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Abstract

Relevance reasoning in Bayesian networks can be used
to improve efficicucy of belief updating algorithms by
identifying and pruning those parts of a network that
are irrelevant for the computation. Relevance reason-
ing is based on the graphical property of d—separation
and other simple and efficient techniques, the compu-
tational complexity of which is usually negligible when
compared to the complexity of belief updating in gen-
eral.

This paper describes a belief updating technique based
on relevance reasoning that is applicable in practical
systems in which observations are interleaved with be-
lief updating. Our technique invalidates the posterior
beliefs of those nodes that depend probabilistically on
the new evidence and focuses the subsequent belief up-
dating on the invalidated beliefs rather than on all be-
liefs. Very often observations invalidate only a small
fraction of the beliefs and our scheme can then lead to
substantial savings in computation. We report results
of empirical tests that demonstrate pracrical signifi-
cance of our approach.

Introduction

Emergence of probabilistic graphs, such as Bayesian
belief networks (BBNs) (Pearl 1988) and closely re-
latedd influence diagrams (Howard and Matheson 1984)
has made it possible to base uncertain inference in
knowledge-based systems on the sound foundations of
probability theory and decision theory. However, as
mauy practical models tend to be large, the main
problem faced by the decision-theoretic approach us-
ing probabilistic graphs is the complexity of probabilis-
tic reasoning, shown to be NP-hard both fur exact in-
ference (Cooper 1990) and for approximate inference
(Dagum and Luby 1993). The critical factor in exact in-
ference schemes is the topology of the underlying graph
and, more specifically, its connectivity. The complex-
ity of approximate schemes may, in addition, depend
on factors like the a-priori likelihood of the vbserved
evidence or asymmetries in probability distributions.
There are a nunber of ingeniously efficient algorithms
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that allow for fast belief updating in moderately sized
models.? Still, each of them is subject to the growth iu
complexity that is generally exponential in the size of
the model.

Belief updating algorithms can be enhauced by
schemes based on relevance. Relevance reasoning in
Bayesian networks can be used o improve the efficiency
of belief updating algorithms by identifying and pruning
those parts of a network that are irrelevant for the com-
putation. This approach helps to reduce the size and
the connectivity of the network. Relevance reasoning
is based un the graphical property of d--separation and
other simple and efficient techniques, the computational
complexity of which is usually ncgligible when com-
pared to the complexity of belief updating in peneral.
Relevance reasoning is always conducted with respect to
a set of nodes of interest, that we will call subsequently
target nodes. Target nodes are all nodes whose posterior
probability will be queried by the user. Fur exaunple,
in a medical decision support systemn. target nodes may
be all disease nodes, as the user may be only interested
in how likely these diseases are given ubserved evidence
(i.e., symptoms and/or test results). In addition to re-
moving computationally irrelevant nodes that are prob-
abilistically independent from the target nodes 7 given
the observed evidence £, relevance-based methods can
also remove passively relevant nodes, for examnple, nui-
sance nodes (Suermondt 1992; Druzdzel and Sucrmondt,
1994). Furthermore, the technique called relcvance-base
decomposition proposed in (Lin and Druzdzel 1997) de-
composes networks into partially overlappiug subnet-
works by focusing on their parts, then updates beliefs
in cach subnetwork. This technique makes reasouing in
some ntractable networks possible and often results in
significant speedup. In this paper, we show the specdup
in belief updating of a new technique which is dealing
with a different situation: when belief updating is in-
terleaved with cvidence gathering. We would like to
make it clear that the current technique is significantly
different from the previonsly propused methods and it
can be combined with them for a further speed-up of

2For an overview of various exact and approximate ap-
proaches to algorithms in BBNs sce (Ilenrion 1990).



belief updating.

