
An Overview of Agent Technology for Satellite Autonomy

 Paul Zetocha Lance Self
 Air Force Research Laboratory Air Force Research Laboratory
 Space Vehicles Directorate Space Vehicles Directorate
 Kirtland AFB NM, 87117 Kirtland AFB NM, 87117
 Paul.Zetocha@vs.afrl.af.mil Lance.Self@vs.afrl.af.mil

Abstract

To operate the majority of today’s satellites is costly and
manpower intensive. In order to reduce cost, enhance
survivability, and increase responsiveness, technologies are
needed which will make satellites more autonomous.
Many artificial intelligence (AI) based prototypes have
been developed with the above objectives in mind, however
these prototypes are typically geared towards solving a
particular problem with a particular technique such as
identifying faults in the attitude control system using a
model-based reasoning system. Generally these AI systems
only look at a subset of the total information available and
do not take a system approach to reasoning. To optimize
the ability of an AI system to make correct decisions many
factors need to be considered including the status of all
subsystems, current and future mission objectives, and the
status of components external to the satellite including
ground facilities and other satellites. Intelligent agent
technology provides a mechanism to integrate these various
components and to reason at a higher level. The purpose of
this paper is to give an overview of intelligent agents as
they apply to space systems. The paper begins with a short
introduction of what intelligent agents are and how they
operate. Following this we will highlight particular areas
where the use of intelligent agents may be advantageous.
Next we highlight some of the intelligent agent efforts
which are ongoing in the Space Vehicles (VS) Directorate
of the Air Force Research Laboratory (AFRL). Following
this we will present an overview of some of the ongoing
efforts in the space community external to AFRL. We will
then present an overview of some of the agent-based
architectures which are publicly available and discuss their
applicability to the space domain. Lastly we will
summarize and discuss future directions in this area.

Introduction

Agent-based systems are goal oriented systems in which
individual agents are given specific goals to achieve and in
which the path to goal satisfaction is dependent on the
surrounding environment. Agents have the ability to
collaborate with one another to solve larger problems.
This approach to satellite command and control provides
the ability to integrate many of the more traditional AI
approaches. Problems which may involve knowledge and
cooperation between many components can be solved by

__
Copyright 1999, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

applying the most appropriate problem solving technique
to sub-components and integrating the individual solutions
to form a complete solution.

 One of the keys to the success of any reasonably sized
agent-based system is the ability of the various agents to
communicate with one another. Agents perform their
tasks in cooperation with other agents, and an overall
assessment of a situation is based on the status of multiple
agents. Agents, whether they reside on the same platform
or across multiple platforms, must be able to share
knowledge amongst themselves. One such method
developed to facilitate this collaboration is the Knowledge
Query Manipulation Language (KQML). KQML,
originally developed at DARPA, is a set of protocols and a
language used by agents to exchange information [1]. One
of the strengths of KQML is that it is language and
operating system independent. KQML resides as an
application on top of other communication protocols such
as TCP/IP, while information to be shared is placed within
KQML wrappers. KQML equipped agents communicate
by maintaining a virtual knowledge base of information
that might be relevant to other agents. Through these
virtual knowledge bases, other agents make goals, beliefs,
desires, requirements, and current status available for use.
KQML messages are defined as performatives, which
denote allowable operations that agents can perform on
one another’s virtual knowledge base.

 A second key characteristic for agent success is
autonomy. Autonomy is a characteristic that allows agents
to have some measure of control over what they can do.
Autonomy implies independence, for instance, an agent
detects an event and acts accordingly without human
intervention. This means that agents act against some pre-
determined set of rules contained in a rule base, or some
higher cognitive reasoning approach. Autonomy also
implies knowledge of the environment in order to
implement control. The agent knows where it is located
and knows what actions it is allowed to perform given
these surroundings. The agent must also know its own
state and should be able to make required decisions, given
this state, to carry out assigned duties. If unable to, it
should have the ability to report the state back to the user
and/or move to some other state from which it will be able
to carry out its assigned duties.

