
Cooperative Relational Database Querying
Using Multiple Knowledge Bases

José Luís Braga+

Departamento de Informática
Universidade Federal de Viçosa
36571-000-Viçosa-MG-Brazil

 (zeluis@mail.ufv.br)

Alberto H. F. Laender
Departamento de Ciência da Computação

Universidade Federal de Minas Gerais
31270-901-Belo Horizonte-MG-Brazil

(laender@dcc.ufmg.br)

Claudiney Vander Ramos
Engetron Engenharia

Belo Horizonte-MG-Brazil
(cvramos@engetron.com.br)

 Copyright © 1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.
+On sabbatical leave at University of Florida, IFAS-IT

Abstract
We present in this paper an approach for providing
cooperativeness in database querying using artificial intelligence
techniques. The main focus is a cooperative interface that assists
non-experienced and casual users in extracting useful answers
from a relational database. We propose an architecture for our
approach that comprises two knowledge bases which store rules
that describe the application domain and that guide the process
of query formulation and answering. A subset of SQL is used for
expressing queries, and the cooperative interface relieves the
user from knowing its full syntax and also the database schema.

1. Introduction and context
A common problem for many database users is how to
formulate and submit correct queries in order to get useful
responses from the system, with little or no knowledge of
the database structure. This problem becomes even worse
when the target database is generated and maintained by
some legacy system, usually in a distributed environment
around remote locations.

In traditional systems, users may pose queries to a
database by using a query language (such as SQL, QBE
or QUEL) or a form-based interface or by embedding
commands in an application program [7]. However, such
facilities are not, in general, user-oriented and therefore do
not provide means for helping users to formulate and
submit queries in a cooperative fashion in order to extract
the required information from the database [9]. When
there is no answer for a query, a DBMS does not usually
look for an alternative one which may satisfy the users'
information needs. This lack of cooperativeness [11]
imposes limitations to the widespread use of DBMS's [1],
making them hard to be used by non-experienced and
casual users, since they have to learn many details about
the database schema and about the DBMS itself.

In this paper, we propose an architecture for
cooperative access [11,10] to databases and describe a

cooperative interface for querying relational databases
which has been implemented based on this architecture.
The term cooperative interface is used to refer to
interfaces that assist non-experienced and casual users to
get useful answers from a database [14]. In this way, users
and the interface become partners in the querying process
with the aim to extract more relevant information from the
database. This class of interfaces is associated to a larger
research area, called Cooperative Information Systems
[11]. This area became one of great interest today,
because it provides solutions to the problem of
integration and use of legacy databases. Other related
technologies are those of the mediators and software
agents [17].

In our approach, we provide cooperativeness by
means of two knowledge bases. These knowledge bases
contain knowledge at different levels of abstraction and
are built using some of the ideas proposed in [2,4]. We
also adopted a subset of SQL [8] for query formulation
that eliminates most of the language features that make it
difficult to be used by non-experienced and casual users.
Particularly, join conditions, when required, are
automatically generated based on rules stored in the
knowledge bases [12,13].

2. A knowledge-based architecture for cooperative
database querying

Our proposal is based on two different and
complementary goals in achieving cooperativeness:
cooperativeness in the use of a query language, which
allows users to reach a higher level of competence in
query formulation without necessarily having to
understand in detail language features, and
cooperativeness in the use of a database, which makes it
easier for users to query a database without knowing

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

details of its structure, such as relation and attribute
names, domains, integrity constraints, etc.

The proposal is knowledge-based in the sense used
in artificial intelligence [16]: the knowledge necessary to
solve the problem is encoded in knowledge bases in a
modular way. The knowledge bases were built through a
process of knowledge extraction, structuring and
encoding, and must be consistent. In this context, a
cooperative interface works as a partner in the querying
formulation process, assisting the users in the correct
specification of their queries and in their reformulation
whenever an empty or unsatisfactory answer is obtained.
The proposed architecture is shown in Figure 1, and it
consists of:

• A knowledge base (KB1) on the application
domain that describes the database schema. This
knowledge base stores rules that encode information on
relations, relation attributes, attribute domains, relation
keys, and domain integrity constraints.