Some decision support systems based on graphical
probabilistic models are used in environments where
evidence is collected gradually rather than coming all
at once and is interleaved with belief updating. It is
desirable in such systems to incrementally update be-
liefs rather than recomputing the posterior probabil-
ity distribution over all nodes. In this paper, we de-
scribe a belief updating technique based on relevance
reasoning that is applicable in such systems. Our
techinique, called relevance-based incremental updating,
is based on invalidating the posterior beliefs of those
nodes that depend probabilistically on the new evi-
dence. The result of previous computations remain
valid for the rest of the network. Subsequent belief
updating focuses on updating those nodes whose be-
liefs are invalid. In most reasonably sparse topolo-
gies, only a small fraction of the beliefs are invali-
dated. The sub-networks that need updating, as de-
termined by our scheme, can be significantly smaller
than the entire network and our scheme can then lead
to substantial savings in computation. We demon-
strate empirically that our scheme can lead to signif-
icant speedups in large practical models even in the
clustering algorithm (Lauritzen and Spiegethalter 1988;
Jensen et al. 1990), that is believed to be the best
suited for sequential evidence processing.

Incremental Updating

Incremental updating that we implemented in our
framework is a practical application of the lazy evalua-
tion principle. Each piece of evidence can be viewed as
invalidating some of the previously computed margiual
distributions (we compute the marginal probabilities of
all nodes in the network beforehand), namely those to
which it is relevant. Each network node in our system is
equipped with a flag valid that is set to the value true
when the node’s marginal probability is coinputed and
set to the value false when it is invalidated by a new
piece of evidence. Invalidating the distribution is based
on the condition of d-separation — a marginal distribu-
tion of a node is invalid if the observed evidence node is
not d-separated from it given the previously observed
evidence. Given a subsequent query, the system ex-
cludes from the computation those target nodes whose
marginal probability distributions are still valid (i.e.,
those for which valid=true ). In addition, the system
does not recompute the distributions of nodes that are
invalid but are not needed in updating the distributions
of the target nodes that need updating. The algorithm
used in incremental updating is listed in Figure 1.

A decision support system based on this scheme can
improve its reactivity by producing the requested an-
swer in a much shorter time if this answer is available
(note that geuerally not all nodes in the target set are
invalidated by every new piece of evidence). The system
can also update its beliefs in a generally shorter time
by focusing only on invalidated part of the network.

Given: A Bayesian belief network net,
a set of target nodes T,
a set of evidence nodes £,
new evidence node e.
Each node has a flag valid that is true
if the node’s marginal distribution
is valid and false otherwise.
void New_Evidence(ret, &, e)
For all nodes n that are not d-separated
from e by £,
perform n.velid=:false .
end
void Incremental Update(net, T, &)
Construct a set 7
by removing from 7 all nodes ¢
such that ¢.valid=true .
Using relevance reasoning, remove from net all
nodes that irrelevant to updating 7" given &
end
main()
Construct a junction tree J for net.
Initialize the set £ to be empty.
For each ¢ in £
New_Evidence(net, £, e);
Add e to &';
Incremental Update(net, 7, £');
If (predicted cost for inference on pruned net
> the cost for incremental updating on 7
Perform belief updating on J.
otherwise
Perform inference on net.
end

Figure 1: The algorithm for relevance-based incremen-
tal updating.

It is believed that environments in which evidence is
gathered incrementally are particularly well supported
by clustering algorithmns (e.g., (Zhang and Poole 1996)).
While we agree with this statement, we believe that this
can be enhanced even more by the incremental updat-
ing scheme proposed above. Maintaining the validity
flags and pruning parts of the network before the real
inference adds very little overhead, while it can sub-
stantially reduce the size and the connectivity of the
network, hence reduce the computational complexity.
The cost that has to be paid for using this scheme is
the need for recompiling the relevant sub-network into
a clique tree each time computation needs to be per-
formed. However, we can reasonably predict this cost
with a very fast (not necessarily optimal) triangulation
algorithin guided by a simple heuristic. That is, we
can predict the computational complexity of inference
on the pruned sub-network by the number of poten-
tials generated from a triangulation algorithm. If the
predicted cost plus the overhead of relevance reason-
ing outweight the complexity of incremental evidence
updating on the original junction tree (which was con-
structed and saved initially), we simply discard the rel-
evant sub-network and reason on the original junction
tree instead. The overhead introduced by relevance rea-
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soning and simple triangulation is very small, and can
often pay off by a very fast inference on the resulting
pruned sub-network.