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Agent Technology Applied to Space Systems

The use of agent technology has a wide range of
applicability to space systems. It is most applicable for
problems in which reasoning is a function of information
from several disparate sources or for complex distributed
systems in which cooperation amongst the various
components is needed for problem solving. To this end the
following areas are ideally suited for intelligent agent
technology; fault detection, isolation, and resolution
(FDIR); mission operations; intelligent planning and
scheduling; data fusion and situation assessment for optical
payload processing; executive satellite control; and
distributed satellite systems.

 In general, for solving all but trivial problems, when a
human operator performs satellite anomaly diagnosis
he/she takes the entire operations environment into
consideration. Telemetry mnemonics for all subsystems
need to be examined as there is generally a degree of
dependence between mnemonics from different
subsystems. In addition, current and future mission
objectives as well as the states of applicable ground-based
components need to be taken into consideration. Since
reasoning is based on information from several sources,
agent technology provides a natural mechanism to
integrate the various information sources. The same
justification applies to the use of agent technology for
mission operations in general.

 The concept behind an intelligent agent is synonymous
with that of an autonomous planning system in that both
are goal driven. With an autonomous planner, mission
objectives or “goals” are given to the system and the
planner has the responsibility of determining the sequence
of steps necessary to achieve the desired objective(s). This
would in general involve cooperation with other agents.
An agent-based autonomous planner could be used in two
capacities on-board a spacecraft. The first is in response to
unknown satellite anomalies. These are anomalies which
have not previously occurred or which have not been
anticipated and for which an appropriate recovery
procedure is not immediately known. The autonomous
planner would generate the sequence of actions necessary
to recover from the anomaly. The second capacity in
which an agent-based autonomous planning system may be
beneficial is with a surveillance type mission. New
entities to be observed would be input into the system and
the autonomous planner would determine the appropriate
actions necessary to reconfigure the payload or spacecraft
in order to meet the objectives. Related to this is the use of
intelligent agents for data fusion and situation assessment
with regards to optical payload data processing. The
majority of efforts to automate target detection or
observation type missions perform their analysis on an

image by image basis. This often fails to sufficiently
capture the scenario at hand. To obtain a true picture of
what may be occurring it may be necessary to fuse the
analysis of several images together. As an extension of
this it may be beneficial to pass information from one
satellite to another in a constellation in order to optimize
effectiveness. For example for a surveillance mission one
satellite may detect some entity of interest and track that
object until it is no longer in its field of view. At that time
the current state may be passed to a second satellite from
which surveillance of the object of interest can continue.
Agent technology provides a natural mechanism to fuse
data and allow collaboration across multiple satellites.

 Agent technology provides the flexibility to allow either
distributed or centralized control. For use on-board a
satellite one option is to have a top level executive
controller agent which oversees the operation of several
lower level executive agents. For example, lower level
executive agents may monitor and control the processing
of specific subsystems while the higher level agent may be
used to facilitate collaboration between the lower level
agents as well as agents which may be on the ground or on
other satellites.

Agent-Technology efforts at AFRL

Two agent related efforts are underway within AFRL/VS.
These include the Phillips Executive Agent-Based
Controller Helper (PEACH) project and an effort involving
cooperating intelligent agents for distributed satellite
systems which is being accomplished in cooperation with
the TechSat-21 program.

 The objective of the PEACH project is to enhance the
on-board intelligence and decision making of satellites
using intelligent agent and executive controller technology
with a target domain being surveillance. [2] Rather than
processing surveillance payload data on the ground,
processing is done on-board with payload functionality and
configuration being a function of the processing results.
Configuration and functionality is also dependent on
several other factors including the status of other
subsystems, mission objectives, ground interaction, and
location of other satellites. As one example, if a spacecraft
reorientation or extended sensor dwell time over a region
is needed, then the appropriate hardware/software on-
board the spacecraft could be tasked via agent technology.
The initial PEACH prototype will focus on applying the
executive controller / agent concept to a surveillance
payload mission. Existing techniques largely focus on
providing ground-based intelligent processing on a per
image basis. This will be extended to include on-board
image analysis by providing intelligent situation
assessment based on multiple images. The configuration
of sensor related hardware and software will be controlled

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

based on intelligent decision making by the agent-based
executive controller. Where appropriate, the architecture
will have the capability to pass relevant information from
one satellite to another. Subsequent work will involve
integrating information from different sources and
integrating an intelligent planning capability into the
system which will allow for the autonomous generation of
plans in response to changing mission objectives or the
occurrence of anomalous conditions.

