
Towards More Intelligent and Interactive Interfaces

James S. Jennings and Nicole D. Terry
Department of Electrical Engineering and Computer Science

Tulane University, New Orleans, LA 70118
{jenningslterry}eecs.tulane.edu

Abstract

Our goal is to support the development of more
intelligent and more interactive text-based inter-
faces for general computer use. In order to enable
automation of user tasks, we find a new command
shell architecture is needed. Our working proto-
type, Fish, maintains a global, persistent knowl-
edge repository across concurrent interactive ses-
sions. For example, a user can define a shell func-
tion in one session and this function is immedi-
ately available to the user’s other concurrently
running sessions, as well as future sessions. Our
approach is to centralize knowledge in a persistent
way while parallelizing execution. Fish is exten-
sible and customizable, with a fuU programming
language. It supports efficient communication be-
tween the machine and the user in many ways,
most notably by giving the user access to the re-
suits of previously executed commands. Indexical
references into previous results are possible by us-
ing a sophisticated command language which con-
tains a suite of syntactic and semantic analysis
functions. Significant strides in learning are pos-
sible due to the centralization of knowledge and its
persistence. We illustrate the possibilities with an
example of how learning may be uniquely applied
using Fish.

Introduction
Intelligent interfaces hold the promise of freeing com-
puter users from routine drudgery, from the mental
maintenance of staggering amounts of arbitrary infor-
mation, and also from the need to learn arcane pro-
gramming methodologies such as scripting languages,
programs like Unix’s cron, etc. Our focus is on gen-
eral use of modern networked computers - the kind of
activity currently accomplished through a text-based
command shell. This is a challenging domain, with
many degrees of freedom. On a typical Unix worksta-
tion, such as one in our department, there are approxi-
mately 1,700 different programs one can run; there are
over 250,000 files and directories on our small network;

Copyright ©1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

our 22 public workstations are fairly homogeneous, but
most of our 70 private machines have either local file
systems, special devices attached, or both. When one
considers what is accessible over the Internct, the num-
bers above increase astronomically.

Granted, many users of networked workstations make
little use of the programs, data, and other local ma-
chines which are available. However, certain users will
use a large variety of programs, access an enormous
amount of data, and execute programs on several host
machines at once. System administrators, program-
mers, students, professors, and so-called "power users"
fall into this category. Due to the complexity of their
tasks, text-based computer interfaces are almost un-
avoidable because they allow the user to express in lan-
guage concepts difficult to express by direct manipula-
tion of icons and menus. Thus, the "command shell"
survives despite the ubiquity of icon-based (graphical)
direct manipulation interfaces such as Microsoft Win-
dows in the PC domain and X Windows in the Unix
domain.

In order to increase the efficiency with which peo-
ple use text-based command shells, we need to increase
the level of automation these interfaces provide. Exam-
ples of automation in existing command shells include
tab completion, in which a partially typed file name
is completed by the shell, and shell scripts which are
programs written for the purpose of running other pro-
grams. Opportunities for increasing the level of au-
tomation abound. For instance, users could more eas-
ily incorporate domain knowledge in the form of their
own procedures and data for accomplishing repetitive
or complicated tasks. Learning programs could study
the user’s activity and provide guidance, suggestions,
or even develop procedures which automate or abstract
the user’s tasks. Agents can provide a great deal of au-
tomation as well, enabling the user to perform remote
or delayed computation, and agents can handle some
tasks automatically. In our domain, text-based inter-
faces on modern networked computers, implementing
any of these approaches to automation is challenging.

Before we can build an effective learning agent for
our domain, or design a facility for the incorporation
of domain knowledge, or integrate a mobile agent sys-

24 JENNINGS

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

tern into the user interface, we need to develop a new
command shell architecture. This paper describes an
implemented prototype of such an architecture, called
Fish. Our prototype allows the user to interact with
the machine in many concurrent sessions; these sessions
can share information such as procedures, history, and
other data; agents and other programs can communi-
cate with the user through our system. We illustrate
below how a learning agent could observe the user’s
actions and instantiate a procedure which automates
them, despite the fact that the user interacts with the
machine through several concurrent sessions.

In the next section we present several important chal-
lenges to conventional interfaces, followed by a sketch
of the architecture of Fish and examples of how Fish
facilitates the use of domain knowledge and agent tech-
nology.

