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Abstract

A visual system that interacts with the real world must be
able to adapt to unexpected situations and to flexibly dis-
cover relevant visual cues. We present a method that allows
incremental learning of discriminative features. The fea-
ture space includes juxtapositions ofk oriented local pieces
of edge (edgels) and is parameterized byk and the relative
angles and distances between the edgels. Specific features
are learned by sampling candidate features from this space,
increasingk as needed, and retaining discriminative fea-
tures. For recognition of an unknown scene or object, fea-
tures are queried one by one. As a result of each query, zero
or more candidate object classes are ruled out that do not
exhibit this feature to a sufficient degree. We discuss issues
of computational complexity, and present experimental re-
sults on two databases of geometric objects.

Introduction
A highly desirable ingredient of an artificial system that in-
teracts with the real world is its ability to handle unexpected
situations, adapt to them, and learn to act appropriately. Its
visual system should be capable of incrementally learning
to recognize and search for new objects and scenes. While
visual recognition has received enormous attention in com-
puter vision and artificial intelligence, most work has con-
centrated on specialized systems designed to solve prede-
fined tasks. This can be attributed to the tremendous diffi-
culty of the general problem. For example, in typical lead-
ing feature-based object recognition systems, both the ob-
ject database and the feature set are predefined (Mel 1997;
Schiele & Crowley 1996). Most methods require a complete
set of training images to be available at the learning stage
(Turk & Pentland 1991; Murase & Nayar 1995).

Our work is motivated by the idea of an artificial senso-
rimotor system situated in the real world. Like a biological
system, it has some built-in capabilities as well as methods
for learning and exploration. Through interaction with the
world, it perpetually learns and improves visual (and other)
capabilities. Hence, we desire a system that can incremen-
tally learn about new objects and visual features. Categories
should be developed as a result of their empirical signifi-
cance, rather than as an artifact of the discriminatory prop-
erties of the features employed for recognition. The system

Copyright c 1999, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

should be able to find features that discriminate between cat-
egories or individual objects wherever this is important.

These desired properties call for a very large feature space,
expressive enough to discriminate at various levels of de-
tail. It is not generally feasible to make optimal use of
very large feature sets. Instead, we employ the follow-
ing general (suboptimal) strategy (Amit & Geman 1997;
Amit, Geman, & Wilder 1997):

� Impose apartial order on the feature space that catego-
rizes the features into various levels of structural com-
plexity. The underlying assumption is that structurally
simple features are easier to discover and have less dis-
criminative potential than complicated features, but are
still useful for some aspects of the learning problem.

� Because exhaustive search in feature space is prohibitive,
samplefeatures from the feature space, beginning at the
lowest level of complexity, and consider more sophisti-
cated features as required.

An obvious way to generate such a large and partially or-
dered feature space is through combinatorics: Simple fea-
tures can be composed in various ways to yield arbitrarily
complex features. The specific features we are currently us-
ing are introduced in the following section. In the remainder
of the paper, we present the recognition algorithm and the
feature learning mechanism, and discuss some experimental
results.

Features
Our feature set is formed by combinations of oriented edge
segments (Fig. 1), often callededgels. A feature consists
of at least two such edgels, and is defined by their relative
orientations� and the distancesd between them.

This feature set has the desirable property of invariance
with respect to in-plane rotation. Furthermore, no explicit
contour extraction or segmentation need to be performed,
which avoids two general problems that are very difficult to
solve robustly. Since our features do not rely on contiguous
edges, they are expected to be relatively robust with respect
to various kinds of image degradation. On the downside, the
features are not scale invariant. One way to achieve scale in-
variance is the introduction of a multiresolution scheme (Pi-
ater & Grupen 1999).

