
Generating Satellite Control Schedules Using Case-Based Scheduling

Costas Tsatsoulis and Julian Holtzman

Lawrence Applied Research Corporation (LARC)
Lawrence, KS 66047

{tsatsoul,holtzman}@larc.com

Abstract

ICARUS is an intelligent system that
integrates Case-Based Reasoning and utility
theory to remove conflicts from control and task
schedules of the Air Force's Satellite Control
Network. We describe the methodology that
integrates Case-Based Reasoning with utility
theory, the problem domain of satellite task
scheduling, and how ICARUS is applied to the
problem.

Introduction

In this paper we describe on-going work
that applies techniques from Case-Based
Reasoning (CBR) and decision theory to remove
conflicts from control and task schedules of the
Air Force's Satellite Control Network (SCN).
Scheduling of the SCN is a task of extreme
significance to the Air Force since it is absolutely
essential for data receipt from and transmission
to satellites, vehicle maintenance, and orbit
tracking and maintenance. Mission planners
request contacts between their space vehicles
(SVs) and SCN ground stations. These limited
duration contacts serve three primary purposes:

• All SVs require orbit maintenance and
state-of-health processing. A regular schedule of
contacts is put in pace to facilitate the needed
commanding and telemetry monitoring.

• Data collected from SVs must be
transmitted to or from the satellite using the
SCN. Since the amount of data can be
significant, frequent and, possibly, lengthy,
contacts may be required.

• Contacts for tracking and orbit
determination are also scheduled. During these

contacts no commands are transmitted, and only
the accuracy of the orbit is determined.

Contacts for tracking and orbit
determination are also scheduled. During these
contacts no commands are transmitted, and only
the accuracy of the orbit is determined.

An additional complexity arises from the
fact that some satellites require equipment or
capabilities that are not available at all ground
stations. So, when scheduling, one must keep
track of the availability of the required support
equipment in addition to conflicts arising
between duration of visibility windows among a
number of SV’s. Additionally, set-up times to
configure the equipment must be considered as
part of the time required to provide the support.
Finally, ground stations themselves require
periodic maintenance or emergency repairs.
These activities preclude the use of the ground
station or a portion of the stations’s equipment
for SV support.

Currently support requirements are
expressed and submitted to the scheduling
system as Program Action Plans (PAPs). PAPs
may be used to specify time windows, support
criteria, late starts or early stops, or support
preferences such as a required antenna side or
unacceptable equipment. PAPs are written in a
simplified ad hoc language. Information
supplied in a PAP may include service start time,
service duration, setup time, start time lead and
lag, equipment configuration, and station or
station side. The totality of PAPs is essentially

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

the preliminary schedule for the stated time
period.

The challenge of scheduling is to create a
schedule that satisfies the needs of the users
while not violating any of the constraints
inherent in the SCN. The goals of a good
schedule are to:

•optimize network utilization;
•
•maximize the number of satisfied requests;
•
•satisfy all high-priority requests; and
•
•ensure that no satellite is denied too many
consecutive requests

Currently the Air Force uses human
experts to schedule contacts between SVs and the
SCN. Control of the scheduling process lies with
the 22SOPS at Schriever AFB. The human
schedulers use ASTRO, a set of tools for
compiling, storing, displaying, and manipulating
SCN resource requests and the resulting
schedules (Loral 1995a). ASTRO, a DOS-based
system, allows the human scheduler to enter
schedule requests and manipulate this data to
produce a network schedule. ASTRO features a
large-screen monitor to display the schedule and
a sonic pen used to manipulate the schedule.
Although ASTRO provides a number of useful
tools, the scheduling process, essentially a
deconfliction and rescheduling problem, requires
a significant amount of manual effort on the part
of highly trained schedulers.

We are developing a methodology and a
system which, when given a preliminary,
conflicting, incomplete set of PAPs, performs
deconfliction and generates an executable
schedule of SV contacts with the SCN. The
system, named ICARUS, is based on Case-Based
Reasoning (CBR) and decision theory, and an
innovative integration of case-based scheduling,

skeletal scheduling, heuristics, and utility
measurements.

