From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Characterizing Sufficient Expertise
for Learning Systems Validation

Gunter Grieser
FIT Leipzig
an der HTWK Leipzig
Postfach 30066
04251 Leipzig, Germany
grieser@imn.htwk-leipzig.de

Abstract

There is an obvious necessity to validate resp.
verify complex systems. If human experts are in-
volved in the implementation of any validation
scenario, there arises the problem of the experts’
competence. As a case study, the problem of ex-
pertise for systems validation is investigated in
the area of learning systems validation. It turns
out that certain human expertise sufficient to ac-
complish certain validation tasks is substantially
non-recursive. Consequently, there is no way to
replace humans by computer programs for those
validation tasks.

Validation of Complex Systems —
Necessity, Problems, and Solutions

There is an obvious necessity to validate resp. verify
complex systems. It might easily happen that ...the
inabzlity to adequately evaluate systems may become the
limiting factor in our ability to employ systems that our
technology and knowledge will allow us to design. (cf.
(Wise & Wise 1993))

Unfortunately, there are numerous severe accidents
bearing abundant evidence for the truly urgent need for
complex systems validation. Besides spectacular cases,
daily experience with more or less invalid systems is
providing paramount illustrative examples. Progress
in the area of validation and verification of complex
systems requires both disciplinary results and solutions
in the humanities including cognitive psychology, e.g.
Even social and political aspects come into play. The
authors refrain from an in-depth discussion.

Following (Boehm 1984) and (O’Keefe & O'Leary
1993), validation is distinguished from verification by
the illustrative circumscription of dealing with build-
ing the right system, whereas verification deals with
building the system right. The focus of the present pa-
per is on systems validation, which — according to the
perspective cited above — is less constrained and less
formalized than verification.
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Assume any computer systems which are designed
and implemented for an interactive use to assist some
human beings in open loops of human- machine inter-
actions of a usually unforeseeable duration in time.
The validation task is substantially complicated, if
it is intermediately undecidable whether or not some
human-machine co-operation will eventually succeed.

Nontrivial problems of inductive learning are quite
typical representatives of such a collection of problems
attacked through complex and usually time consuming
sequences of human-machine interactions. Knowledge
discovery in data bases, for instance, is an interesting
application domain for those learning approaches.

For assessing those systemns’ validily, there have
been proposed validation scenarios of several types (cf.
(Knauf, Philippow, & Gonzalez 1997), e.g.). As soon
as human experts are involved in the implementation
of validation scenarios, there arises the problem of their
competence. An investigation of validation scenarios,
of their appropriateness for certain classes of target
systems, and of their power and limitations involves
inevitably reasoning about the experts’ competence.

The issue of human expertise is usually understood a
problem of cognitive sciences (cf. (Cooke 1992)). This
is complicating a thorough computer science investi-
gation of validation scenarios mostly based on formal
concepts and methodologies.

Therefore, the preseni paper is focusing on some
approaches to characterize human expertise in formal
terms. This is deemed a basic step towards a better
understanding of the power and of the limitations of
interactive validation scenarios.

As a side-effect, the authors demonstrate in formal
terms that certain human expertise, which is suflicient
to accomplish certain validation tasks, is substantially
non-recursive. Consequently, there is no general way
to replace humans by computer programs for those val-
idation tasks. Does this mean that we can prove that
humans are more powerful than machines in this par-
ticular area? We don’t know! In case humans turn out
to be able to solve all those validation problems suffi-
ciently well, this were some evidence for the humans’
superiority to machines an exciting open question.



The Validation of Learning Systems —
A Case for Characterizing Expertise

We adopt validation scenarios according to (Knauf,
Philippow, & Gonzalez 1997), e.g. Human experts who
are invoked for learning systems validation within the
framework of those scenarios need to have some topical
competence. It is one of the key problems of validation
approaches based on human expertise how to charac-
terize the experts’ potentials which allow them to do
their job sufficiently well.

