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Abstract

Developing elementary behavior is the starting point
for the realization of complex systems. In this paper
we win describe a learning algorithm that realizes a
simple goal-reaching behavior for an autonomous ve-
hicle when a-priori knowledge of the environment is
not provided. The state of the system is based on in-
formation received by a visual sensor. A Q-learnlng
algorithm associates the optimal action to each state,
developing the optimal state-action rules (optimal pol-
icy). A few training trials are sufficient, in simulation,
to learn she optimal policy since during the test trials
the set of actions is initially limited. The state and
action sets are then enlarged, introducing fuzzy vari-
ables with their membership functions to the extent of
tackling errors in state estimation due to the noise in
the vision measurements. Experimental resuILs, both
in simulated and real environment, are shown.

Introduction

Studies regarding intelligent robots have received a
great attention in the scientific community in the last
years both for the biological aspects involved, and for
the robots’ physical structure required. The definition
of intelligence can assume different meanings in the
robotic field. The one that seems more promising has
been used by Arkin in (Arkin 1998): "An intelligent
robot is a machine able to extract information from
its environment and use knowledge about its world to
move safely in a meaningful and purposive manner".
Behavior-based systems (Brooks 1991) have shown that
some kind of intelligence is able to emerge by reacting
to what it can be perceived in the environment. These
systems use behaviors as a way of decomposing the con-
trol policy needed to accomplish a task and are very
useful in making robots adapt itself to the dynamics
of the real world environment. However, ttte beiLa,-
iors in these systems are usually organized in a fixed
and pre-defined manner, giving less flexibility for man-
aging a high number of goals and situations. For this
reason, the need of robots that learn robust behaviors
in a real environment has increased. A number of ar-
chitecture has been devised in literature to take care
of different behaviors: hierarchies of behaviors, con-
current parallel behaviors, or layered structured hierar-
chies. Central control modules for behavior selection or

Copyright © 1999, American Association for Artificial Intelligence
(www.anai.org). All rights reserved.

hard-wired arbitration networks have been used accord-
ing to the complexity of the task involved. Whatever
strategy is chosen the primary advantage of the task
decomposition is that each behavior has to solve the
perception, modeling, and planning problems relevant
to the particular task for which it is designed. A sec-
ond advantage for this kind of architecture is that they
can be developed incrementally adding new behaviors
as new capabilities are needed. Thus developing ele-
mentary behaviors is the starting point for the realiza-
tions of complex systems (Mahadevan & Connell 1992;
Caironi & Dorigo 1997). One of the problems with
behavior-based robots is that the component modules
have to be laboriously programmed by a human de-
signer. If new behaviors could be learned, the designer
would be free from understanding the interactions be-
tween a particular robot and the environment.

This work regards the learning of an elementary be-
havior that can be included in a controller architec-
ture that realizes a complex task. The robot has no
task knowledge to begin with, but it has to learn from
the interactions of the environment. Reinforcement
learning techniques seem suitable for addressing this
problem: the agent chooses an action based on its
current and past sensor values and it maximizes over
time a reward function measuring the agent’s perfor-
mance. The use of visual information has been limited
in literature because of the difficulties and the cost of
processing visual data (Srinivasan & Venkatesh 1997;
Nayar & Poggio 1996). Actually sonar sensor, odome-
try and proximity sensors have been used to solve ele-
mentary behavior that however are limited only to lo-
cal tasks. Visual sensors, instea~i, can be more use-
ful since they are able to detect distant goals and
permit the acquisition of suitable behaviors for more
global and goal-directed tasks (Asa~ia et al. 1996;
Mahadevan, Theochaous, & Ki.aleeli 1998).

A goal-reaching behavior has been realized using
qualitative information of the vehicle position provided
by a vision system. The image captured by the camera
placed on the vehicle, gives information of the system
state according to the vehicle position with respect to
the goal: (Near, Medium, Far) and (Front, Left-side,
Right-Side). These states are defined as regions in the
environment. During the learning phase the proper ac-
tion to reach the goal is associated to each state. We
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use a Q-learning algorithm, a form of model-free rein-
forcement learning based on a stochastic dynamic pro-
gramming, to find the optimal state-action mapping.
The learning phase has been executed in simulation,
afterwards a testing phase has been carried out in both
simulation and real experiments. In the testing phase
the knowledge learned is checked by forcing the vehicle
to choose always the optimal actions in each state while
it performs some paths from different starting positions
to the goal. The paths obtained have abrupt changes of
directions because of the limited action space and the
state classification used. Besides in the real environ-
ment the noise in image data does not allow accurate
estimates of the actual states of the vehicle. These con-
siderations brought us to the introduction of transition
areas between the regions of the environment and to a
new definition of the state of the robot. Fuzzy variables
with the relative membership functions have been intro-
duced to compute both the states and the correspond-
ing actions that have to be performed by the robot.
This determines a gradual change of the robot’s state
through adjacent regions and an increase of the number
of actions. As a consequence during the navigation the
robot performs smooth paths.