Challenges
Traditional shells, such as the Bourne shell(Bou?8) and
its derivatives, present many challenges to automation.
Their behavior can be modified in only a few predeter-
mined ways (e.g. custom command completion, turning
on/off command history, setting the PATH variable).
Behaviors such as the order in which substitutions are
performed and how wildcards are expanded, and ser-
vices such as file redirection and pipelining cannot be
changed by the user.

Shell languages also present a challenge to automa-
tion. These "strange" languages lack the full functional-
ity of traditional programming languages and are typ-
ically restricted to string-valued variables. They lack
procedural abstraction, modularity, and robust excep-
tion handling. Newer scripting languages, such as Perl,
alleviate some of these problems, but present others.

The ability to launch persistent agents is also difficult
to achieve. If a user would like a sequence of commands
to be run autonomously (i.e. while the user is logged
out or is doing other work), he must write a script and
use the at or cron commands. Programs backgrounded
by the user are generally killed upon user log out by the
hang-up signal. This can only be avoided if the user had
the forethought run it via the nohup command or in a
screen session.1

The incorporation and organization of domain knowl-
edge presents a problem too. With traditional Unix
shells, all shell context is stored in the startup files.
Shell context includes command aliases, environment
and shell variables, shell functions, and command his-
tory. If the user wishes to create a function or piece of
data that will persist in future shell sessions, he must
explicitly write the definition of the item to one of the
startup files. Since the shell provides only a global
namespace, a unique name must be used for each con-
text item. With a large collection of context items cre-

1The meanings of these Unix commands are somewhat
inessential to the discussion. See the Unix man pages for
more information.

Figure 1: System Architecture: In the figure, three
frontends are running concurrently. Each frontend com-
municates with a session thread in the backend which
was specifically spawned to handle its activity.

ated over time, the startup files can become cluttered
and confusion of names can occur.

Attempts to automate and incorporate learning into
current shells are further complicated when multiple
shells run concurrently. When a startup file is edited,
the changes are only accessible to those shells in which
the user has re-loaded the file. Also, command history
is automatically saved to a specific file upon exit of the
shell, so as successive shells exit, this file is overwritten
with different a history. Therefore, there is no consis-
tent command history context.

Architecture
The core of Fish is a long-lived process which we refer
to as the backend. The first time a user uses Fish, the
backend process starts. In general, it never stops; it is
already running and users merely connect to it via a
thin client which we refer to as the frontend. The user
may start as many frontends as desired, all of which
connect to the single backend. The backend is multi-
threaded for concurrent processing of frontend requests.
Refer to Figure 1 for a graphical representation of the
architecture.

First, a few key definitions:

Session The interaction between a frontend and the
backend. The lifetime of the session is the lifetime of
the frontend.

Project Environment A project environment con-
talns the context associated with a particular task
which changes gradually over time and persists in-
definitely.

Session Environments A session environment con-
tains the temporally local context specific to a ses-
sion.

AI APPLICATIONS25

Figure 2: The figure depicts the project hierarchy cre-
ated by one of the authors in order to subdivide the
context of her current tasks. For example, the project
royTrace inherits the context of agents since it is a
particular type of agent. The project agents inherits
the context of schemeProgramming since the agent sys-
tem was implemented in scheme. Lastly, the project
schemeProgramming inherits the context of globaIShell
since the author chose to place all context she wished
to be globally accessible in that project.

Knowledge Environment

Knowledge shared between two people helps to keep
their conversations brief. Fish persistently stores
knowledge which is shared with the user; we refer to
this shared knowledge simply as context.

In addition to the context items provided by tradi-
tional shells such as variables, shell functions, command
aliases, and command history, our system also imple-
ments result history. A result is defined as the text sent
to both standard out and standard error by a process
in addition to its exit value. Result history provides
the power to make use of previous results at any time,
without requiring the forethought to capture them via
file redirection or pipes.

In order to organize a large amount of context ac-
cumulated over time, Fish maintains a hierarchy2 of
project environments. A project is a namespace used
to store related items. Users create and delete projects,
and can switch at any time from one project to another,
much as they change directories now. Each project has
its own context.