Steerable filters (Freeman & Adelson 1991) are employed
to compute the orientation of image points efficiently. First,
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Figure 1: A combinatorial feature of order 3 (composed of
three oriented edge segments). The feature is defined by the
angles� and the distancesd, and the orientation of this spe-
cific instance is denoted by�.
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Furthermore, the response (strength) of an oriented first-
derivative Gaussian kernel at an arbitrary orientation� can
be computed as

G�
1(i; j) = G0

1(i; j) cos � +G
�=2
1 (i; j) sin �: (3)

While we are only using oriented edges, this framework
can incorporate any other rotation-invariant spatial primitive
(Piater & Grupen 1999). For example, multi-scale steer-
able vectors of Gaussian derivatives of various orders have
been shown to be useful for appearance-based recognition
(Rao & Ballard 1995). Other cues can also be included, e.g.
three-dimensional features obtained from stereo processing,
or temporal signatures such as motion patterns.

Specific features are selected by a learning procedure de-
scribed below, and are retained for recognition purposes.
The precise feature selection and recognition mechanisms
are not critical; any of a variety of algorithms can be em-
ployed. However, it is important that the features are
learned with respect to the specific recognition mechanism
with which they are to be used. Our simplified learn-
ing/recognition system serves to illustrate the cooperation
between these two components. Since the learning proce-
dure builds on the recognition procedure, the latter is de-
scribed first.

Recognition
The idea underlying our recognition procedure is that indi-
vidual features provide various degrees of evidence in fa-
vor of some classes, and against some others. As a design
choice, only the presence of a feature in an unknown image

is considered evidence, not its absence. This should serve to
increase robustness with respect to partial occlusion. On the
other hand, in the absence of other means this implies that
the system cannot discern certain classes: Consider a case
where all objects of class A possess all features also exhib-
ited by objects of a class B, plus more. Then, given an object
that fits the description of class B, the system is never able to
rule out class A.

We assume here that the learning procedure has provided
a set of features for recognition, and a set of example im-
ages which are identical to or a subset of the training images.
The recognition procedure queries individual features in se-
quence, and maintains a list of candidate classes. A query
of a feature either serves to rule out one or more candidate
classes, or leaves the candidate list unaltered. The goal is to
reduce the list of candidates to length one.

To find the best feature to query, we employ the gener-
alized Kolmogorov-Smirnoff distance (KSD) proposed by
Utgoff and Clouse (1996) , who demonstrated its competi-
tiveness with the best known decision tree metrics. Given
a variable, it returns a cutpoint that maximizes the differ-
ence between the class-conditional cumulative distributions
of this variable. The variable to be queried is the one that
maximizes this metric among all variables.

Here, the variable associated with a feature is the max-
imum strengthof this feature in an image. Computation of
the maximum strength involves applying the feature operator
and measuring its strength, at each location in the image. To
apply a feature operatorf of ordero at location(i1; j1), the
local orientation�(i1; j1) is first computed using Eqn. 1. We
now have the location and orientation of the reference point
of the feature (cf. Fig. 1). Then, the coordinates(ik; jk) and
orientations�k of the other points of this feature are com-
puted fork = 2; : : : ; o using the� andd values of this fea-
ture. The strengthsf is then given by the product of the indi-
vidual Gaussian-derivative responses at the desired locations
and orientations:

sf (i; j) =

oY
k=1

G�k
1 (ik; jk)

The termsG�k
1 are efficiently computed using Eqn. 3. Some

tolerance in the relative angles� is granted through the
smooth and wide peaks of theG�

1 (a sum of two sinusoids),
and some tolerance in the distanced is provided by the size
of the Gaussian kernels which does not require alignment at
pixel accuracy.

The computation ofsmax
f = max(i;j) sf (i; j) is linear in

the number of pixels in an image times the order off . The
latter is generally small, can in practice be bounded above,
and can thus be assumed to be constant. The efficiency can
be increased by a large constant ifsf is computed only for
a small subset ofsalientpoints in the image, rather than ex-
haustively. Salient points are those with a high edge strength
(given by Eqn. 2). The choice of the precise saliency func-
tion is not critical. Thesmax

f need only be computed once
for each image and can then be stored for future use.