 Figure 1. Basic architecture

• A knowledge base (KB2) containing rules that
describe the transformations that may be applied to
queries to derive alternative answers. KB2 may also
contain general rules required, for example, to deal with
different types of user, to classify and treat errors, to
select appropriate dialogues according to external factors
and situations, and so on. In addition to that, specific
concepts required to query relaxation [3], such as topics of
interest and attribute value ranges, are also described in
this knowledge base. The knowledge in KB2 can be
considered meta-level when compared to the knowledge
in KB1, and its correct construction and use makes the
system able to have an active behavior in the whole
process.

• An inference engine or control algorithm that uses
both KB1 and KB2 to obtain the rules that must be
applied to transform queries whenever an alternative
answer is required.

• A user interface that provides cooperativeness at
the external level. This interface defines the
communication process between users and the database.

The main goal of the proposed architecture is to
improve the quality of the interaction between users and
the database, aiming at increasing their level of
satisfaction with the answers obtained for their queries.
Moreover, it provides a great level of independence with
regard to external factors, since the users are fully
insulated from modifications in cooperative behavior
patterns which are restricted to only one of the knowledge
bases. In addition, another important goal of this
architecture, and therefore of the interface described in
this paper, is to make the use of a query language like
SQL [8] easier, relieving users from the burden of having
to know details of its syntax and of the database structure,
as well as some cumbersome details usually not
understandable by non-experienced and casual users. The
immediate benefits of using a cooperative approach like
this are a safer database querying process and an
increased user satisfaction, demystifying the use of
databases by non-experienced and casual users.

2.1 SQL subset
Our interface adopts a subset of SQL [8] for query
formulation. After getting an SQL statement from the
user, the interface activates the inference engine that
processes the query using the rules stored in KB1 and
KB2. In this process, the interface interacts with the user
guided by rules stored in KB2, until it gets an answer that
finally satisfies the user's needs. Considering the basic
format SELECT<attribute list> FROM<relation list>
WHERE<selection condition> of the SQL SELECT
command [8], the following simplifications were made:

• The union, intersection, and difference operators
are not allowed.

• Embedded queries [7], i.e. queries using the
structure IS IN (SELECT …), are not allowed. They must
be replaced by appropriate AND expressions [15].

• The selection condition can only be a conjunction
of terms. Thus only the connective AND is allowed.

• All terms in a selection condition must be in the
format <attribute operator expression>, where
expression is an attribute or a constant, and operator is
one of the relational operators geq, leq, neq, =, > or <.
When a term is a join condition, the only operator allowed
is the equality, which means that only equijoins [7] can
be specified in our interface. However, it is important to
note that the join conditions (equijoin conditions) are
automatically generated by the interface and need not be
specified by the users.

• All attribute and relation names in the database
schema must be unique. So any expression R1.A1 =
R2.A2 can be unambiguously written as A1 = A2.
Although this may be a severe restriction for most real

USER

INTERFACE

DBMS

Inference Engine

KB1 KB2

User Interface

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

world applications, the interface can be modified to accept
fully qualified attribute names, overcoming the restriction.

• There is also no need to specify the FROM clause.
The interface is able to identify from the schema
definition the relation names that correspond to the
attributes specified in the SELECT command. This partly
justifies our assumption of unique names, since the
interface requires from the user only the specification of
the attribute list and the conditions that the corresponding
attribute values must satisfy in order to appear in the final
answer.

2.2 Knowledge-base KB1
The knowledge base KB1 describes the database schema
by means of a set of Prolog predicates [6] that define the
relations, attributes of relations, relation keys, attribute
domains, and domain integrity constraints. These
predicates are used to check the semantic consistency of
the user's query, i.e. if all relation and attribute names
specified in the query are defined in the database schema
and if the query satisfies the integrity constraints. Thus
given the notation R(A1, A2,...,An), where R is the name
of a relation of the database schema and Ai (1=< i =< n),
is an attribute name in R, the following predicates must be
included in KB1:
R1: For each relation in the database, rel(R), where R is
the relation name.
R2: For each attribute of each relation, attrib(R,A), where
A is an attribute name of relation R.
R3: For the primary key of each relation, key(R,K), where
R is a relation name and K is its primary key.
R4: For each attribute of each relation, domain(A,D)
where A is an attribute name and D is a domain name.
R5: For each attribute subjected to a domain constraint,
constraint(condition), where condition constrains the
attribute values. The condition must have the format
attribute op value, where op is one of >, <, neq, geq, leq
or =.