The use of multiple, distinct contexts yields task-
oriented namespaces which allow the user to have vari-
ables, aliases, and functions of the same name with dif-
ferent values or functionalities in the separate project
environments. The project environments are used for
locality of reference much as scoping constructs are used
in programming. As with programming, our project hi-
erarchy describes nested scopes, as depicted in Figure 2.

Projects and their associated context persist between

2Currently, only single inheritance is supported. Multi-
pie inheritance might in fact be more appropriate here.

26 JENNINGS

logins and even across reboots or power outages. In or-
der to be able to recover from reboots and power out-
ages, the backend periodically checkpoints each active
project to the file system.

Agent-like Properties

In traditional shells, cron jobs and backgrounded pro-
cesses provide agent-like behavior to a certain degree.
Unfortunately, communication with running cron jobs
and backgrounded processes is limited and difficult to
achieve. Any results sent by backgrounded processes
to standard out or standard error and not re-directed
are lost. Upon completion of a cron job, results are
emailed to the user.

The persistence of the backend allows for flexible au-
tonomous computation by proxy. While the user is idle
or logged out, functions running in the backend still
perform useful work. Since the backend runs with the
permissions of the user, it can perform the same oper-
ations as the user himself. He must merely write and
execute a function that performs its task at a certain
time, at certain intervals, or when a certain condition
occurs. These functions can communicate with the user
not only through traditional means such as the file sys-
tem, signals, email, windowing, etc., but also through
the backend message queue and the knowledge environ-
ment itself. Means of communication is only limited by
the user’s imagination and/or programming ability. If a
modem is attached to a machine to which that backend
has access, the user could even be paged,s

Interface Programming Language

Well underway is the design and implementation of a
suitable interface programming language for Fish. (The
current one is Perl.) Commands are processed by Fish’s
read-execute-print loop (repl), roughly analogous
the read-eval-print loops of a Lisp or Scheme inter-
preter. However, the syntax and semantics of the com-
mand language accepted by the Fish repl are distinct
from those of the programming language used to cus-
tomize and extend Fish.

ExtensibUity By analogy, users interact with Emacs
by striking keys bound to Emacs Lisp functions that
execute when a key is struck. But F, macs users can also
directly write and execute Emacs Lisp code in an inter-
preter within Emacs. Similarly, Fish users type com-
mands in a command language at a command prompt.
A small command interpreter translates commands into
an interface programming language (ipl). The resulting
program is sent to a thread in the backend component
of the Fish shell for execution; that is, the ipl interpreter
executes the command. By "escaping" to the ipl, users
can define new commands, functions, and variables, and

awe have in fact implemented this feature. However, we
are pressed to find a driving need for it.

even alter the way in which commands are interpreted.4

For example, one might decide to generalize
the concept of a "working directory" to include
multiple concurrent working directories. For a
project requiring C language programming, the set
of working directories mig~ht include /usr/include
in addition to the user’s source code directory,
e.g./home/clinton/server/src. Multiple working di-
rectories permit emcient shorthand because the user
can type "less regexp.h" or "emacs my-program, c"
and the shell will be able to find these files by looking
in more than one place. The small amount of machin-
ery necessary to extend Fish in this way is directly ac-
cessible by the user, including the ability to install an
exception handler which could, for instance, query the
user or signal an error when faced with a filename which
exists in more than one of the working directories.
Knowledge Representation Defining new com-
mands and storing data in variables are the mecha-
nisms by which the user can directly encode domain
knowledge into the shell as procedures and data. While
actual procedures may not be a suitable encoding of
procedural knowledge for some applications, they are
quite general. In other words, the ipl is a complete pro-
gramming language; hence, suitable abstractions may
be built within Fish for encoding different types of in-
formation.
Agent Interaction Because our goal is to empower
the user by infusing the user interface with capabilities
for automation, we must consider the needs of users
who interact with autonomous software agents, even
mobile agents. Fish provides facilities for asynchronous
two-way interaction between the user and programs,
whether those programs are simply backgrounded pro-
ceases or intelligent, autonomous, even mobile agents.
The user-level view of this interface is still primitive,
and is under development. It seems clear that extensi-
ble syntactic and semantic standards are needed; work
on, e.g. KQML (Fea93) proceeds in this direction.
Manipulating Results A primary influence on Fish
is the notion that real interaction between humans and
computers can only take place when the conversation
goes two ways. Generally, the user executes commands
which produce output. In traditional shells this output
is displayed but otherwise discarded. By capturing the
output of programs as text and making it accessible to
the user, Fish allows the user to indexically reference
the results of computation.