Even more exciting, it is usually unknown whether or
not the humans engaged in those interactive scenarios
can be replaced by computer programs without any
substantial loss of validation power. This problem is
of a great philosophical interest and of a tremendous
practical importance.

Another question asks for the relationship of domain
expertise and validation expertise. Does the validation
of certain Al systems require the ability to do those
systems’ job, at least potentially, as a necessary pre-
requisite? In other words, is systems validation at least
as difficult as problem solving? Alternatively, does val-
idation require quite another qualification compared to
topical problem solving? Answers to questions of this
type might even have some social impact, as they relate
domain experts and validators.

This paper is a case study in attacking problems of
the type sketched here. For inductive learning systems
validation, we will be able to characterize in formal
terms the human expertise sufficient for trustable sys-
tems validation.

The interested reader is directed to (Grieser, Jantke,
& Lange 1998), for further conceptual foundations.

Inductive Inference of Computable
Functions — Notions and Notations

The present chapter is focused on essential features
of inductive learning which complicate the validation
task, and it introduces a few basic formalisms used
below. For both conceptual simplicity and expressive
generality, the focus of the present investigations is on
learning of total recursive functions from finite sets of
input/output examples (cf. (Angluin & Smith 1983)).

The formalisms to circumscribe learning problems
are as follows. IN abbreviates the set of natural num-
bers. Computable functions are defined over IV. P is
the class of all partial recursive functions. The subclass
of total recursive functions is denoted by R.

When learning any feR, the examples (0, f(0)),
(1,f(1)), (2,f(2)),... are subsequently presented.
Learning devices are computable procedures which
generate hypotheses upon finite samples (0, f(0)),
(1,£(1)}, ..., {t,f(t)), abbreviated by f[t).

For notational convenience, hypotheses are just nat-
ural numbers which are to be interpreted via some un-
derlying GODEL numbering ¢. Each number jEN is
specifying a particular function denoted by ¢;.

Note that learning will usually take place over time.
Thus, hypotheses are generated subsequently. A se-
quence (h:)iev of hypotheses is said to converge to
some ultimately final hypothesis k, exactly if past some
point m all hypotheses ki (k>m) are identical to h.
This is denoted by limh; = A, for short.

An individual learning problem is always understood
to be a class of target functions. A corresponding
learning device has to learn each of these functions
individually when fed with appropriate samples.

Definition 1 (LIM)

UeLIM if and only if there exisls some SEP salisfying
for each feU: (1) for allt € N, hy = S(f[t]) is defined,
and (2) limh; =h ezists with pp = f.

Thus, LIM is a collection of function classes U for
which some recursive learning device S as indicated
exists. If the learning device S exclusively outputs in-
dices for total recursive functions, then U belongs to
the learning type TOTAL. Alternatively, if it is decid-
able whether or not S, when learning any f€ U, has
reached the ultimative learning goal, then S witnesses
that U belongs to the special learning type FIN. These
two refinements of LIM are formalized as follows.

Definition 2 (TOTAL)

UeTOTAL if and only if there is some SEP meeling
Jor each feU: (1) for allt € N, hy = S(f[t]) is defined,
(2) limhy = h ezists with pp = f, and (3) for allt€ N,
Pn ER.

For the purpose of our third definition, some sup-
plementary notation is quite convenient: The set of all
0—1-valued partial recursive functions, i.e. predicates,
is denoted by Py;1.

Definition 3 (FIN)

UEFIN if and only if there exist SEP and d€Po;
meeting for each feU: (1) fort€ IN, hy =S(f[t]) and
d(f[t]) are defined, (2) limh,=h ezists with o =f,
and (8) for all t e N, d(f[t]) =1<= S(f[t])=h.