 A PEACH prototype agent-based system for intelligent
sensor control and target processing and detection is
currently under development with the initial optical
mission being a surveillance mission using
spectropolarimetry. The initial framework has been
developed in MATLAB with subsequent development to
include moving the environment to a ground-based real-
time flight environment. Incorporated in the framework is
the capability to develop and simulate satellite
components. In addition several artificial intelligence
utilities are also being incorporated into the framework for
use by the agents. Plans are underway to flight test aspects
of the agent-based executive controller.

 A second agent related effort at AFRL is investigating
the use of cooperating intelligent agents for distributed
satellite systems. This effort “involves modeling the
individual satellites as intelligent agents and allowing them
to work together in a cooperative fashion to solve-system
level problems”[3]. As a proof of concept the technique
has been applied towards solving the N-Queens and
minimum queens classical computer science problems.
The ultimate objective is to determine the applicability of
an agent based approach to a large constellation of small
satellites performing space-based radar in a cooperative
fashion. AFRL is investigating this concept, along with a
number of other issues, through the TechSat-21 program.

Agent-Technology efforts external to AFRL

One such effort is being conducted under a Small Business
Innovative Research (SBIR) contract with NASA Goddard
Space Flight Center (GSFC) with the objective being to
“Investigate the feasibility of developing a distributed
environment for onboard planning and scheduling.”[4]
Specifically, GSFC is investigating “lights out” pass plan
generation, onboard instrument management, automatic
“pre-established goal-directed science agenda” execution,
and total spacecraft operations managment by software
agents.

 One of this projects enabling technologies is AI planning
and scheduling. Planning will consist of “finding a
sequence of actions that would lead from the initial
situation to the final one.”[4] Further planning will proceed
by selecting non-primitive tasks and decomposing

hierarchically into sub-tasks by employing constraint
propagation technology. Sub-tasks will be used to detect
and resolve any conflicts which may exist. For example, a
task may be to “send a picture to a ground station.” In this
case, sub-tasks would be: define picture object, define
ground station, transmit picture. Using a decomposition
method to refine a task helps resolve conflicts. Using the
previous example, a conflict may occur when deciding
which pictures are transmitted given a limited amount of
bandwidth and time in which the satellite is within the
ground stations view. Further decomposition of sub-tasks
may occur until such time as a fundamental task is
reached.

 Another enabling technology which GSFC is addressing
is the use of intelligent agents for distributed problem
solving. They define an agent as “an entity which operates
in an environment either autonomously or semi-
autonomously interacting with other agents by means of
communication” and distributed problem solving as an
“approach employs a set of agents who communicate and
cooperate with each other to achieve goals related to
planning and scheduling.” [4] Agents will communicate
with one another via a message passing mechanism similar
to KQML. They have defined sender, receiver, and
identifier fields, however it does not follow the standard
KQML format.

 A prototype is being developed using Java socket based
inter-agent communication. The feeling is that the
distributed process approach increases agent efficiency and
guarantees the plan and schedule quality. Possible
applications might be to integrate GSFC’s planning and
scheduling technology, within other agent architectures
such as NASA/JPL’s Remote Agent or AFRL’s PEACH
program.

 One of the first agents developed for intended use on-
board a spacecraft was the Remote Agent Experiment
(RAX) developed by NASA/AMES as part of
NASA/JPL’s Deep Space One (DS1) program. RAX
basically consists of three components: an executive, an
autonomous planner, and a model-based reasoning system
[5]. The main function of RAX is to accept high level
goals throughout its mission life and then have the
autonomous planner develop a sequence of steps to
achieve the goal. The model-based reasoning component
would be used to solve anomalous conditions.