The command language and interface programming
language are currently being redesigned to incorporate
an extensible set of parsers which can be used to extract
appropriate syntactic units from raw text. For instance,
the output of the Unix f inger command often includes

4Inspiration and guidance in building robust malleable
systems can be found in recent work on meta-object proto-
cols (KdRBgl).

information provided by a user such as their home page
address. Applying an appropriate parser to this text
would produce a list of URLs based on syntactic analy-
sis. Next, simple ipl functions can be applied to deter-
mine which URL’s are valid. Finally, we observe that
the syntactic analysis and the semantic filtering (the
"validity" test) may be performed only when needed.
In the next version of l~sh, the user will be able to asso-
ciate types with textual ipl function parameters. Thus,
when such an ipl function is invoked on a body of text,
such as the result of the previous command, Fish can
automatically extract the appropriate information from
the text.

For example, suppose the user writes an ipl func-
tion called visit which takes one argument, a URL,
and signals a running web browser process to visit that
URL. A function prototype for visit might look like
this: proc visit(URL: place).

If the command language keyword it indicated a ref-
erence to the result of the previous command, then the
following transcript would cause the user’s web browser
to visit http://www, whitehouse, gov:

Fish$ cat mg~ile
Check out Al’s vacation photos,
available through our main
page at http://www.whitehouse.gov !
Fish$ visit it
Address ’ ’http://~.vhitehouse.gov’ ’ sent to
netscape.

Other Front Ends

Other programs can communicate with the Fish back-
end process and take advantage of its store of knowl-
edge, such as user-defined mechanisms for automati-
cally locating files using multiple working directories,
as mentioned above. For example, a small Emacs Lisp
program would allow the Emacs editor to interact with
Fish. Thus the Emacs "find file" function could inter-
act with the user’s shell to locate files. Emacs could
also display messages that Fish relays from agents or
other programs. In this respect Emacs functions as a
frontend for the persistent F/sh backend, as could other
programs. For example, agents can interact with the
user by utilizing the services of F/sh as well, whether
to collect data on the activities of the user, to provide
data to the user, or to provide other services.

The persistent nature of Fish helps it fulfill the role of
a global (to one machine) repository of the knowledge
shared between the user and the machine. In ongoing
work we are examining how this knowledge could be ef-
fectively shared between different machines with which
the user has had different interactions.

Examples

In the following examples a mock-up learning agent
watches the user’s command input in order to automate
the creation of procedures for tasks involving repeti-
tive command sequences. Since Fish allows the inter-

AI APPLICATIONS27

1 globalShell::2> enter latexDoc
Now in project latexDoc::2. 2 globalShell::3> enter latexDoc::2

Now in project latexDoc::2.

4 lntexDoc::2> cd LinguisticAnalysis
/home/terry/Papers/LinguisticAnalysis

latexDoc::2> latex DigitalLibrary
LaTeX Warning: There were undefined references.
LaTeX Warning: Label(s) may have changed.
Rerun to get cross-references right.
Output trritten on DigitalLibrary.dvi (8 pages).

10 latexDoc::2> latex DigitalLibrary
Output trritten on DigitalLibrary.dvi (8 pages).

13 latexDoc::2> latex DigitalLibrary
LaTeX Warning: There were undefined references.
Output ~rritten on DigitalLibrary.dvi (8 pages).

14 latexDoc::2> bibtex DigitalLibrary

15 latexDoc::2> latex DigitnlLibrary
LaTeX Warning: There were undefined references.
LaTeX Warning: Label(s) may have changed.
Rerun to get cross-references right.
Output written on DigitalLibrary.dvi (8 pages).

16 latexDoc::2> latex DigitalLibrary
Output written on DigitalLibrary.dvi (8 pages).

Figure 3: Frontend Session 1 Learning

leaving of the command history of multiple frontends5,

data is available for learning that cannot be provided
by current shells. The agent runs in its own thread in
the backend and only makes its presence known when
it produces a suggested function for the user. This
function is instantiated in the Fish environment by the
learning agent, which then tells the user the name and
definition.

