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Abstract

We study data rn~rdng where the task is description
by summarization, the representation language is gen-
eralized relations, the evaluation criteria are based on
heuristic measures of interestingness, and the method
for searching is the Multi-Attribute Generalization al-
gorithm for domain generalization graphs. We present
and empirically compare four heuristics for ranking the
interestingness of generalized relations (or summaries).
The measures are based on common measures of the di-
versity of a population, statistical variance, the Simp-
son index, and the Shannon index. All four measures
rank less complex summaries (i.e., those with few tu-
ples and/or non-ANY attributes) as most interesting.
Highly ranked summaries provide a reasonable starting
point for fixrther analysis of discovered knowledge.

Introduction
The process of knowledge discovery from databases in-
cludes these steps: data selection, cleaning and other
preprocessing, reduction and transformation, data min-
ing to identify interesting patterns, interpretation and
evaluation, and application [7]. The goal is to iden-
tify valid, previously unknown, potentially useful pat-
terns in data [7; 9]. The data mining step requires
the choice of four items: a data mining task (such as
prediction, description, or anomaly detection), a repre-
sentation language for patterns, evaluation criteria for
patterns, and a method for searching for patterns to
be evaluated. Within the category of descriptive tasks,
summarization has received considerable attention and
several fast, effective algorithms have been developed.
The task of performing attribute, oriented generalization
(AOG) requires the creation of a generalized relation (or
summary) where specific attribute values in a relation
are replaced with more general concepts according to
user-defined concept hierarchies (CHs) [5]. If the origi-
nal relation is the result of a database query, the gener-
alized relation is a summary of these results, where, for
example, names of particular laundry soaps might be re-
placed by the general concepts "laundry soap" or ~aisle
9" depending on the concept hierarchy. The GDBR
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and FIGtt algorithms perform attribute oriented gen-
eralization in O(n) time (proven to be optimal) while
requiring O(p) space, where n is the number of tuples
in the input relation, and p is the number of tuples in
the summaries (typically p << n) [5].

Until recently, AOG methods were limited in their
ability to efficiently generate summaries when multi-
ple CHs were associated with an attribute. To resolve
this problem, we previously introduced new serial and
parallel AOG algorithms [12; 16] and a data structure
called a domain generalization graph (DGG) [12; 13; 16;
21]. A DGG for an attribute is a directed graph where
each node represents a domain of values created by par-
titioning the original domain for the attribute, and each
edge represents a generalization relation among these
domains. Given a set of DGGs corresponding to a set
of attributes, a generalization space can be defined as all
possible combinations of domains such that one domain
is selected from each DGG. Our algorithms generate the
summaries by traversing the generalization space in a
time- and space-efficient manner. When the number of
attributes to be generalized is large or the DGGs associ-
ated with the attributes are complex, the generalization
space can be very large, resulting in the generation of
many summaries. If the user must manually evaluate
each summary to determine whether it contains an in-
teresting result, inefficiency results.

We study data mining where the data mining task is
description by summarization, the representation lan-
guage is generalized relations, the evaluation criteria are
based on heuristic measures of interestingness, and the
method for searching is the Multi-Attribute General-
ization algorithm [12] for domain generalization graphs.
In [15], we proposed four heuristics, based upon infor-
mation theory and statistics, for ranking the interest-
ingness of summaries generated from a database. Pre-
liminary results suggested that the order in which the
summaries are ranked is highly correlated among these
measures. In this paper, we present additional experi-
mental results describing the behaviour of these heuris-
tics when used to rank the interestingness of summaries.

Techniques for determining the interestingness of dis-
covered knowledge have previously received some at-
tention in the literature. A rule-interest function is

100 HILDERMAN

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved. 