It is a peculiarity of the identification type FIN that,
for every target function f€ U, the success in learn-
ing f is decidable by condition (3). Such a decid-
ability property can rarely be assumed when learning
from only incomplete information. For illustration, the
reader may recall classical interpolation techniques for
polynomial functions. They usually succeed, if suffi-
ciently many points of support are presented. But the
ultimate success is never known, except in cases where
the degree of the polynomial is a priori bounded.

It is folklore in inductive inference that the identifi-
cation types introduced here form a proper hierarchy.

FIN ¢ TOTAL C LIM

To sum up, although inductive learning may suc-
ceed after finitely many steps, in its right perspective,
it is appropriately understood as a limiting process.
This fact is causing unavoidable difficulties to every
approach to learning systems validation based on local
information, only.
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Interactive Scenarios for
Learning Systems Validation

A validation problem for inductive inference systems is
given as a triple of (1) some function class U CR, (2)
sorne learning device SE&P, and (3) an inductive infer-
cnce type like LIM, TOTAL, or FIN, e.g. The precise
question is whether S is able to learn all functions f
from U w.r.t. the identification type considered.

There are two substantial difficulties. First, func-
tion classes {/ under consideration are usually infinite.
Second, every individual function is an infinite object
in its own right. In contrast, every human attempt to
validate some learning system by a series of systematic
tests is essentially finite. Thus, validity statements are
necessarily approximate,

When some process of (hopefully) learning some tar-
get function feU by some device SEP w.r.t. some in-
ductive inference type is under progress, one may in-
spect snapshots determined by any point ¢ in time.

Any pair of an index of a recursive function and a
time point is called test data which represent initial
segments of functions. Certain data are chosen for test-
ing. This is modeled by a test data selection function.
In order to verify whether or not a learning systern is
valid with respect to some function class U/, enough
relevant test data have to be selected. A test data
selection is said to be complete for U if and only if
it meets two conditions: For each function, it selects
from U7 at least one program with all time stamps. Fur-
thermore, the amount of irrelevant data, i.e. programs
for functions not contained in U and possibly correct
programs which are incompleteley presented, is finite.

The behaviour of the system under investigation is
tested for these data. A mapping is called experimen-
tation for S if and only if for all test data pairs it either
results 0 or the outcome of S for this segment. (Intu-
itively, the result 0 means that no proper system'’s re-
sponse has been received. 1t can be easily assumed that
there is no conflicting use of the hypothesis 0.) Because
experimentation is a human activity, the experimenta-
tion is not necessarily computable. Insistency charac-
terizes a manner of interactively validating a system
where the human interrogator does never give up too
early, i.e. the experimentation results 0 only in case the
outcome of § is undefined.

A report consisting of program, time stamp and the
system’s hypothesis is subject to the ezpert’s evalu-
ation marked 1 or 0, resp., expressing the opinion
whether or not the experiment witnesses the system’s
ability to learn the target function. Any finite set of
reports forms a validation statement.

For interactive systems, in general, and for learning
systems, in particular, any one-shot validation does
not seem to be appropriate. One is lead to validation
scenarios in open loops which result in sequences of val-
idation statements. A dialogue arises. Any test data
selection, any experimenation, and the expert’s evalu-
ation function, therefore, form a validation dialogue.
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Such a validation dialogue is said to be successful
for U and S if and only if the underlying data selec-
tion is complete for {/, the experimentation is insis-
tent, and the experts’ evaluation is converging to the
success value 1, for every program which is subject to
unbounded experimentation.

This summarizes the problem of validating inductive
learning devices and outlines a certain family of inter-
active validation approaches (like those developed in
(Jantke, Knauf, & Abel 1997) and (Knauf, Philippow,
& Gonzalez 1997), e.g.) including first steps towards
a lucid formalization. According to the systematiza-
tion proposed, there are the following basic steps of
interactive systems validation:

1. selection of test data,

2. experimentation, i.e. trying a system on test data,
3. evaluation of experimentation reports, and

4. validity assessment based on evaluated reports.