Once a function is suggested, the user may choose
whether to keep the function. The user may also mod-
ify this automatically generated function to include do-
main knowledge.

Throughout these examples, only the learning agent
is a mock-up. That is, we constructed a program by
hand which responds to a particular (repeating) pattern
of input. In practice, a learning technology such as
that exhibited by the Eager system (Cyp93) (adapted
for textual interaction) would be used. Also, in these
examples the output of several commands was edited
for presentation purposes; the user’s input to Fish is
shown as typed.

Learning Functions

~The common usage of ~sh is to have multiple xterms
running in the X Windows environment with a separate
frontend running in each xterm. This allows the user to
easily switch between frontends.

28 JENNINGS

11

12

8

17

18

19

2O

latexDoc::2> ioadFile /home/terry/Fish/Learn.pm
File /home/terry/Fish/Learn.pm has been loaded.

latexDoc::2> runAsThread learn latexDoc::2
ThreadffiSCALAR(Ox838c518)

latexDoc::2> dvips DigitalLibrary

latexDoc::2> emacs DigitalLibrary.tex k
Success

Figure 4: Frontend Session 2 Learning

globalShell::7> enter latexDoc::2
Now in project latexDoc::2.

latexDoc::2> latex DigitalLibrary
LaTeX Warning: There were undefined references.
Output written on DigitalLibrary.dvi (8 pages).

latexDoc::2> bibtex DigitalLibrary

latexDoc::2> dvips DigitalLibrary

latexDoc::2> Is
DigitalLibrary.aux
DigitalLibrary.bbl
DigitalLibrary.bib
DigitalLibrary.blg
DigitalLibrary.dvi
DigitalLibrary.log
DigitalLibrary.tex
DigitalLibrary.tex"

-- Message from agent ’learn’
A repeated pattern suggests the creation
of a new function:

sub latexDoc::2::fl {
my Sres = "";

Sres .= ’latex DigitalLibrary’;
Sres .= ’bibtex DigitalLibrary’;
Sres .= ’latex DigitalLibrary’;
Sres .= ’latex DigitalLibrary’;

Sres .= ’dvips DigitalLibrary’;
return Sres; }

Use the keep function to make fl persistent.
..

latexDoc::2> keep fl texDL
Procedure texDL now exists in latexDoc::O.

latexDoc::2> texDL
Output written on DigitalLibrary.dvi (8 pages).
Output written on DigitalLibrary.dvi (8 pages).
Output written on DigitalLibrary.dvi (8 pages).

Figure 5: Frontend Session 3 Learning

21 latexDoc: :2> ~ sub latexDoc: :0: :texFile
my Sres - "";
eros .- ’latex 8_[0]’;
$res .- ’bibtex $_[0] ’ ;
$res .- ’latex $_[0]’;
$res .= ’latex $_[0]’;
Sres .- ,dvips $_[0]’;
return $res; } }

Figure 6: Frontend Session I
Incorporating Domain Knowledge

Figures 3, 4, and 5 are transcripts from concurrent
sessions with Fish. The numbers at the left hand mar-
gin indicate the sequence in which commands were en-
tered across the various sessions; they were entered by
the authors for presentation.

In this example, we are processing a document with
the latex system. In steps 1 through 3 we enter the
same session environment in each frontend, thereby in-
terleaving command and result histories. In steps 5
and 6 we load the definition of a mock learning agent
and execute it in a background thread. Next, we per-
form the repetitive task of processing the document
DigitalLibrary (steps 7 - 11). We then edit the file
(step 12) and perform this processing again (steps 13
17). The mock learning agent recognizes a pattern and
creates a function in the session environment to auto-
mate those commands (step 18). We then run the keep
builtin function on it in order to place this function in
latezDoc project environment (step 19). Lastly, we exe-
cute the function by its new name, texDL, and it works
as expected (step 20).

There are two key points to consider. The first is
that our learning agent was easily able to observe all
of the user’s interaction with Fish across several con-
current sessions. The second is that the agent interacts
with the user by messaging and also through the Fish
environment, which it shares with the user.