Functionality of Completed System

Before proceeding with the description of the
theory behind our work, we present how the
completed system will operate so as to show the
expected functionality of ICARUS. ICARUS
operates in three different modes: normal
scheduling mode; rescheduling mode; and user-
driven mode.

Figure 1 demonstrates how the fully functioning
ICARUS system behaves in normal scheduling
mode. ICARUS receives the support
requirements together with any station
constraints, such as planned down times, and
retrieves from its case base of successful plans
fragments of schedules that satisfy as many of
the requests as possible. The goal is to satisfy
most scheduling requests using known,
successful schedule fragments. This use of CBR
in scheduling speeds up the process, generates a
draft schedule quickly, and avoids the
computational complexity of generative
scheduling. Any requests not satisfied are
scheduled by a generative scheduler which works
from scratch. Since the old schedule fragments
do not correspond exactly to the current requests,
ICARUS adapts these fragments using the
transmitted requests, and domain constraints and
heuristics, using standard CBR adaptation
techniques. The result is a set of schedule
fragments that satisfy all requests, but are not
integrated and deconflicted.

Case Base
of schedule
fragments

Complete, deconflict ed,
po ten tial schedules, ranked
by ut il i ty and dynamic cr i teria

Integrat ion and deconflict ion
of schedule fragments

Adap ted
schedule fragment s

Generat ed
schedule fragments

Generat ion o f
schedule fragments

Ret rieval o f
schedule fragment s

Old, successful
schedule fragments

Adap tat ion o f
schedule fragment s

Requests
Tempo ralconstr aints
Stati on constr aints

Heuristics and
domain constraint s

Figure 1: Operational diagram of ICARUS
for normal scheduling of the SCN

Because we are using CBR, ICARUS has
available to it at any time a set of draft schedules.
While not integrated, complete, or deconflicted,
these draft schedules provide early warnings of
conflicts thereby allowing more time for their
resolution. Additionally, adaptation and conflict
resolution are step-wise processes, also called
anytime algorithms; the more computational time
is allotted to them the more correct the final
schedule. If, though, the processes are
interrupted before completion, ICARUS has
always available a draft schedule.

Next, using the domain heuristics and
constraints, ICARUS integrates all schedules and
resolves as many conflicts as possible. Since
multiple schedules are possible, some better than
others, ICARUS generates multiple integrated
schedules. Each schedule is evaluated based on
multiple criteria, including the conflicts and hard
constraints that could not be resolved, the
heuristics that the schedule satisfies (e.g., are
schedule event times easily divisible by five? is
the schedule preserving large blocks of time for

real-time adjustments? etc.), and any user-
supplied optimization parameters. These criteria
are weighted and the weight is automatically
adjusted to conform to the current circumstances
(e.g., a satellite that has been denied too many
request has increased priority) and are also
manually adjusted by the operator.

Figure 2 shows the operation of ICARUS in
rescheduling mode. ICARUS receives the
changed requirements and/or station and satellite
constraints and uses its case base to change the
current schedule and create a new one.
Rescheduling is rapid, since it usually involves
the retrieval of a new schedule fragment and the
re-calculation of the utilities of the schedule.

Heurist ics
and domain
constraints

Case Base
of schedule
fragments

Request revision

Current schedule

Potential new schedules
ranked by ut ilit y and
dynamic cr i teria

Rescheduler

Figure 2: Operational diagram of ICARUS
for rescheduling of the SCN

It is imperative that the operator can
interface with ICARUS and can have direct input
to the scheduling process. ICARUS employs a
graphical user interface whose initial goal is to
display graphically the whole SCN, the site
configurations and constraints (such as, for
example, scheduled down times), the resource
scheduling requests, and the complete schedule,

with any unresolved conflicts clearly marked.
The user is also able to view the criteria,
constraints and heuristics used in scheduling,
how they affected the final schedule, the other
possible schedules or schedule fragments with an
evaluation based on these constraints, and any
what if scenaria the users decide to implement.
The operator can also edit the schedule, and
deconflict any remaining scheduling conflicts.