 NASA/GSFC is interested in the use of intelligent agents
for mission operations and has investigated agent
communication languages [1]. NASA/JSC also has an
interest in the use of agents for mission operations and has
done some preliminary work in that area.

Commercial Agent-Based Architectures

Private companies and government agencies both have
ongoing research projects concerning software agents.
Their efforts are directed towards research issues such as:
agent communication languages, agent collaboration, goal
validation, agent granularity, agent formalization,
individual agent learning, and learning by a community of
agents. In the satellite community these research efforts are
directed at advanced applications aimed at gaining fully
autonomous ground and flight control systems.

 Three tools are reviewed which ease agent development
and are commercially available. Although these tools are
not specifically targeted for satellite or space operations,
they are useful for developing agents.

 The first agent development tool is from The Haley
Enterprise. Their development tool is called ActiveAgentX
and, as the name implies, is an ActiveX control which
supports Microsoft’s Component Object Module (COM).
This development tool “allows business rules to be
encoded directly as production rules.” [6] ActiveAgentX
uses the same technology, Rete Algorithm, which is used in
the Eclipse inference engine.

 The Rete Algorithm is used in production rule systems.
The production rules themselves can be organized for
pattern matching. The Rete algorithm creates a decision
tree that combines the patterns in all the rules. It uses a
directed graph where nodes “represent patterns, and paths
from the root to the leaves.” [7] Each node has information
about the preceding path(s) and facts which lead to this
node. “This information is a relation representing the
possible values of the variables occurring in the patterns in
the path.”[7]

 ActiveAgentX can be used on decision support tools to
deliver business rules directly to intranet users over web
browsers running on Windows NT or 95. The tool can
also be embedded within Java applets which run Microsoft
Internet Explorer, or within Java applications which have
been compiled using Microsoft Visual J++.

 The second agent development tool is from Reticular
Systems Inc.. Their suite of agent building tools is called
AgentBuilder and is comprised of two major building
blocks: the “Toolkit” and “Run-Time System.” The
Toolkit has tools for managing the agent development
process while the Run-Time System provides the
environment for executing the software agent. All
AgentBuilder components are implemented in Java
meaning they can be developed and executed on any Java
virtual machine.

 The Toolkit itself is made up of the following Project
control tools: Ontology manager, Agency manager, Agent
manager, and Agent debugger. The project control tools
are for management of the agent development process.
These tools include the dictionary and the repository.
Agent developers can simultaneously develop agents and
use these tools to manage the interaction between agents,
and share information between agent projects.

 The agency manager is used to construct an agency
which is defined as “two or more agents that communicate
and cooperate with each other to perform some task.”[8]
The agency manager lets the developer identify and define
characteristics of the agents which are being developed. A
run-time window is provided for starting, stopping, and
examining agent states within the agency along with tools
to specify messages and protocols between agents.

 The agent manager has tools to define an agents initial
model and behavior. Initial beliefs, commitments,
intentions, capabilities, and rules of behavior are among
the constructs making up the initial model and behavior.
There are also tools for planning and learning capabilities.
The agent manager creates an “agent definition file” which
is written in Reticular Agent Definition Language (RADL)
and in turn interpreted and executed by the Run-Time
System.

 The Run-Time System is comprised of the agent program
and the run-time engine which combine to produce an
executable agent. The agent can then be deployed as an
entity executing in the environment.

 The final reviewed agent development tool is JATLite.
JATLite (Java Agent Template Lite) is a suite of programs
which provide the basic structure or template to create
software agents which communicate over the Internet.
Using JATLite, the developer builds agents which send
and receive messages using KQML or some other
communication language. The JATLite template gives the
user Java classes which “facilitate agent construction.”[9]
JATLite does not, however, provide a built-in mechanism
for creating agents with intelligence. It does provide a
robust environment for agent communication and
interaction. The JATLite architecture is organized into
five layers as shown below.