It is one of the key questions in the area of complex
systems validation, which of these four steps can be au-
tomated, and to what extent. Some authors deal with
the automated generation of test cases (cf. (Auzins et
al. 1991), e.g.), and others investigate the problem of
cutting down previously generated sets of test cases to
a feasible size (cf. (Abel & Gonzalez 1997b) and (Herr-
mann 1997), e.g.). In certain areas, the automation of
experimentation is a rather intensive cngineering disci-
pline. What about the automation of thesc steps when
faced to inductive learning devices as investigated in
the present paper?

In (Grieser, Jantke, & Lange 1998), the authors
present, among others, a collection of formal results
which illuminate the substantial difficulty of recur-
sively generating test data and of recursively control-
ling experimental validation. For the purpose of the
present paper, an informal summary should do.

If one assumes the existence of some computable
function generating test data for any validation task
within the present framework, this unavoidably implies
the effective enumerability of the underlying problem
class U. On the other hand, many solvable problem
classes which belong to LIM, to TOTAL, or to FIN,
respectively, are known to be non-enumerable (scc
(Angluin & Smith 1983), e.g.). This clearly exhibits
that there are suitable validation tasks for which the
generation of complete test data is not computable.

Similarly, the requirement of a somehow recursive
control of insistent experimentation results both in
valid and in invalid learning programs which can not
be correctly validated. Even for single valid learning
function S, there are always implementations which are
beyond the scope of a fixed recursive experimentation.

However, the present investigation does not con-
strain the test data selection and the experimentation
in any way. Under the assumption of any source of
experimentation reports, we ask for the competence to
evaluate those reports appropriately.



Characterizing Sufficient Expertise

The question considered here is how powerful an expert
must be to validate all computable learning devices of
a certain type in the above scenario (i.e. to obtain a
successful validation dialogue). There is assumed an
arbitrary source of experimentation reports (formally:
any sequence), either recursively generated or not. We
are aiming at results of the following type: (i) Choose
a class of target systems like inductive learning devices
of the FIN-type, for instance. (ii) Find some charac-
terization of expertise. (iii) Prove a theorem that any
expert who is competent according to the condition of
(ii) is, therefore, able to validate all devices focused
under (i).

We have been able to prove a couple of theorems
which might be circumscribed - for the reader’s con-
venience — as follows:

L. If an expert can limiting—recursively decide the
equivalence problem for arbitrary programs,
then (s)he can validate all learners of type FIN.

2. If an expert can limiting-recursively decide
whether or not a program determines some
total recursive function, then (s)he can validate
all learners of type LIM.

3. If an expert can limiting-recursively decide
whether or not a program determines some
total recursive function, then (s)he can validate
all learners of type TOTAL.

4. If an expert can limiting-recursively decide
whether or not a program determines some
total recursive function, then (s)he can validate
all learners of type FIN.

Note that the latter three implications are not redun-
dant, because the identification types are substantially
different. They forin a proper hierarchy as mentioned
above. Experts have to exploit their skills for systems
validation in different ways, respectively.

Limiting-recursive decidability is a concept adopted
from computability theory (cf. (Adleman & Blum
1991), e.g.) that describes an expert’s opinion which
might change over time, but finally leads to the right
decision.

An even weaker variant is called limiting-recursive
enumerability. For determining whether or not some
program computes a total recursive function, both con-
cepts coincide (cf. (Grieser, Jantke, & Lange 1998)).

The strength of the expected human expertise un-
der consideration is well-illustrated by the following
insights which are theorems in their own right.

5. Both preconditions of expertise invoked above are
non-recursive (cf. (Rogers jr. 1967)).

6. The sufficient expertise characterized above for val-
idation of all learners of type TOTAL (and LIM) is
also sufficient to solve all learning problems of
type TOTAL (and LIM, resp.).

In the sequel, we are going to illustrate the way
in which an expert might exploit the assumed exper-
tise for systematic validation. According to our un-
derlying scenarios, this means to determine the way
in which (s)he evaluates individual experimentation
reports, never mind how these reports are generated
within preceding phases of systems validation.