proposed in [20] which prunes uninteresting implica-
tion rules based upon a statistical correlation thresh-
old. In [2], two interestingnes8 functions are proposed.
The first function measures the difference between the
number of tuples containing an attribute value and the
number that would be expected if the values for the
attribute were uniformly distributed. The second func-
tion measures the difference between the proportion of
records that contain specified values in a pair of at-
tributes and the proportion that would be expected
if the values were statistically independent. A mea-
sure from information theory, called KL-distance, is
proposed in [8] which measures the distance of the ac-
tual distribution of terms in text files from that of the
expected distribution. KL-distance is also proposed
in [12] for measuring the distance between the actual
distribution of tuples in a summary to that of a uni-
form distribution of the tuples. In [25], another mea-
sure from information theory is proposed which mea-
sures the average information content of a probabilistic
rule. In [19], deviations are proposed which compare
the difference between measured values and some pre-
viously known or normative values. In [11], two in-
terestingness measures are proposed that measure the
potential for knowledge discovery based upon the com-
plexity of concept hierarchies associated with attributes
in a database. A variety of interestingness measures
are proposed in [18] that evaluate the coverage and
certainty of a set of discovered implication rules that
have previously been identified as potentially interest-
ing. In [1], transaction support, confidence, and syn-
tactic constraints are proposed to construct rules from
databases containing binary-valued attributes. A mea-
sure is proposed in [10] which determines the interest-
ingness (called surprise there) of discovered knowledge
via the explicit detection of occurrences of Simpson’s
paradox. Finally, an excellent survey of information-
theoretic measures for evaluating the importance of at-
tributes is described in [26].

A]though our measures were developed and utilized
for ranking the interestingness of generalized relations
as described earlier in this section, they are more gener-
aily applicable to other problem domains, such as rank-
ing v/ews (i.e., precomputed, virtual tables derived from
a relational database) or summary tables (i.e., material-
ized, aggregate views derived from a data cube). How-
ever, we do not dwell here on the technical aspects of
deriving generalized relations, views, or summary ta-
bles. Instead, we simply refer collectively to these ob-
jects as summaries, and assume that some collection of
them is available for ranking.

The remainder of this paper is organized as follows.
In the next section, we describe heuristics for ranking
the interestingness of summaries and provide a detailed
example for each heuristic. In the third section, we
present experimental results and compare the four in-
terestingness measures. In the last section, we conclude
with a summary of our work and suggestions for future
research.

Interestingness
We now formally define the problem of rank-
ing the interestingness of summaries, as follows.
Let a summary S be a relation defined on
the columns {(A1, D1), (A2, D2),..., (A,, D,)}, 
each (Ai,Di) is an attribute-domain pair. Also, let
{(AI,~,I),(A2,v,2),...,(A,,~)}, 1,2,...,m,be
a set of m unique tuples, where each (Aj, ~ij) is 
attribute-value pair and each v~# is a value from the do-
main Dj associated with attribute Aj. One attribute
An is a derived attribute, called Count, whose domain
Dn is the set of positive integers, and whose value v~n
for each attribute-value pair (A,~, vin) is equal to the
number of tuples which have been aggregated from the
base relation (i.e., the unconditioned data present in
the original relational database). The interestingness
I of a summary $ is given by I = f(S), where f 
typically a function of the cardinality and degree of S,
the complexity of its associated CHs, or the probability
distributions of the tuples in S.

A sample summary is shown below in Table 1.
In Table 1, there are n = 3 attribute-domain
pairs (i.e., (A1, D1) (Colour,{red, bl ue, gr een}),
(az, Dz) -- (Shape,{round, square}), and (As, D3) --
(Count,{positive integers})) and m = 4 sets of unique
attribute-value pairs. The Colour and Shape attributes
describe the colour and shape, respectively, of some
arbitrary object, and the Count attribute describes
the number of objects aggregated from the base re-
lation which possess the corresponding colour and
shape characteristics. A Tup/e ID attribute is be-
ing shown for demonstration purposes only (to sim-
plify the presentation that follows) and is not ac-
tuaily part of the summary. For example, the tu-
ple {(Colour, blue),( Shape, square),( Count, 1)} is sim-
ply referred to as ~3. Table 1 will be used as the basis
for all calculations in the examples which follow.

Table 1: A sample summary
t ~vle w I CoZo,,. [ sh.ee [ Co.,,~ [

tl red round 3 [
t2 [ red [ squire [ 1 [
t8 blue square 1 [
t4 Ireen round 2 J

We now describe four heuristics for ranking the inter-
estingness of summaries and provide a detailed example
for each heuristic. These heuristics have been selected
for evaluation as interestingness measures because they
are common measures of diversity of a population. The
well-known, domain-independent formulae, upon which
these heuristics are based, have previously seen exten-
sive application in several areas of the physical, social,
management, and computer sciences. The lsa, mea-
sure is based upon variance, which is the most common
measure of variability used in statistics [22]. The IGu9
and/tot measures, based upon a relative entropy mea-
sure (also known as the Shannon index) from informa-
tion theory [23; 27], measure the average information
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content in a single tuple in a summary and the total in-
formation content in a summary, respectively. The Icon
measure, a variance-like measure based upon the Simp-
son index [24], measures the extent to which the counts
are distributed over the tuples in a summary, rather
than being concentrated in any single one of them.