Figure 2 presents the relational schema of the
traveling information database used as example in this
paper and some of the predicates included in KB1 [12].
The meaning of the relations and predicates is hopefully
infered from the context.

flight(flight#,fcompany#,fdeparture,farrival,ffrom,fto,fprice)
train(train#,tcompany#,tdeparture,tarrival,tfrom,tto,tprice)
bus(bus#,bcompany#,bdeparture,barrival,bfrom,bto,bprice)
company(company#,compname,compaddress)
flight-reservation(fticket#,frflight#,frdate)
train-reservation(tticket#,trtrain#,trdate)
attrib(flight, fdeparture) attrib(flight, farrival)
key(flight, flight#) domain(flight#, integer)
constraint(fdeparture >=0)
constraint(fdeparture =<24)

Figure 2. Example database schema

2.3 Knowledge base KB2
The knowledge base KB2 is a higher level knowledge
base as compared with KB1, and contains predicates that
define abstract relationships between database objects
described in KB1. These predicates define query
transformations that may be applied to input queries in
order to generate answers containing more relevant and
useful information to the users. In fact, these predicates
are meta-predicates [15] in the sense that they are in a
higher level when compared to those in KB1. These
higher level predicates include predicates that define
topics of interest [4,5], relating attributes of a same
relation, predicates that define the concept of
neighborhood inference among relations [2], predicates
that define the concept of proximity between attribute
values [12], and predicates that define the possible query
transformations.

In what follows, we list the predicates that must be
defined in KB2:
R6: topic(T)
R7: top-attrib(T,A)
R8: interval(A,V)
R9: top-int(Q,T):-appears(Q,A),top-attrib(A,T)
R10: relev-attrib(Q,R,A):-rel(R),top-int(Q,T),
 attrib(A,R),top-attrib(A,T)
R11: add-attrib(Q,A):-rel(R),relev-attrib(Q,R',A),
 isa(R,R').
R12: relev-rel(Q,R1,R2):-rel(R),isa(R1,R),isa(R2,R).
R13: relev-value(Q,V):-appears(Q,A),interval(A,V).
R14: imp-attrib(A,B):-topic(T),top-attrib(A,T),
 top-attrib(B,T).

Predicates R6 and R7 are used to relate each
attribute A to a specific topic of interest T. Predicate R8 is
used to define the acceptable interval V for relaxing the
range of a condition on attribute A, when there is no
answer to a query. Predicates R9 to R14 are used to define
the possible transformations that may applied to a query in
order to expand its answer. For example, predicate R9
states that if the attribute A appears in a query Q and this
attribute is related to topic T, then topic T is a topic of
interest (related topic) to query Q. Thus all attributes
related to T must also be retrieved and exhibited in the
answer for Q. A more detailed description of these
predicates is out of the scope of this paper and can be
found in [13].

2.4 The inference engine
The inference engine is the component of the architecture
responsible for controlling the querying process. It uses
knowledge from both KB1 and KB2, making it possible to
rewrite the original query in order to get more relevant
answers to the user. The high level algorithm presented
below shows how the inference engine works. A more
detailed description of this algorithm can be found in [12].

The first step in the querying process is the checking
of the attribute list and the selection condition specified by

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

the user. In the second step, the interface tries to expand
the list of attributes by using rules in KB2 that define
semantic associations between attributes based on the
concept of topic of interest [4,5]. At the end of this step, a
correct SQL query is generated and it is passed to the
database management system to be executed.

