
1

Autonomy in Spacecraft Software Architecture

Henry Hexmoor

University of North Dakota
Department of Computer Science

Grand Forks, ND 58202

Abstract

In this paper we discuss the concept of
autonomy and its impact on building
complex systems for space applications
that require autonomy. We have
developed a few metrics for quantification
of autonomy in systems.

1. Introduction

As more complex systems are being
developed, there is greater need for
quantifying their level of autonomy
(Brown, Santos, Banks, & Oxley, 1998;
Gat, Pollack, & Cohen, 1998; Hanks,
Pollack, & Cohen, 1993; Hexmoor,
Kortenkamp, & Horswill, 1997). This is
more evident in systems that control
spacecraft.

Let's consider a device as a complex
machine that appears capable of tasks
commonly performed by intelligent
organisms. An automobile equipped with
cruise control, road-sensitive traction, and
self-inflating tires is such a device. Such
devices receive input from the
environment and follow an algorithm
provided by the device designer to produce
an output. In general, devices cannot tell
how well they perform. Furthermore,
devices may only manipulate a fixed
ontology of their surroundings -- they
represent things in the world in a fixed
way. Many robotic applications would
qualify them as devices. To the extent a
system can be aware of its performance
and can improve its pre-programmed
ability to interact with its surroundings, or
can alter its ontology, it is autonomous.
Autonomy is self-governance over its
output. A system such as smart chess-
playing programs can be intelligent
without being autonomous. This notion of
autonomy is desirable in systems such as

autonomous space applications needed in
long-duration space missions.

Elsewhere (Hexmoor, Lafary, & Trosen,
1999), we have argued that autonomy
levels closely correspond to an agent's
rank. We defined five ranks: fully
autonomous, boss, cooperative, underling,
instructible, and remote control. We
argued that an autonomous agent's
decision-making changes when it
introspects about its rank with respect to
other agents. In spacecraft software where
a human user is in ultimate control of the
agent, the agent is not required to
introspect about its level of autonomy.
The human user changes the agent's
autonomy level and gives it new
instructions.

Therefore, these systems also need to be
interruptible. Although, these systems
don't need to introspect about changing
their autonomy when interaction with
human users, they need to be aware of
their resource usage. Finally, autonomous
agents need to learn and self-detect faults.

2. Resource management

Resources are either shared or used up.
Shared resources are called reusable and we
will first focus on this type of resource.
We are concerned with design of behaviors
that account for using a shared resource.
Specifically, we will examine design of two
behaviors that share a single resource.
LetÕs consider a behavior F for navigating
in the direction the robot is facing while
following a moving target. A second
behavior C uses the vision system to look
for objects that are closer and smaller for
obstacle avoidance. LetÕs assume that the
vision system can only process the target
at a minimum distance of 5 feet, and a
minimum height of 4 feet. The vision

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

2

system cannot see objects that are shorter
than 3 feet and closer than at 3 feet away
from the robot. When the vision system
is maintaining the target in view, the robot
cannot attend to nearby objects. Behaviors
F and C must share the vision system by
time sharing it. Let the minimum
frequency for maintaining the target in
view be denoted by ft and the minimum
frequency for avoiding nearby objects by
fo. Assume the vision system has a
frequency capacity of C. Assume the
switching cost between two visual tasks is
negligible. If C is less than ft+fo we need a
more powerful vision system. Otherwise,
we can measure the ability of the system
for sharing the vision system. The best
scenario is that fo and ft are met. If the
actual frequencies are marked as foÕ and
ftÕ, we can measure the shortcoming as
|fo-foÕ| + |ft-ftÕ|. We suggest (|fo-foÕ| + |ft-
ftÕ|)/C as a metric for measuring adequacy
of sharing the vision resource. LetÕs call
the general form of this metric as a
resource-sharing metric.

This metric can be generalized to account
for multiple behaviors requiring the use of
a single resource. This metric can be useful
for autonomy software by monitoring the
level of resource management.
Information can be maintained about the
pattern of resource usage by behaviors to
allow more equitable usage. For critical
behaviors, a priority system among
behaviors can be used to decide resource
usage. We can easily extend the metric to
be weighted with priorities.