Incorporating Domain Knowledge

Figures 6, 7, and 8 continue the same three concur-
rent sessions from the previous example. We now incor-
porate some domain knowledge into the new function
produced by the learning agent. In step 21 we edit the
definition of texVL at the command line to create the
generalized function texFile which now takes a file-
name argument. Next, we change into another direc-
tory to do more latex document processing (step 22).
We run our newly created function on the file security
(step 23) and discover that there are errors in the docu-
ment. We decide to incorporate error checking into the
function definition to avoid running unnecessary com-
mands. In step 24 we save the definition of texFile to
a file. Then we edit its definition in Emacs. The new
function texCheckError is loaded in step 26. Lastly,
we run texCheckError on security and the error is
caught, as expected (step 27).

22 latexDoc::2> cd ../Networks
/home/terry/Papers/Neteorks

23 latexDoc::2> texFile security
! LaTeX Error: Something’s wrong--

perhaps a missing \item.
LaTeX Warning: There yore undefined references.
Output gritten on security.dvi (5 pages).
! LaTeX Error: Something’s wrong--

perhaps a missing \item.
LaTeX Warning: There were undefined references.
LaTeX Warning: Label(s) may have changed.
Rerun to get cross-references right.
0utput written on security.dvi (6 pages).
! LaTeX Error: Something’s wrong--

perhaps a missing \item.
Output written on security.dvi (6 pages).

Figure 7: Frontend Session 2
Incorporating Domain Knowledge

24 latexDoc::2> saveToFile texCheckError.pm \
SsuggestedFunc
Sucessfully wrote file texCheckError.pm.

User edits texCheckError.~

25 latexDoc::2> cat texCheckError.pm
sub texCheckError

my Sres = "";
Sree .= ’latex $_[0]’;
if ($res =" /LaTeX Error:/)

return($a . $’);

else {
Sres .= ’bibtex $.[0]’;
$res .= ’latex $_[0]’;
Sres .= ’latex $_[0]’;
Sres .= ’dvips $_[0]’;
return Sres;

return 1;

26 latexDoc::2> loadFile texCheckError.l~n
File texCheckError.pm has been loaded.

27 latexDoc::2> texCheckError security
LaTeX Error: Something’s wrong--

perhaps a missing \item.
0utput written on security.dvi (6 pages).

Figure 8: Frontend Session 3
Incorporating Domain Knowledge

AI APPLICATIONS29

First we note that automatic generalization is a dif-
ficult problem. But it is easy for the user to generalize
the texDL function manually. By providing access to its
definition, the learning agent can encourage it. Second,
we observe that the enhanced texCheckError function
makes use of the available result history. That is, it
scans the output of latex for errors. Ordinary shells
would need the filesystem for the temporary storage of
such results, or they would pipe such results through
other programs for processing; neither is needed here.

Related Work

We are inspired by the design principles of Nor-
man(Nor88) and Winograd(Win96) to improve
current shells. Other attempts to improve the shell in-
teraction language include Rc(Dufg0), Es(HR93),
Scsh(Shi94). Attempts to ease the burden of complex-
ity on the user range from Essence(HS94) which works
on top of existing technology (namely Unix) to alleviate
file system complexity, to Softbots(EW94) which allow
the user to specify what information he wants rather
than how to retrieve it, and to Plan 9(PPD+95) which
is a revolutionary operating system that provides the
user with a customized view of the local network.

Structured information found in everyday documents
has been exploited by Apple Data Dctectors(NMW98).
Once a document or portion of a document is parsed
with the available grammars, a list of actions relevant
to the type(s) of information found is presented to the
user. The user may then select an action to be per-
formed on the data found. In our system, the user can
inform Fish when it should parse text and for what type
of data, an "on demand" approach which we believe will
scale well. Of course, Fish users could automate these
actions if desired.

Various learning agents gather knowledge by observ-
ing the user. Eager(Cyp93) and Maxims(Mac94)
tempt to automate the repetitive tasks of graphical
user interface manipulation and email handling, rcspec-
tively. They record the user’s actions in response to cer-
tain situations and when similar situations occur, the
agents suggest the predicted action. When the user
gains enough confidence in the agent’s recommenda-
tions, the user may let the agent perform the action
on his behalf. Letizia(Lie97) and COACH(SeI94)
tempt to assist the user in performing their task rather
than performing the task for them. Letizia attempts to
suggest web pages of interest to the user based on pre-
viously requested pages, and COACH builds a model
of the user’s expertise by observing input keystroke by
keystroke, with the goal of proactively offering the user
help.