Given a subsetC of candidate classes, the best feature to
query is one that maximizes the KSD among the example



images of these classes. Once the best featuref� and the
corresponding cutpointc� are identified, the strengthsmax

f�

is computed for the queried image. Ifsmax
f� � c�, then the

feature cannot be asserted, and the list of candidate classes
is left unaltered in accordance with the possibility that the
featuref� might actually be present but occluded in this
image. In this case, the next-best feature as ranked by the
Kolmogorov-Smirnoff metric is queried. Ifsmax

f� > c�, then
we identify all classes for which the majority of all example
images havesmax

f� � c�, and remove them from the list of
candidate classes.

Notice that while up to here our procedure was analogous
to conventional decision trees, this last step constitutes a ma-
jor simplification. In decision trees, candidate classes are
allowed to be split across the current cutpoint, whereas we
maintain them in their entirety, based on their majority. This
assumes that the class-conditional densities are unimodal,
which is not generally true in practice. On the other hand,
this procedure effectively avoids overfitting which in the case
of a potentially infinite, dynamic feature set is much more
critical than in typical classification problems involving a
fixed set of features: In our problem, almost any two training
images can be discerned by some feature, which would have
a devastating effect on the generalization properties of the
resulting classifier. Rather, we want to force our system to
learn better features for which the assumption of unimodality
is as close to true as possible.

This procedure is iterated until one of the following sit-
uations occurs: (1) There is only one candidate class left,
which is then returned as the classification, (2) there is no
candidate left, which means the system is totally unable to
make any statement about the classification, or (3) the fea-
ture set is exhausted. In the latter case, the remaining list of
candidate classes is returned as possible classifications. The
entire recognition procedure is summarized in Tab. 1.

Note that all KSDs and decision thresholds can in princi-
ple be precomputed, which allows the construction of a spe-
cial type of decision tree. In this case, the expected time
taken to recognize an unknown image is logarithmic in the
number of classes, and does not directly depend on the num-
ber of features or the number of stored example images.

1. C := fall classesg
2. Rank features by maximum KSD with respect to C.
3. f� := bestfeature, c� the corresponding cutpoint.
4. While smax

f� (I) � c�, assign f� := nextbest feature, c�

the corresponding cutpoint. If no features left, return C.
5. C := C n f all classes k for which the majority of all

example images Ii has smax

f� (Ii) � c�g
6. If jCj > 1, go to step 2.
7. Return C (possibly empty).

Table 1: The procedure for recognizing a novel imageI .

Feature Learning
The goal of feature learning is to accumulate a set of fea-
tures useful for discrimination among visual patterns. At the
outset, this set is empty. Images are presented to the system

one by one. Upon presentation of a novel training imageI ,
the image is first run through the recognition procedure de-
scribed previously. If it is recognized correctly, this training
image results in no change. If it is misclassified, it is added
to the set ofexample images, and thesmax

f (I) are computed
for all featuresf . It is then run through the recognition pro-
cedure again because some KSDs may have changed to our
advantage. If it is again misclassified, it is attempted to learn
a new feature.

What are the properties required of the new feature? We
note that a classification can fail for one of two reasons: Ei-
ther the correct class is ruled out at some stage during the
recognition process, or the system runs out of suitable fea-
tures and returns a set of possible class labels which contains
the correct one.

In the first case, we want to find a featurefnew that gets
chosen in place of the featurefold that previously ruled out
the true class. Thus, the KSD achieved byfnew, ksd(fnew),
needs to be greater thanksd(fold) among the subsetC of all
classes still under consideration at this stage in the recogni-
tion process.

In the second case,C is the set of classes returned by
the recognition procedure, andksd(fold) is taken to be zero.
In both cases, the feature must be present in imageI to a
degree stronger than the cutpoint associated withfnew, i.e.
smax
fnew

(I) > cnew.
It is now attempted to find such anfnew by randomly

sampling features from imageI . This sampling proceeds in
stages: First, some number of new order-2 features are gen-
erated by randomly choosing pairs of points from among the
salient pixels inI , and computing the two angles�i (using
Eqn. 1) and the distanced. The saliency function may be the
same as that used in the recognition procedure. To keep the
features local, the distance between the two points is limited.
Next, all existing features (i.e. those previously learned and
those just sampled) are augmented to the next order. This is
done by sampling a new reference point (again within a cer-
tain distance) and noting the resulting�i andd with respect
to the reference point of the parent feature.