Next, we will illustrate that deliberately
accounting for consumable resources pays
off. Consider a grid of 3 by 3 marked 1-9
in row major format. Assume 9 different
objects that appear randomly. Each object
will be placed in a single grid location
designated for that object. Consider a
robot arm that can place objects in their
respective locations. We assume the cost
of sensing is negligible. The arm can carry
1-3 objects at a time. Let's assume the cost
of carrying one object is one unit and the
cost of carrying 2 objects is 1+U and the
cost of carrying 3 objects is 1+2U.
Assume U < 1. The arm will carry multiple

objects only if they are in neighboring grid
locations. The arm can wait until 3 objects
show up before taking action. This manner
of using the arm is treating the arm as a
resource that can be used more efficiently.
It cannot wait until all objects show up and
then pick neighbor objects. In the most
reactive scenario, an object shows up and
the arm places it in its location. Lets
consider 9 units of work associated with
the reactive approach. If with luck,
neighbors of 2 always show up, the work is
5+4U. If with luck, neighbors of 3 always
show up, the work is 3+ 6U. If U = _, then
the work is 7 and 6 units respectively.
This is a considerable saving over a purely
reactive scenario. The savings are 22%
and 33%. LetÕs assume we can measure the
cost of plans with respect to resource
usage. The cost of the plan with the most
frugal resource usage is F. The cost of the
plan with the most liberal resource usage is
L. We define a resource-usage metric as
(L-F)/F. Using this metric, we can
determine if a consumable resource is being
used optimally.

3. Fault-detection

Should the organism be cognizant of its
own ineffectiveness or abnormalities in its
environment? If things are very wrong,
very little might be possible. The system
might be able to execute a nesting
maneuver until the situation improves or
it can think of a solution. The latter would
be a cognitive act and would require
reasoning, and perhaps model-based
reasoning is needed as in NMRA (Pell,
Dorais, Plaunt, & Washington, 1998).

In simple situations where a parameter is
being controlled, the rate of divergence in
feedback loops can be used for fault-
detection. The ratio of the time difference
between existence of a fault and the time
it is detected over time span of operation
can be considered as a fault-detection
metric.

4. Interruptibility

An autonomous system might share its
behavior-generation with another agent. It

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

3

is human nature to think that we need the
ability to intervene in critical tasks. In the
labs we take pleasure in designing creatures
that are autonomous, but in arenas where
it is very critical, the ability to access and
selectively change system behavior is
highly desirable. As in one of Azimov's
laws of robotics, when it comes to
interaction between a human user and
agents, the human plays the role of Boss
or "God" and the agent obeys. Instead of
adjusting its level of autonomy it needs to
be interruptible.

Interruptibility requires architectural
features for sharing decision making about
controlled, automatic, and reflexive
actions. In its most general form, it might
be desirable to modify knowledge,
memory, or operation of decision making
processes. However, we limit our interest
in interruptibility firstly to an automatic
systemÕs ability for suppression and
superseding what the system decides at
certain levels of granularity. Suppression is
cessation of an ongoing behavior.
Superseding is replacement of the
execution of one behavior over another.
This type of interruption is asynchronous
and is performed in a supervisory manner.
The system has no expectations. Such a
system will be obedient of its masters and
we will call it auto-obide or autobide for
short. An autobide can be measured as to
how fast it responds to an authorized
interruption. LetÕs assume an active
behavior to be interrupted is a feedback
loop generating impulse inputs with
frequency of f; i.e., every f units of time,
the feedback loop issues an impulse input.
We can measure suppression rate in how
many f units it takes before the feedback
loop stops. We keep in mind that some
feedback loops cannot end immediately
and must end gradually. Superseding can be
measured in terms of f units as well.
Bringing up a new behavior might have to
be gradual and it will affect the behavior
replacement time. Let's denote the cost of
the systemÕs lethargy to respond to
interrupts as L and the overhead cost of
quickly responding to the overhead as O. L
can be decomposed to cost per f. Quick
response can be implemented by building a

mechanism that is either specialized to
expected input or that short cuts to
extraneous considerations. At any rate, we
think of this overhead as an architectural
feature with nearly constant cost. With N
as the nominal cost of system operation,
(L-O)/N is the interruption metric.