Empirical Results

In this section, we present the results of an empir-
ical test of relevance-based incremental updating for
Bayesian belief network inference. We focused our tests
on the enhancement to incremental updating in the
clustering algorithim. The clustering algorithm that we
used in all tests is an efficient implementation that was
made available to us by Alex Kozlov. See Kozlov and
Singh (1996) for the details of the implementation. We
have enhanced Kozlov's implementation with relevance
techniques described in (Lin and Druzdzel 1997) ex-
cept for the relevance-base decomposition. We tested
our algorithms using the CPCS network, a multiply-
connected multi-layer network consisting of 422 multi-
valued nodes and covering a subset of the domain of
internal medicine (Pradhan et al. 1994). Among its
422 nodes, 14 nodes describe diseases, 33 nodes de-
scribe history and risk factors, aud the remaining 375
nodes describe varivus findings related to the diseases.
The CPCS network is among the largest real networks
available to the research community at present timne.
Our computer (a Sun Ultra-2 workstation with two
168Mhz UltraSPARC-1 CPU's, each CPU has a (.5MB
L2 cache, the total system RAM memory of 384 MB)
was unable to load, compile, and store the entire nct-
work in memory and we decided to use a subset consist-
ing of 360 nodes generated by Alex Kozlov for carlier
benchmarks of his algorithim. This network is a sub-
set, of the full 422 node CPCS network without predis-
pusing factors (like gender, age, smoking, ete.). This
reduction is realistic, as history nodes can usually be
instantiated and absorbed into the network following
an interview with a paticnt. We updated the marginal
probabilities of all nodes in this model, i.e., all nodes in
the networks were treated as target nodes.

We constructed 50 test cases, each of which con-
sists of twenty randomly generated evidence nodes from
among the finding nodes defined in the network. For
cach of the test cases, we first constructed a junction
tree for the whole network and computed the prior
probability distributions. Then we recorded the tine
for belief updating when each piece of evidence was
entered and, at the end, computed the total time for
20 sequential evidence processing interleaved with be-
lief updating by adding these times. We compared
the relevance-based incremental updating with the in-
cremental updating directly on the original junction
tree. In case of relevance-based incremental updating,
when each piece of evidence came in, we (1) ran the
relevance-based incremental updating algorithin to ob-
tain a pruned relevant subnet, (2) predicted the size of
the junction tree for this subnet (in terms of the num-
ber of potentials in the junction tree), compared it with
the size of the original junction tree, (3) if the estimated
time for updating on the subnet was less than the time
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needed to update on the vriginal junction tree, we ran
clustering algorithin on the subnet, otherwise, we lis-
carded the subnet and ran the incremental updating on
the original junction tree.

QOur carlier experimnents had shown that it takes
roughly three times less to update beliefs on an ex-
isting junction tree than to build a junction tree. We
used this finding in estimating the updating time. Onr
simple heuristic used in the tests was to continue with
relevance-based incremental updating only when the
predicted munber of potentials generated from an iden-
tified subnetwork was less than one third of the nunber
of potentials in the original junction tree. This heuristic
can be tuned up fur the best performance in individual
networks.
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Figure 2: Comparison of the performance of relevance-
based incremental belief updating (which “R” stauds
for) with plain clustering algorithim (which D" stands
for). (a) The total computing time for cach of the 50
test cases and (b) time series of one case with 20 inere-
mentally coming evidence.