The augmentation step can be repeated several times. The
sampling process is terminated once a featurefnew achieves
ksd(fnew) > ksd(fold) andsmax

fnew
(I) > cnew, or after a max-

imum number of augmentation steps is completed without
success.

If a suitable feature is found, it is added to the set, and the
current training image is again run through the recognition
procedure. The properties of the new feature guarantee that
either of the following occurs: (1) The new feature is cho-
sen at the stage that previously failed during the recognition
process, and the correct class is not ruled out at this stage; or
(2) it is chosen at some earlier stage during the recognition
process. If the recognition fails again, the feature sampling
process iterates. The feature learning procedure is summa-
rized in Tab. 2.

For a brief look at the time complexity, first note that the
feature augmentation process involves iterating over all pre-
existing features and newly sampled candidate order-2 fea-
tures, saynf in total. Computation ofksd(fnew) requires



1. If I is recognized correctly, stop.
2. Add I to the example images and compute the smax

f (I).
3. If it is recognized correctly, stop.

Else, note C and ksd(fold) at the failing recognition step.
4. Generate a candidate fnew by sampling or augmentation.
5. If ksd(fnew) > ksd(fold) and smax

fnew
> cnew, add fnew to

the set and go to step 3.
6. If the maximum number of new sample features is

reached, stop; else go to step 4.

Table 2: The procedure for learning a novel imageI .

processing each example image in each class under consid-
eration, which on average is proportional to the total number
nI of accumulated example images. Therefore, learning one
new feature has a time complexity on the order of2anfnI ,
wherea is a small constant giving the maximum number of
augmentation steps. Since the number of pre-existing fea-
tures is directly related to the numbernI of accumulated ex-
ample images, finding one new feature takes time propor-
tional to n2I . Clearly this is not acceptable for large-scale
recognition problems. Feature selection has long been es-
tablished as a difficult combinatorial problem (Ferriet al.
1994). Similarly to other work in feature learning, we need
to identify suitable heuristics for reducing both factorsnf
andnI in the complexity term.

Experimental Results
To illustrate the operation of our system, we trained it on
two simple supervised object recognition tasks. In each case,
the database contained non-occluded, clutter-free example
views of simple geometric objects (Fig. 2). In one task, the
database consisted of eight synthetic objects, each of which
was rendered in high quality at 15 different views. For the
other task, low-quality images were taken of real geometric
objects. There were 18 views of a sphere, 19 views of a cone
in various positions, and 16 views of a cube. The images
of the class “sphere” included spheres of two different sizes,
and the images of the class “cube” contained two cubes that
differed in size.

The learning system was trained on each task as described
above. The images of the training set were iteratively pre-
sented to the system in random order, until either the system
had learned the training set perfectly, or until no feature was
found during an entire cycle through the training set even
though there were some misclassifications. To learn a new
feature, first up to 10 new order-2 features were sampled.
Then, the set of all pre-existing and new candidate features
was augmented in up to two iterations.

Tables 3 and 4 show the results obtained by a 10-fold
cross-validation procedure. In all test cases, the recogni-
tion procedure returned a single class label. In the synthetic-
object task, the most common error was to label a “cyl6” as
a “tub6”. This is not surprising since a “cyl6” does not ex-
hibit any edge features that a “tub6” does not possess. As
noted earlier, this type of confusion is to be expected by the
design of the system. A similar situation occurs in the real-
object task: The most common error was to mistake a sphere
for a cone. Again, spheres do not exhibit edge features that

con6 cube cucon cucy cycu cyl3 cyl6 tub6

   
   

   
   

   
   

   
   

sphere cone cube                        

Figure 2: The synthetic and real-object tasks: Example
views and examples of features learned.

classification results: sums:
con6 cube cucon cucy cycu cyl3 cyl6 tub6

con6 15 15
cube 14 1 15
cucon 15 15
cucy 1 3 11 15
cycu 1 14 15
cyl3 15 15
cyl6 1 10 4 15
tub6 15 15
sums: 15 15 18 13 14 16 10 19 120

Table 3: Confusion matrix summarizing the cross-validated
test-set performance on the synthetic-object task. The overall
proportion of correct recognitions was 0.91.

distinguish it from a cone lying down, revealing its circular
base in profile (see Fig. 2). The real-object task was rela-
tively hard due to the two different sizes of spheres. Without
multiscale processing, it is not obvious how to find features
that are sufficiently scale-invariant. Nevertheless, both tasks
were learned relatively well.