 The Abstract layer has the abstract classes required for
JATLite implementation. JATLite assumes all connections
are TCP/IP although other protocols such as UDP can be
implemented.

 The Base layer provides communication based on
TCP/IP and the Abstract layer. The Base layer can be
extended to allow inputs from sockets, output to files, and
to give agents multiple message ports.

 The KQML layer is used for storage and parsing of
KQML messages. This layer is implemented with the
KQML protocol for registering, connecting, and
disconnecting.

 The Router layer is used for agent name registration,
message routing, and message queuing. All messages sent
by agents are routed through this layer. The Router also
stores messages.

 The Protocol layer supports internet services such as
SMTP, FTP, etc. for Java applications and applets.

 Any or all of the above reviewed agent development
COTS products could be used by private and government
entities to develop and implement intelligent software
agents. What arena these agents operate in are independent
of the environment in which they were developed. Each
tool has a different approach to agent development.
Although the ActiveAgentX tool is primarily aimed at
business, their approach could have impact on other areas.
The second product is a full suite of agent development
tools which could reach scientific as well as business
communities. The final product supplies a basic
environment in which the specific environment to develop
agents is left up to the developer. All development
environments could be used to develop robust, mobile
agents applicable to the satellite or space fields.

Conclusions

The use of intelligent agents provides a mechanism to
significantly enhance spacecraft autonomy and is
applicable to a wide range of tasks including FDIR,
autonomous planning, executive control, data fusion, and
payload automation. Intelligent agents have applicability
to both the satellite bus and payload. AFRL is exploring
many of these aspects through in-house and contractual
efforts. The current focus within AFRL/VS is the use of
intelligent agents for surveillance payload automation.
Included in this is the interaction with other subsystems in
which the payload is dependent. A number of issues still
exist with regards to intelligent agents with agent
collaboration still being one of the key research issues.

Several agent-based architecture prototypes have been
developed which are generally geared towards a specific
type of application and use a specific collaboration
mechanism. Future research will likely help to standardize
agent communication and assist in developing
architectures which are more robust.

References

1. Dan R. Ballard, “Intelligent Agents and Agent
Communication Languages for Mission Operations”,
Retcular Systems, Final Report for NASA contract
NAS5-33264, June 1996.

2. Zetocha, Paul; Ortiz James, "PEACH - An Agent for
Increased Space Operations Automation",
Proceedings of the SpaceOps 98 conference, Tokyo
Japan, 1998.

3. Skinner, James; Tollefson Mark; Rosenstock, Jeremy;
“Cooperating Intelligent Agents for Distributed
Satellite Systems”, Proceedings of the AIAA Civil and
Defense Systems Conference, Hunstville AL, Oct
1998.

4. Das, Subrata et al., “A Distributed Environment for
Onboard Planning and Scheduling”, Phase I SBIR
Final Briefing by Charles River Analytics, Sep 1998.

5. Bernard, D.E.,; Dorais, G. A.; Fry, C.; Jr., E. B. G.;
Kanefsky, B.; Kurien, J.; Miller, W.; Muscetolla, N.;
Nayak, P. P.; Pell, B.; Rajan, K.; Rouquette, N.;
Smith, B.; and Williams, B. C., Design of the Remote
Agent Experiment for Satellite Autonomy,
Proceedings of the IEEE Aerospace Conference,
Snowmass CO, 1998.

6. “ActiveAgentX: Business Rules with ActiveAgentX for
Microsoft Component Object Model”, The Haley
Enterprise Web site – http://www.haley.com

7. “The Rete Algorithm”, UGAI Lectures –
http://yoda.cis.temple.edu:8080/UGAIWWW/lectures/
rete.html

8. ”AgentBuilder: An Integrated Toolkit for Constructing
Intelligent Software Agents”, Reticular Systems, Inc.
Home Page,
http://www.agentbuilder.com/Documentation/WhitePa
per, p. 43, Jan 1998

9. “JATLite Overview”, JATLite Home Page,
http://java.stanford.edu/java.agent