interrupt response delay

cost of loss due to delay

overhead cost of reducting
delay

Figure 1

The general principle for this metric is
shown in Figure 1. Reducing delay often
incurs constant cost, and cost due to delays
is linearly proportional to interrupt
response delay.

For an example of the interruption metric,
consider a conveyor belt delivering widgets
at a constant speed and a robot arm pushes
the widgets off the conveyor belt onto a
bucket. The bucket location is mostly
constant until it is full and a person
replaces the bucket. The new location of
the bucket may be different than the
previous location. We expect the robot be
able to react to new bucket location
quickly. We can think of bucket
replacement as an interruption. If the
robot is not quick, widgets will be pushed
onto the floor incurring a cleanup cost.
However, the robotÕs more frequent
monitoring of bucket location also adds to
the cost. The interruption metric can be
used to decide the utility of the more
interruptible mode.

5. Learning

In this section, we consider learning as a
cognitive function for modifying
knowledge and performance. An
important element of learning is being able

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

4

to ascertain the current state of knowledge
or performance. Metrics we have been
discussing are useful in this determination.
For a system that learns, there are
additional metrics to judge the process of
learning. The learning curve is a plot of
system performance or knowledge
attainment over time, and it is used to
judge the merit of the learning algorithm.

5.1. Knowledge migration

Let's envision the ability to transfer
knowledge from one layer of software to
another. The layers might be high level
control and low level control. Let the cost
of a system operating with knowledge
prior to the transfer be C1, and after the
transfer to be C2, and the cost of the
transfer to be O. (O+C2 -C1)/C1 would be
a metric for transfer. For example, in a
grid of 5 by 5, we can assume the system
will plan steps for travel between the start
and the goal positions in terms of grid step
movements. Let p1 be the cost of coming
up with a plan to travel between the start
and the goal. Let P2 be the cost of using a
reactive set of rules. P2 is the cost of
matching and retrieving rules, and
planning is not required, but the cost of
caching the plan into rules is O, then
(P1+O-P2)/P1 is the metric.

6. Conclusion

We presented a few metrics for
quantification of autonomy in complex
systems. These metrics can be used in
measuring a degree of autonomy in
complex systems such as systems for the
spacecraft. Such metrics will aid in
designing software that is robust and can be
used in autonomous control of spacecraft.

References

Brown, S., Santos, E., Banks, S., &
Oxley, M. (1998). Using explicit
requirements for interface agent user
model correction. International

Conference on Autonomous Agents
(Agents Õ98). Minneapolis, MN.

Gat, E. (1998). Three-layer
architectures. In Kortankamp, D.,
Bonasso, P., & Murphy, R. (Eds.).
Artificial intelligence and mobile robots.
Boston: MIT Press.

Hanks, S., Pollack, M., & Cohen,
P. (1993). Benchmarks, testbeds,
controlled experimentation, and the design
of agent architectures. AI Magazine 14(4):
17-42, MIT press.

Hexmoor, H., Kortenkamp, D., &
Horswill, I. (Eds.). (1997). Software
architectures for hardware agents. (Special
issue). Journal of Experimental and
Theoretical AI, 9, Taylor and Francis.

Hexmoor, H., Lafary, M., &
Trosen, M. (1999). Adjusting autonomy
by introspection. AAAI Spring
Symposium, Stanford, CA.

Pell, B., Dorais, G.A., Plaunt, C.,
& Washington, R. (1998). The remote
agent executive: Capabilities to support
integrated robotic agents. Working notes
of the AAAI Spring Symposium on
Integrated Robotic Architectures.
Stanford, CA.

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