Figure 2 includes some examples of order-2 and order-3
features found during learning. The gray shaded areas indi-
cate the salient points used for sampling new features. The
majority of all learned features were of order 2, with an ap-
preciable number of order-3 and occasional order-4 or order-
5 features. Due to the randomness of the algorithm and dif-
fering characteristics of the training images, the number of
features learned, the number of example images retained,
and the number of iterations through the training set var-
ied considerably between the individual folds of the cross-
validation procedures, as detailed in Tab. 5. In all cases, only
about half of the features that were learned at some stage dur-
ing the training process were in the end actually consulted



classification results: sums:
sphere cube cone

sphere 15 3 18
cube 14 2 16
cone 19 19
sums: 15 14 24 53

Table 4: Confusion matrix summarizing the cross-validated
test-set performance on the real-object task. The overall pro-
portion of correct recognitions was 0.91.

Fold: 1 2 3 4 5 6 7 8 9 10
Synthetic Objects:
# iter.: 3 3 5 4 5 4 5 6 4 5
# imgs.: 43 40 47 42 40 41 54 43 38 40
# feats.: 24 19 27 19 23 18 30 22 22 16
Accur.: .88 1.0 .81 .88 .81 1.0 .88 1.0 1.0 1.0
Real Objects:
# iter.: 6 6 4 5 4 3 3 4 10 5
# imgs.: 21 26 24 22 18 26 20 20 32 17
# feats.: 13 12 12 11 9 15 13 11 26 9
Accur.: 1.0 1.0 1.0 1.0 1.0 .83 .80 .60 .75 1.0

Table 5: Characteristics of the synthetic- and real-object
tasks. Shown are the numbers of iterations through the train-
ing set, the number of misclassified example images stored,
the number of features learned, and the test-set accuracy
achieved. Emphasized numbers indicate that the training set
was not learned perfectly.

on some training or test image. In other words, the other half
had been superceded by some better feature at later stages of
training.

Conclusions and Future Work
We presented a framework for visual recognition based on
a combinatorial feature space of potentially infinite size.
While our feature primitives currently consist of oriented
edges, the framework can in principle accommodate any type
of local feature. The resulting compound features are invari-
ant to in-plane rotations as long as the feature primitives are.
Certain texture signatures are one important example. Exten-
sion of the framework to achieve scale invariance is straight-
forward by processing images at multiple resolutions.

A partial simple-to-complex ordering of the feature space
permits feature search in polynomial time. While simple-
to-complex feature sampling is not generally optimal with
respect to any meaningful objective, this heuristic is intu-
itively pleasing in that it prefers simplicity over complex-
ity. Assuming that most distinctions between object classes
can be expressed in terms of low-order features according
to our definition, simple-to-complex sampling expends most
effort in those areas of the feature space where success is
most likely to occur.

Even so, the current feature learning method does not
scale well to larger-scale applications because each newly
sampled candidate feature must be evaluated on every stored
example image. Therefore, one goal of further research is to
reduce the number of example images that need to be stored.

Moreover, new feature points are currently chosen purely at
random. The identification of more focused search methods
would lead to tremendous improvements in performance.

The current recognition procedure can operate in time log-
arithmic in the number of classes. At the cost of increasing
the time complexity, it is straightforward to extend the sys-
tem to recognize multiple objects or to offer several weighted
candidate classifications for a single object. One way to do
this is to pursue all usable features at each decision, not just
the best one, and follow each branch. However, our specific
recognition procedure is not an indispensable component of
the system. Non-sequential associative mechanisms, for ex-
ample, constitute an attractive alternative.
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