BEGIN {engine}
GET the SQL query from the user
CHECK the query syntax and semantic consistency using
schema definition rules
WHILE the query is not correct DO
BEGIN {query correction}
 PRINT errors and possible correction actions
 ACCEPT corrections
 CHECK the query syntax and semantic consistency using
schema definition rules
END {query correction}
BEGIN {expansion}
 EXPAND the list of attributes by using the concept of topic
of interest
 EVALUATE the query
 IF the query has an answer
 THEN show the answer to the user
 ELSE BEGIN {relaxation}
 RELAX the selection condition by using the concept of
attribute proximity
 EVALUATE the query
 IF the query has an answer
 THEN show the answer to the user
 ELSE BEGIN {abstract hierarchy searching}
 SEARCH for alternative concepts using type
abstraction hierarchies
 EVALUATE the query
 IF the query has an answer
 THEN show the answer to the user
 ELSE PRINT ``no answer''
 END {abstract hierarchy searching}
 END {relaxation}
END {expansion}
END {engine}

Figure 3. Inference algorithm

A third step is performed when either there is no
answer to the generated query or the user is not satisfied
with the resulting answer. In this step, the is-a hierarchy is
used to try to find a related concept that could also be a
useful answer to the user. The decision of postponing the
use of is-a relationships until this point was based on the
assumption that it is more cooperative to keep the context
established by the user in the original query as far as
possible. The fourth and last step is to try alternative
answers by using the concept of attribute relaxation. The
query modifications are based on rules stored in KB2 that
define the concepts of attribute proximity [2]. Such rules
allow the relaxation of selection conditions (for example,
by enlarging the range of values that some attributes may
have in the answer).

3. Query examples using the interface
In this section, we present two query examples that
illustrate the major features of our interface. Additional
examples can be found in [12].
Query 1:
| ?- select([frdate,ffrom],where([fdeparture>10:00])).
 Original query:
 SELECT frdate, ffrom
 FROM flight-reservation, flight
 WHERE fdeparture > 10:00
 Modified query with additional attributes:
 SELECT frdate, fdeparture, farrival, ffrom, fto
 FROM flight-reservation, flight
 WHERE fdeparture > 10:00
 Modified query with relaxed conditions:
 SELECT frdate, fdeparture, farrival, ffrom, fto
 FROM flight-reservation, flight
 WHERE fdeparture > 08:00
*********** Query Answer *******************
 frdate fdeparture farrival ffrom fto
21/09/95 09:00 10:30 B. Horizonte S. Paulo
18/11/95 09:00 10:30 B. Horizonte S. Paulo
20/12/95 08:30 09:30 B. Horizonte Rio

This query was correctly specified by the user and the
interface proceeds by executing it. In the first step, it
modifies the query by expanding the list of attributes
based on the concept of topic of interest. Attributes fto,
fdeparture, and farrival were added to the query in this
step. As the modified query does not have an answer in
the database, a second transformation step is carried out.
In this step, the selection condition of the WHERE
clause is relaxed by replacing the condition (fdeparture >
10:00) by (fdeparture > 08:00). The final query then
results in an approximate answer to the user.
Query 2:
| ?- select([flight#,ffrom,fprice],where([fdeparture>16:00])).
 Original query:
 SELECT flight#, ffrom, fprice
 FROM flight
 WHERE fdeparture > 16:00
 Modified query with additional attributes:
 SELECT flight#, fdeparture, farrival, ffrom, fto, fprice
 FROM flight
 WHERE fdeparture > 16:00
 Modified query with relaxed conditions:
 SELECT flight#, fdeparture, farrival, ffrom, fto, fprice
 FROM flight
 WHERE fdeparture > 14:00
 Modified query with alternative relations:
 SELECT train#, tdeparture, tarrival, tfrom, tto, tprice
 FROM train
 WHERE fdeparture > 16:00
************** Query Answer ********************
train# tdeparture tarrival tfrom tto tprice
 4 17:00 17:00 B. Horizonte Salvador 40.00
 5 18:00 16:00 B. Horizonte P. Alegre 60.00

In this example, the query was also correctly specified by
the user. The interface then modifies the query by
expanding the list of attributes with fto, fdeparture, and
farrival. However, this modified query does not have an
answer in the database. Thus a second transformation step
is performed by the interface by relaxing the selection

condition of the WHERE clause. The new modified query
also does not have an answer in the database, and a new
and final transformation step is performed to replace the
relation specified in the query. For this, the interface uses
the concept of neighborhood inference and the relation
flight is then replaced by the relation train. This
transformation requires the attribute names in the
SELECT and WHERE clauses to be modified accordingly,
using KB2 rules. The modified query is then executed,
finally generating an approximate but relevant answer to
the user.