Conclusion

Our goal is to increase the level of automation in the
user interface for a particular group of computer users.
This group is characterized in part by its use of text-
based command shells in addition to or instead of icon-

30 JENNINGS

based direct manipulation interfaces. The scale of typ-
ical file systems and local networks, not to mention the
resources available over the Internet, makes automation
challenging in this domain. Our approach has been to
centralize knowledge in a persistent way while paral-
lelizing execution. Command and result history, as well
as procedures and other data, can be shared across ses-
sions. All information is organized into a hierarchy of
"projects" which act as scopes in which Fish resolves
bindings in interactive commands and interface pro-
gramming language programs. A concise command lan-
guage is translated into ipl for execution, giving the user
the power of a full programming language but also an
efficient command syntax. The ability to process text
resulting from command execution further empowers
the user (and software programs) in automating tasks.

The learning example presented above illustrates
some of the advantages of a centralized knowledge
repository combined with parallel threads of execution.
We also wish to point out the ease with which persistent
domain knowledge may be incorporated by the user and
organized as well.

We believe that many of the techniques described in
the Related Work section above will prove to be fruit-
ful in new domains. In order to apply these and other
mcthods in the domain we have chosen, we have had
to design a. new interface structure between the user
and the machine. Some critical aspects of this project
are naturally outside the scope of this paper, includ-
ing novel garbage collection methods for persistent in-
teractive processes and automating the processing of
previous command results in a principled and efficient
way. The end result is a system which enables and en-
courages automation by the user and for the user in a
complex and dynamic domain.

References

S. R. Bourne. UNIX time-sharing system: The UNIX
shell. Bell System Technical Journal, 57(6):1971-1990,
1978.

Allen Cypher. Eager: programming repetitive tasks by
demonstration. In Allen Cypher, editor, Watch What
I Do: Programming by Demonstration, pages 205-217.
MIT Press, Cambridge MA, 1993.

Tom Duff. Rc - a shell for Plan 9 and UNIX sys-
tems. In UKUUG Conference Proceedings, pages 21-
33, 1990.

Oren Etzioni and Daniel Weld. A softbot-based in-
terface to the internet. Communications of the A CM,
37(7):72-76, July 1994.

Tim Finin and Jay Weber et al. Draft specifi-
cation of the kqml agent communication language.
http://www.cs/umbc.edu/kqml/kqmlspec/spec.html,
June 1993.

Paul Haahr and Byron Rakitzis. Es: A shell with
higher-order functions. In 1993 Winter USENIX Tech-
nical Conference, pages 53-62, 1993.

Darren R. Hardy and Michael F. Schwartz. Cus-
tomized information extraction as a basis for re-
source discovery. Transactions on Computer Systems,
14(2):171-199, May 1994.

Gregor Kiczales, Jim des Rivieres, and Daniel G. Bo-
brow. The ArC of the Metaobject Protocol. MIT Press,
1991.
Henry Lieberman. Autonomous interface agents. In
CHI ’gT. Conference Proceedings on Human Factors
in Computing Systems, pages 67-74, 1997.
Pattie Maes. Agents that reduce work and information
overload. Communications of the A CM, 37(7):30-40,
July 1994.

Bonnie A. Nardi, James R. Miller, and David J.
Wright. Collaborative, programmable intelligent
agents. Communications of the ACM, 41(3):96-104,
March 1998.
Donald A. Norman. The Design of Everyday Things.
Basic Books Publishers, Inc., New York, 1988.
Rob Pike, Dave Presotto, Sean Dorward, Bob Flan-
drena, Ken Thompson, Howard Trickey, and Phil Win-
terbottom. Plan 9 from bell labs. http://plan9.bell-
labs.com/plang/doc/9.html, 1995.
Ted Selker. Coach: a teaching agent that learns. Com-
munications of the A CM, 37(7):92-99, July 1994.

Olin Shivers. A scheme shell. Technical Report TR-
635, Laboratory for Computer Science, MIT, 1994.

Terry Winograd. Bringing Design to Software. ACM
Press, New York, 1996.

AI APPLICATIONS31