The paper is organized as follows. The following sec-
tion defines the elementary behavior giving a full de-
scription of the state and action sets used in the learn-
ing algorithm. Successively the experiments, realized
with both the simulated and the real robot, are shown.
Rcsuhs obtained with and without the fuzzy regions
extension are also compared. Finally some conclusions
are drawn.

The Elementary Behavior

In this paper we present a method of vision-based rein-
forcement learning for an elementary goal-reaching be-
havior in a closed and free environment. The robot does
not need any information about the environment. The
image captured from the camera mounted on the robot
is the only source of input for the algorithm.

Once the goal state has been fixed, an analysis of
the input image allows the detection of the current sys-
tem state st relative to the goal state. An action at
is selected by using an action selection function. The
robot performs the action at in the state sl and it en-
ters in the new state st+l. The environment returns a
reward value rt which judges the just executed action.
Using this information the learning algorithm updates
the control policy which maximizes the expected dis-
counted sum of future reinforcements. The algorithm
used to find this optimal policy is the well known Q-
¯ Learning algorithm (Watkins & Dayan 1992).

The State Set

This section defines the state of the system and how it
is obtained. Since the aim of this work is to test the
learning algorithm when only qualitative information is
available, we used a simple quantitative information ob-
tained from a visual system. The trick used is described
as follows: the environment has been split in regions,

as shown in Fig. 1, representing the state of the vehi-
cle. In particular the state st at time t is defined as the
couple (i, j) where i E {LEFT-SIDE,FRONT,RIGHT-
SIDE}, j E {NEAR,MEDIUM,FAR}. The state
(FRONT,NEAR) has been fixed as the goal state. The
visual system localizes the robot in one of the re-
gions of the environment using a simple self-location
method. This method, described in detail in (E.Stella
& A.Distante 1995), estimates the robot position in an
absolute coordinate system (X - Y) using three land-
marks of the environment. In order to speed up the
state detection phase, artificial landmarks {infrared led)
have bccn placed in the environment since their iden-
tification in the image is simple and fast. A landmark
tracking module for keeping the landmarks centered in
the image has also been implemented.

I(;t)AI.
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Figure 1: State Space

The Action Set and Q-learning

This section describes the core of the learning process:
the mapping from states to actions required for solv-
ing the considered task. The action space is discrete
and contains eight actions corresponding to the abso-
lute orientations that the agent can take in each state:
.4 = {0, 45, 90, ..., 315} (degrees). Performing one ac-
tion means that the vehicle rotates until it is oriented
towards the selected direction and translates until the
current state changes.

The purpose of the learning process is to learn for
each state st the best action at. The learning algorithm
used to find this mapping is the Q-learning algorithm
(Watkins & Dayan 1992). This is based on the esti-
mation of the real-valued function Q(st,a+) that gives
the expected discounted sum of future reinforcement for
performing action at in state st. At each time step the
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value of the estimate Q(st, at) is updated as follows:

+- (1 + + b))
(I)

where s,+1 is the next state after taking action a~ in
state st, c~ is the learning rate (0 _~ a < 1), 7 is a dis-
count factor (0 < "7 < 1), r, the reinforcement value.
This value is an evaluation of the current system per-
formance which can be successful or not in relation to
the desired behavior. In our application the system re-
ceives r4 = 1 if it reaches the goal-state, r, = -I if
it bumps into a wall and rt = 0 in all the other state
transitions. This is a sort of delayed rein/orcement used
in those applications where it is difficult to evaluate the
performance of the system at each step. In our case
reinforcements are available only when the performing
system achieves given states, i.e. either when it enters
the goal-state (reward) or when it bumps into a wall
(penalty).

The action selection is carried out in the following
way. Whenever the system encounters a new state a
random selection with uniform distribution is applied
to the set of the eight possible actions. A stochastic
selection, with the Boltzmann distribution, is applied
when the system is in a state already visited. Indeed
the probability of choosing the action at in the state st
depends on the Q-value Q(st, at) as follows:

eqC,,al/T
= a, ls = s,) = E. eqC’,’)/T (2)

where T is the temperature parameter. The Boltzmann
distribution permits a smooth transition from pure ex-
ploration to exploitation as the experiment goes on.
This is done tuning opportunely the temperature pa-
rameter from higher to lower value.

The Experiment
A number of experiments have been performed to test
the visual goal-reaching behavior described in the pre-
vious sections. A simulation phase and a testing phase
have been considered. In the simulation phase the state-
action mapping is completely learned, while in the test-
ing phase the optimality of the acquired behavior is
evaluated in both the simulated and real environment.

The robot
A Nomad200 platform, that integrates a mobile robot
system with several sensory modules, has been used in
our experiments. Only two sensory systems are consid-
ered: the 20 tactile sensors mounted around the body of
the vehicle and the video camera mounted on a pan/tilt
head on the top of the vehicle. The tactile sensors
can detect collisions with the walls in the environment,
while the camera continuously captures images of the
environment. The pan/tilt head can rotate 174 degrees
horizontally and 70 degrees vertically.