The tuples in a summary are unique, and therefore,
can be considered to be a population described by some
probability distribution. In the discussion that follows,
the probability of each ti occurring in the actual prob-
ability distribution of S is given by:

Vin
P(Zi) --" (~ln "~- V2n "~- ,." "~- Vmn)’

and the probability distribution of each ti occurring in
a summary where the tuples have a uniform probability
distribution is given by:

(,x,,+,=,,+...+em,) I

(,,I,,+v2,,+...+,,,,,,,) m’
where vi,~ is the value associated with the Count at-
tribute An in tuple ti.

The I¢2,1r Measure
Given a summary S, we can measure how far the actual
probability distribution (hereafter called simply a dis-
trlbution) of the counts for the t,’s in S varies from that
of a uniform distribution. The variance of the distribu-
tion in S from that of a uniform distribution is given
by:

m

z0=, = -
m-I

where higher values of lear are considered more inter-
esting. For example, given the summaries $I, $2, $3,
and $4 with variance of 0.08, 0.02, 0.05, and 0.03, re-
spectively, we order the summaries, when ranked from
most interesting to least interesting, as $I, $3, $4, and
$2. Our calculation for variance uses m- I because we
assume the summary may not contain all possible com-
binations of attributes, meaning we are not observing
all possible tuples.

Example I: From the actual distribution of the tuples
in Table 1, we have p(tx) = 0.429, P(~2) = 0.143, p(t3) 
0.143, p(t4) "- 0.286, and from a uniform distribution
of the tuples, we have q(1~) = 0.25, for all i. So, the
interestingness of the summary using the I~,r measure
is:

le~r = ((0.429- 0.25) ~ + (0.143- 0.25) 2 +

(0.143 - 0.25)2 + (0.286 - 0.25)2)/3
= 0.018.

The Ia~g Measure

Given a summary S, we can determine the average in-
formation content in each tuple. The average informa-
tion content, in bits per tuple, is given by:

~q

= - p(t,) log2 p(t,),
i=1
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where lower values of loe0 are considered more interest-
ing. For example, given the summaries $1, $2, $3, and
$4 with average information content of 1.74, 0.95, 3.18,
and 2.21 bits, respectively, we order the summaries,
when ranked from most interesting to least interesting,
as $2, $1, $4, and $3.

Example 2: The actual distribution for p is given in
Example 1. So, the interestingness of the summary us-
ing the Iavg measure is:

= -(0.4291og2 0.429 ÷ 0.1431og2 0.143 +
0.143 log2 0.143 + 0.286 log2 0.286)

= 1.842 bits.

The I,.ot Measure

Given a summary 5, we can determine its total infor-
mation content. The total information content, in bits,
is given by:

/tot = m * I=eg,

where lower values of Ito, are considered more interest-
ing. For example, given the summaries $1, Su, $3, and

84 with total information content of 31.8, 6.96, 3.83,
and 15.5 bits, respectively, we order the summaries,
when ranked from most interesting to least interesting,
as S3, $2, S4, and Sl.

Example 8: The average information content for the
summary is given in Example 2. So, the interestingness
of the summary using the ltot measure is:

Ito* = m*lo,9
= 4 * 1.842
: 7.368 bits.

The Ic~ Measure

Given a summary S, we can measure the extent to
which the counts are distributed over the tuples in the
summary. The concentration of the distribution in S is
given by:

iroo,, =
i=I

where higher values of I¢o, are considered more inter-
esting. For example, given the summaries $1, $2, 83,
and $4 with concentration of 0.57, 0.24, 0.11, and 0.32,
respectively, we order the summaries, when ranked from
most interesting to least interesting as 81, $4, $2, and
S3.

Example 4: The actual distribution for p is given in
Example 1. So, the interestingness of the summary us-
ing the Ieo, measure is:

/con : 0.4292 + 0.143~ + 0.1432 + 0.2862
: 0.306.