Assume any sequence of reports without any extra
constraints on ordering properties.

The following prototypically describes some ezpert’s
evaluaiion straiegy based on the expertise to decide
total-recursiveness of programs limiting—recursively.

As the expertise invoked is only a limiting-recursive
one, intermediate expert’s utterances do express some
belief rather than some knowledge. Nevertheless, this
belief is eventually becoming correct.

eval
On input r= (j,,h) proceed as follows:

(A) For all preceding reports 7' = (j,#',h’), check the
property A’ >0. If this holds, go to (B). Otherwise,
output eval(r) =0 and stop.

(B) If there is a preceding report r’ =<j,t',h'> with
t' <, fix the one with the maximal ¢’ of these, call
it #, and go to (C). Otherwise, go to (D).

(C) For #=(j,i ,i;), check whether A=h. If this holds,
go to (D). Otherwise, output eval(r)=0 and stop.

(D) Now the expert invokes his expertise to decide
total-recursiveness limiting-recursively. If at time ¢
(s)he believes in the total-recursiveness of pp, then
go to (E). Otherwise, output eval(r)=0 and stop.

(E) For all z=0,...,t, test whether an attempt to
compute @p(z) succeeds within ¢ steps. For all
those terminating calculations, check consistency,
i.e. pa(z)=1;(x). If there is no case contradicting
consistency, output eval(r)=1 and stop. Otherwise,
output eval(r)=0 and stop.

This evaluation strategy allows for the solution of
arbitrary validation tasks of the type LIM. It always
results in successful validation dialogues as introduced
above.

This claim, naturally, requires some formal justifi-
cation. We complete our presentation by a sketch of
such a proof.

The goal is to prove that the expert’s function eval
converges to the success value 1 if and only if the learn-
ing system behaves in the right way, i.e. recognizes the
target function particularly given.

We prove the two implications separately. [1] deals
with the successful validation of valid learning strate-
gies S, whereas [2] considers the case of any invalid
device S which fails sometimes when faced to a partic-
ular learning problem.
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[1] It is assumed that S is learning some target func-
tion f in the limit. By assumption, data for some pro-
gram, say j, for f is selected completely. S ist defined
for all initial segments of f, by Definition 1. Thus, (A)
is always passed. Because there are only finitely many
changes of hypotheses in learning f by S, (C) always
leads to (D) passed some point in time. Furthermore,
S converges on f to some total recursive index, say
h. If sufficiently comprehensive information has been
presented, (D) and (E) deal exclusively with the one
correct program h for f. After some pondering, the
cxpert’s expertise will lead to the insight that h deter-
mincs a total recursive function. Then, (E) is always
called. Because i is correct, it is also consistent. This
implies convergency to 1.

[2] In contrast, if S fails on some function f, then
there occurs one of the following three cases. (i) S
does not return a hypothesis, for at least one test data
input. (i1) S does not converge. (iii) S does converge,
but to some final hypothesis A’ not correctly reflecting
the target function f. In case (i) holds, the validation
dialogue does not succeed because of (A). In case (ii),
(C) prevents the validation dialogue from a successful
convergency to 1. Finally, if (iii) holds, an inconsis-
tency will be eventually recognized within (D) or (E),
in dependence on whether g is partial or not.

Conclusions

To swnt up very bricfly, we know about sufficient exper-
tise to accomplish some validation tasks. Interestingly,
this expertise can not be automated. The strength
of the expertise is illustrated by this roughly correct
statement: Who is able to validate learning devices, is
also able to replace them in solving learning problems.
The present results should be understood as cases
for characterizing human expertise in complex systems
validation. Extensions to further learning problems
and Lo other validation tasks are desirable. Part of
our forthcoming work will focus on characterizations
of expertise which are both sufficient and necessary.
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