The ICARUS Methodology

Our methodology to case-based
scheduling (CBS) integrates whole schedule
cases, fragments of schedules (sub-schedules),
and skeletal schedule prototypes into a unified
framework. Case-based scheduling is similar to
case-based planning, in that events and resources
need to be organized in a temporal fashion to
satisfy constraints, goals, and requirements. In
the following we will use “schedule” and “plan”
interchangeably.

A case is viewed as a collection of
components - including schedules, components
of physical systems, or specification elements -
the ICARUS system takes advantage of this
structure when adapting and re-using cases.
Viewing a case as a collection of components
allows adaptation through replacement of
components by defining new sub-problems based
on the overall problem goal and the internal
problem solving state. Interconnections between
components allow the re-use of schedule sub-
structures rather than entire schedule.

Case Representation

Cases in a traditional case-base planner
contain data of fine graininess, that is, low-level
attributes and knowledge. However, in realistic
domains a schedule can be extremely complex,
and the ability to represent schedule case
information on different levels provides a wealth
of information including problem modularization
and hierarchical organization. Our methodology

generalizes the idea of case representation by: (1)
including other types of memories in addition to
completely instantiated schedule cases; and (2)
taking advantage of the internal structure of
schedule cases. In our work a complex schedule
is represented by cases, sub-cases, and skeletal
plan prototypes.

Each case is represented as a collection of
schedule sub-components, organized in a specific
sequence and governed by constraints. Knowing
the structure of a schedule and the constraints
organizing sub-schedules allows us to replace
and re-use specific schedule actions or action
sequences.

Human planners often use prescriptive
information to plan and schedule actions: they
know the structure of the finished plan without
knowing the details of the individual actions that
constitute it. This prescriptive information is
similar to design prototypes (Gero 1990) and to
skeletal plans (Iwasaki 1982). With the
schedule's structure known, the missing actions
can be determined and retrieved from the case
base. ICARUS uses such structures as generic,
high-level skeletal schedule prototypes. Each
prototype instantiation is treated as a case-based
reasoning problem, and the case-based reasoner
retrieves and adapts sub-schedules (or collections
of sub-schedules) for each prototype.

Cases and skeletal schedules in ICARUS
consist of a task environment associated with the
schedule memory, a set of features that describe
the schedule memory, and a case or skeletal
schedule. The task environment represents the
global context of the schedule memory. This
structure situates the memory in an execution
environment, constraining possible solutions.
Features describe various aspects of the schedule
memory that may be useful in determining when
the schedule structure might be re-used. The
case or skeletal schedule is either a single action,
or a partially ordered list of other memories.

One key element in ICARUS is the
unified representation of skeletal schedules and
cases. The concepts of features and task environ-
ment are universal for skeletal schedule
prototypes and cases; the details of the schedule
are simply missing in a skeletal schedule struc-
ture. Features still describe the skeletal schedule
prototype in the same way that cases are
described, allowing the skeletal schedule to be
retrieved when appropriate. In addition, features
support the proper instantiation of a skeletal
schedule in a similar manner to the way that
features can support the adaptation of a case.
Thus, one memory structure is used to represent
both an abstract skeletal schedule and a specific,
episodic memory.

The environment structure associated
with each schedule memory structure situates the
schedule and provides a scheduling environment,
giving the memory a global context.
Environment includes such information as the
physical environment associated with the system,
objects and resources available for manipulation,
temporal constraints, and additional necessary
information not a part of the schedule itself.
Generally, the goal of the scheduling process is
expressed with respect to the scheduling
environment.

Each schedule is a partially ordered set of
independent memory structures, complete with
features describing each. Both the partial order-
ing of the memory structures and the
requirements features indicate how the memory
structures together represent a more complex
schedule. Each partial schedule is a free standing
memory structure and can be accessed as such.
Skeletal schedule prototypes and cases differ in
their contents: cases are completely instantiated,
while skeletal schedules cannot be executed prior
to filling in missing details.
Integrating Case-Based Scheduling with Utility
Theory
In realistic scheduling activities the problem
solver is faced with two major issues: how to

deal with problem features that are unknown, and
how to schedule in the presence of these un-
knowns. We have developed an innovative
methodological approach to case-based
reasoning that allows it to use utility theoretic
approaches to deal with these two problems.

