wheal the new evidence invalidates
all target nodes, the cost for predicting the efficiency of
inference on the Imtwork is negligible with a fast tria~-
gulation algorithm. It is always possible to switch back
to the incremental updating on the orighud junction
tree. The releva,ic .e-based incremental belief updating
improves system reactivity on average. Our scheme can
also easily enhmice approximation algorithms, as the
pruned network almost always smaller than the original
one. Of course, all relevance-, based schemes are sensi-
tive to the topology of networks and their performance
cazl deteriorate in the worst case.

D’Ambrosio (1993) pointed out that there are three
types of incrementality of inference: query inerem~:n-
talfly, evidence incrementalit, y, and representation in-
crementality. The first two are naturally built into our
scheme. The third type of incrementality involves inter-
leaving inference within a partial l~roblem representa-
tion with representation extension operations. Wc have
built ill into our system also this type of incrementality.
When a part of our network is modified, the moditica-
tion also leads to invalidating those parts of the model
that are not d-separated from the modified part. bl-
crementality with respect to repr~entation e.xtension
enables a system to reuse results from prior compu-
tations even when the representation on which those
computations are based is modified between queries.
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