4. Concluding remarks
In this paper, we presented partial results of a project
aimed at providing cooperativenes in relational database
querying. By cooperativeness we mean relieving the user
from both understanding details of the query language and
knowing the database structure.

Our approach is based on artificial intelligence
techniques taken, particularly, from the knowledge-based
systems area [16]. To evaluate the proposed architecture,
we implemented a cooperative interface based on it, that
used some of the ideas proposed in [2,4]. The
implementation was carried out using Prolog in a UNIX
environment.

Although the system was not extensively tested in a
real environment, preliminary results have shown that the
two-level knowledge base architecture [15] provides a
general framework, with a richer set of query
transformation rules, considerably improving the database
querying process by non-experienced and casual users.
Moreover, the modularity of our approach makes it
general and flexible enough to be applied to other
problems that might need solutions based on
cooperativeness.

References
[1] Cha, S. K. Kaleidoscope: A Cooperative Menu-Guided
Query Interface (SQL Version). IEEE Trans. on
Knowledge and Data Engineering 3 (1), March 1991.
[2] Chu, W. W., Chen, Q. and Lee, R. Cooperative Query
Answering via Type Abstraction Hierarchy. In Deen, S.M.
(ed.). Cooperating Knowledge Based Systems. Springer-
Verlag, London, 1991.
[3] Chu, W. W., Chen, Q. and Page Jr., T. W. CoBase:
Cooperative Distributed Databases. Proc. of the 6th

Brazilian Symposium on Databases, 1991.
[4] Cuppens, F. and Demolombe, R. Cooperative
Answering: a Methodology to Provide Intelligent Access
to Databases. Proc. of the 2nd International Conference
on Expert Database Systems, 1988.
[5] Cuppens, F. and Demolombe, R. Extending Answers
to Neighbor Entities in a Cooperative Answering Context.
Decision Support Systems 11(1), January 1991.
[6] Clocksin, W.F. and Mellish, C.S. Programming in
Prolog. Springer-Verlag, Berlin, 1995

[7] Elmasri, R. and Navathe, S. B. Fundamentals of
Database Systems, 2nd ed. Benjamin/Cummings,
Redwood City, California, 1994.
[8] Melton, J. and Simon, A. R. Understanding the New
SQL: a Complete Guide. Morgan Kaufmann, San
Francisco, California, 1993.
[9] Motro, A. FLEX: A Tolerant and Cooperative User
Interface to Databases. IEEE Trans. on Knowledge and
Data Engineering 2(2), June 1990.
[10] Mylopoulos, J., Papazoglou, M. Cooperative
Information Systems. IEEE Intelligent Systems 12(5),
Sept-Oct 1997.
[11] Papazoglou, M.P., Schlageter, G., eds.: Cooperative
Information Systems: Trends and Directions. Academic
Press, San Diego, California, 1998.
[12] Ramos, C. V. A Cooperative Interface for Relational
Database Querying. MSc Thesis, Departamento de
Ciência da Computação, Universidade Federal de Minas
Gerais, Belo Horizonte, 1996. (in Portuguese)
[13]Ramos, C.V., Braga, J.L., Laender, A.H.F.
Cooperative Querying in Relational Databases. Proc. of
the XVII International Conference of the Chilean
Computer Science Society, 1997.
[14] Rettig, M. Cooperative Software. Communications of
the ACM 36(4), April 1993.
[15] Silva, E. C., Laender, A. H. F. and Braga, J. L.
Relational Database Query Optimization Driven by a
Multi-level Knowledge Base. Revista Brasileira de
Computação 4, 1990. (in Portuguese)
[16] Stefik, M. Introduction to Knowledge Systems.
Morgan-Kaufman, San Francisco, CA, 1995.
[17] Wiederhold, G., Genesereth, M. The Conceptual
Basis for Mediation Services. IEEE Intelligent Systems
12(5), Sept-Oct. 1997.