The retrieval of old cases in CBR is
viewed as a decision problem, where each
schedule from the case base provides an
alternative solution and a prediction for the
possible outcomes for the current problem.
When uncertainty is encountered during case-
based problem solving, decision theory is applied
to evaluate each potential case in terms of the
attributes that are significant for the current
problem, so that the most desirable old case can
be selected. Such integration provides a perfect
complement between CBR and decision analysis.

Utility theory emphasizes making a
choice among a set of alternatives. The criterion
for optimal choice is the maximum expected util-
ity of the projected outcomes, which would allow
the decision maker to select among them. There
are two fundamental ways to approach utility
theory: a normative model or a descriptive
model. The descriptive model of utility theory
conjectures how things are or how they are be-
having (French 1988). The normative model of
utility theory describes how decisions should be
made: given the probability of the events, that is
the quantified probability distribution of
uncertain states of nature, and the utility of the
outcomes, that is the preference we have towards
each alternative. Usually, the probability and
utility values are treated as subjective judgments,
expressing the knowledge, experience, and
intuition of the expert (Raiffa 1968).

Although utility theory is an appealing
problem solving framework, it often is not
computationally manageable when the problem
becomes complicated. In addition to its natural
deficiency in alternative generation and outcome
prediction, another difficulty results from its

inability to identify the decision variables when a
large number of state variables are involved and
to constrain the number of plans to evaluate. In
our work we discovered, proved and
demonstrated that CBR can solve many of the
deficiencies of decision theory and many
techniques in CBR can be used to enhance the
performance of decision analysis. Both CBR and
utility theory can benefit from each other by
working together.

A critical phase during case-based
scheduling is retrieval. If the case retrieved is
very similar to the problem being solved, then
adaptation and testing will be easy. If, on the
other hand, the case retrieved is “far” from the
current problem, it will require a lot of
adaptation. To deal with uncertainties in CBR
we treat the selection of the best case as a deci-
sion making problem. The task then became
how to analyze and incorporate uncertainties,
utilities, and preferences so that the factors
influencing a decision be part of the case
retrieval process. The issues resolved are: how
to determine the decision variables, how to
predict the possible outcomes, and how to
establish subjective probabilities and utilities.

After the decision tree has been com-
pleted with all values, traditional utility theory
(French 1988; Scholz 1983; Raiffa 1968) is used
to rank the schedules based on the subjective
probability and utility values. The methodology
described offers a way to handle scheduling
problems in domains of incomplete or
continuous information. CBR can provide the
most similar schedules, and utility theory can
select the “best” schedule based on various
criteria (such as, minimum scheduling conflicts,
minimum resource utilization, optimality, and so
on).

Conclusions

We are developing an intelligent system to
support the schedule generation and

deconfliction of satellite support schedules for
the Air Force's SCN. The system, named
ICARUS, is based on an innovative integration
of CBR and decision theory, and a novel
definition of Case-Based Scheduling, which
integrates cases, sub-cases, and skeletal schedule
prototypes. ICARUS is currently under
development.

Acknowledgements

This work was supported by an SBIR Phase II
Award number F29601-98-C-0042

References

French, S. 1988. Decision Theory: an
Introduction to the Mathematics of Rationality.
Ellis Horwood Limited.

Gero, J. S. 1990. Design Prototypes: A
Knowledge Representation Schema for Design.
AI Magazine 11(4): 27-36.

Iwasaki, Y.; and Friedland, P. 1982. SPEX: A
Second Generation Experiment Design System.
In Proceedings of the National Conference on
Artificial Intelligence, 341-344. Cambridge,
MA.: The MIT Press.

Loral Federal Services Corp. 1995a. Automated
Scheduling Tools for Range Operations
(ASTRO), Contract F04701-91-C-108, CDRL
A058.

Loral Federal Services Corp. 1995b. CCSU
Resources Scheduling Study Report Contract
F04701-91-C-108, CDRL A115.

Raiffa, H. 1968. Decision Analysis: Introductory
Lectures on Choices Under Uncertainty.
Addison-Wesley.

Scholz, R. W. ed. 1983. Decision Making Under
Uncertainty. North Holland.