The results of our tests are presented in Figure 2 with
the summary data in Table 1. Note that relevance-
based incremental belief updating introduces negligible



overhead and practically always leads to faster belief
updating than the plain clustering algorithm. There
is only one case of an outlier in Figure 2-a. It is ap-
parent that the relevance-based schemes in combination
with the clustering algorithm performed on average 15%
faster than direct incremental updating using cluster-
ing algorithm. The individual case in Figure 2-b shows
that the overhead of relevance-based schemes is alinost
negligible, even when the belief updating is not cho-
sen on the resulting relevant subnets {or the subnets
are not small enough). But a few big savings from in-
ference on small relevant subnets improves the overall
performance. A question that one might ask is whether
conditional dependencies introduced by multiple obser-
vations will enhance or reduce the benefits of relevance-
based incremental updating. We performed tests that
aimed at investigating this question but we did not find
any evidence for the influence of the amount of evidence
on the performance of the algorithm.

Relevance Direct

p 114522 1349.66

o 135.18 90.40

Min 810.22 1315.09
Median 1167.93 1329.07
Max 1647.25 1534.18

Table 1: Summary simulation results for the CPCS net-
work, n = 50.

In addition to the CPCS network, we tested the
relevance-based incremental updating algorithin on sev-
eral other Bayesian networks. One of these was a ran-
domly generated highly connected network A.ergo (Ko-
zlov and Singh 1996). Summary results of this test are
presented in Table 2. Here, the savings introduced by
our scheme were even larger.

Relevance Direct

u 188.23 344.83

o 63.26 16.57
Min 90.19 325.66

Median 180.85 342.16
Max 341.11 425.12

Table 2: Summary simulation results for the A.ergo
network, n = 50.

Discussion

In this paper, we introduced an incremental belief up-
dating technique based on relevance reasoning that is
applicable in systems in which evidence is collected
gradually in different phases of interaction with the sys-
tem and interleaved with belief updating. Qur tech-
nique, called relevance-based incremental updating, is
based on invalidating the posterior beliefs of those
nodes that depend probabilistically on the new evi-
dence. Subsequent belief updating focuses on updat-

ing those target nodes whose beliefs are invalid. Qur
algorithm identifies the smallest subnetwork that is
relevant to those target nodes that need updating,
predicts the cost of inference on the identified sub-
network, and then decides whether to perform iufer-
ence on this subnetwork or to perforin incremental bhe-
lief updating on the original junction tree. Because
the complexity of relevance algoritluns is linear in the
number of arcs in the network (Geiger et al. 1990;
Druzdzel and Suermondt 1994; Lin and Druzdzel 1997),
our gcheme can predict its speed at almost no cost.
When applied, it obtains significant gains by reducing
the size and the connectivity of the network. In thouse
cases where no target nodes are influenced by the new
evidence, the answer may be available with no compu-
tation. Even in case when the new evidence invalidates
all target nodes, the cost for predicting the efficiency of
inference on the network is negligible with a fast trian-
gulation algorithin. It is always possible to switch back
to the incremental updating on the original junctiou
tree. The relevance-based incremental belief updating
improves system reactivity on average. Our scheme can
also easily enhance approximation algorithms, as the
pruned network almost always smaller than the original
one. Of course, all relevance-based schemes are sensi-
tive to the topology of networks and their performance
can deteriorate in the worst case.

D’Amnbrosio (1993) pointed out that there are three
types of incrementality of inference: query incremen-
tality, evidence incrementalily, and representation in-
crementality. The first two are naturally built into our
scheme. The third type of incrementality involves inter-
leaving inference within a partial problem representa-
tion with representation extension operations. We have
built in into our system also this type of incrementality.
When a part of our network is modified, the moditica-
tion also leads to invalidating those parts of the model
that are not d-separated from the modified part. In-
crementality with respect to representation extension
enables a system to reuse results from prior compu-
tations even when the representation on which those
computations are based is modified between queries.
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