The Simulation Phase
The described learning procedure has been initially ex-
perimented using the Nomad2O0 simulator provided by

the Nomadic Inc. The simulated environment has been
delimited according to the real environment making the
successive transfer of the learned policy from the simu-
lated to the real test-bed possible.

At each step the current state s is computed by using
the information received by the robot position, then an
action a is selected and performed bringing the robot
in a new state. The Q(s,a) Q-values are updated ac-
cording to the (I) formula. In order to obtain a dense
matrix of the Q-values a number of trials has been re-
peated to guarantee the visit of all the states. A trial is
the execution of a number of paths from different start-
ing positions fixed in the environment. Each path can
terminate with a success if the goal-state is achieved or
with a failure if a collision occurs. The starting posi-
tions considered are 22 different points at the borders of
the environment. The environment is 140inches wide
and 200inches long. During the simulation, after 20
trials, we have verified that the Q-values reached their
stable values. Fig. 2 shows the optimal actions (i.e.
with the highest Q-value), obtained after this learning
phase: the dotted lines delimits the states of the system
in the environment, in each state the orientation that
has to be taken by the robot is depicted.

Figure 2: ’Optimal actions learned after the learning
phase in simulation.

The Testing Phase

During the testing phase the learning algorithm is
switched off and a number of paths are performed by the
agent in both simulated and real environment. Fig. 3
shows some simulated paths obtained after the comple-
tion of the learning phase.
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of the regions where small errors in the position esti-
mation may result in a wrong evaluation of the actual
state. Therefore we decided to define transition areas
between the regions (see fig.4) adopting a fuzzy model
for the state definition. Fuzzy sets are a powerful tool
for representing sets with fuzzy boundaries. We have
considered two fuzzy variables: X ranging in the set
{LEFT- SIDE, FRONT, RIGHT - SIDE} and Y
ranging in the set {NEAR, MEDIUM, FAR} where
the six labels denote the fuzzy sets shown in Fig. 5.

.~...

/ \
Figure 3: Simulated paths
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Figure 4: State Space with transition areas

In order to examine the optimality of the trajectories
found by the robot, the paths are performed by forcing
the choice of the optimal actions. The abrupt changes
of the actions taken by the robot in Fig. 3 are due to
both the limited action space and the splitting of the
environment into regions. In a real environment the in-
accurate estimation of the actual state, due to the pecu-
liarity of visual information, develops the same type of
discontinuities. This happens above all at the borders
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Figure 5: Respectively membership functions of the
fuzzy variables X (a) and Y (b).

In the figure the ranges of the continuous values for
each fuzzy set are also displayed, they are delimited
by the symbols zk and Yk (k -- 0... 5). These values
have been fixed heuristically according to the error in
the robot position estimation. Each continuous value
can belong to a fuzzy set with a degree of member-
ship ~ in the range [0, l]. The membership functions of
the X and Y fuzzy variables are shown respectively in
Fig. 5(a) and (b). With the introduction of membership
functions a given value z is no more considered as com-
pletely LEFT- SIDE, FRONT or RIGHT - SIDE
but if the value z is in the range [z0, zz] it is considered
as completely LEFT- SIDE (D(z) = l), whereas 
is in the range [zl, z2] it is considered as LEFT-SIDE
with a given ~= value and as FRONT with a 1 - ~z=
value and so on. The interesting property of fuzzy
sets admits the partial overlapping of their membership
functions with a gradual change in the classification of
contiguous values as belonging to adjacent regions. The
state of the system is now defined by the quadruple
(i,j,~i,/~#), where i and j are the same as described
in the section "The State Set" and represent two fuzzy
sets, whereas /~, and /~i are the values of membership
of the z y position values to the i j fuzzy sets. As a
result an action a* is now computed according to the
formula:
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(3)
where a~"ffi and a~+~ffi are the optimal actions shown
in Fig. 2 of the two adjacent regions i and i q- I in
the ordered set {LEFT - SIDE, FRONT, RIGHT -
SIDE), whereas a~~* and a~ are the same but with
j in the set {NEAR, MEDIUM, FAR). As a result
the set of actions becomes continuous. The new defini-
tion of the system state and the new action space allow
the robot to perform smooth paths as we can see in fig-
ures 6 and 7 in both the simulated and real test-beds.

GOAL

/ _.t....

Figure 6: Simulated paths with the fuzzy regions ex-
tension

Conclusions

This work claims that it is possible to learn good ac-
tion strategies, from reinforcement, for vision-based sys-
tems moving in a real and noisy environment. We have
shown that the state-action map learned in simulation
can be used in a real navigation: the vehicle exhibits
a goal reaching behavior even if the current position is
not clearly known. The introduction of fuzzy regions
allow the selection of proper actions according to the
memberships values for each region. This elementary
behavior can be joined to other behaviors (e.g. obsta-
cle avoidance, escaping from collision, and so on) in 
complex navigation context. As this module depends
on a vision system it has the great advantage of being
reliable also for long time navigation; on the contrary,
goal reaching behaviors based on information provided
by odometers become unsuitable, after a while, for the
cumulative errors.

GOAL

Figure 7: Real paths with the fuzzy regions extension
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