Table 2" R~mks assigned by each interestingness measure for N-2

[$ttm~rtm,9 ] Non-ANY No. of] lu=r I I’s’0 I I10, l©on I

1 ! 2 0.18880 1.5 0.34807 1.5 0.69774 1.8 0.87760 1.8
2 1 3 0.06576 5 0.86055 & 3.80500 5 0.50003 5
3 ! 4 0.10026 3.5 0.44331 3.5 1.77323 3.5 0.07504 3.5
4 1 5 0.01966 10 1.34629 10 9.23144 7 0.29828 10
5 1 0 0.01531 13 2.13599 11 13.75000 0 0.28854 14
6 1 9 0.01581 12 3.36899 13 30.42000 13 0.25342 15
7 1 !0 0.03745 8.5 1.41920 8.5 14,19200 10,5 0.47445 0,5
8 3 3 0.13880 1.5 0.34887 1.5 0.50774 1.5 0.S7700 1.5
0 2 4 0.15620 3.5 0.44531 3.5 1.77523 3.5 0.87504 3.5

10 3 5 0.00575 0 1.21517 0 4.07503 6 0.51877 6
11 3 9 0.04513 7 1.30905 7 !1.78140 3 0.51737 7
12 D 0 0.01664 11 2.19460 12 10.75140 12 0.20083 12
15 2 10 0.03745 0.5 1.41926 5.5 14.10260 10.5 0.47445 8.5
14 2 11 0.01230 14 2.47495 10 37.31540 14 0.22025 10
15 2 10 0.00995 17 2.61670 13 41.86720 10 0.23160 18
10 3 17 0.01154 15 2.28807 15 38.89720 15 0.26003 13
17 2 21 0.01100 15 3.38380 14 47.94010 17 0.27857 11
18 3 21 0.00547 15 2.56741 17 53.01500 13 0.22554 17
19 2 30 0.00823 19 2.71010 19 81.30300 10 0.22096 10
30 2 40 0.00391 20 3.35997 20 150.30000 20 0.14148 20
21 2 60 0.00304 21 3,53855 31 175.92700 21 0.13104 21
22 3 07 0.00156 33 3.67939 23 245.51900 23 0.11935 22

Experimental Results

In this section, we present experimental results which
contrast the various interestingness measures. All sum-
maries in our experiments were generated using DB-
Discover [5; 6], a software tool which uses AOG for
KDD. DB-Discover was run on a Silicon Graphics Chal-
lenge M, with twelve 150 MHz MIPS R4400 CPUs, us-
ing Oracle Release 7.3 for database management.

Description of Databases

To generate summaries, series of discovery tasks were
run on the NSERC Research Awards Database (a
database available in the public domain) and the Cus-
tomer Database (a confidential database supplied by
an industrial partner). The NSEI~C Research Awards
Database, frequently used in previous data mining re-
search [3; 4; 11; 17], consists of 10,000 tuples in six
tables describing a total of 22 attributes. The Cus-
tomer Database, also frequently used in previous data
mining research [6; 14; 16], consists of 8,000,000 tuples
in 22 tables describing a total of 56 attributes. The
largest table contains over 3,300,000 tuples represent-
ing account activity for over 500,000 customer accounts
and over 2,200 products and services.

Our previous experience in applying AOG data min-
ing techniques to the databases of our industrial part-
nets has shown that domain experts typically perform
discovery tasks on a few attributes that have been de-
termined to be relevant. Consequently, we present re-
suits for experiments containing a maximmn of four rel-
evant attributes¯ Discovery tasks were run against the
NSERC database, where two, three, and four attributes
were selected for discovery, a~d against the Customer
database, where two and three attributes were selected
for discovery. We refer to the NSERC discovery tasks
as as N-£, N-3, and N-4, respectively, and the Customer
discovery tasks as C-2 and C-3, respectively. Since sim-
ilar results were obtained from the NSERC and Cus-

tomer discovery tasks, we focus on the NSERC tasks.

Comparative Results

We now compare the ranks assigned to the summaries
by each interestingness measure. A typical result is
shown in Table 2, where 22 summaries, generated from
the two-attribute NSERC discovery task, are ranked.
In Table 2, the Summary ID column describes a unique
summary identifier (for reference purposes), the Now
ANY Attributes column describes the number of non-
ANY attributes in the summary (i.e., attributes that
have not been generalized to the level of the root node
in the associated DGG), the No. o.f Tuple~ column
describes the number of tuples in the summary, and
the Score and Rank columns describe the calculated
interestingness and the assigned rank, respectively, as
determined by the corresponding interestingness mea-
sure. Table 2 does not show any single-tuple summaries
(e.g., the single-tuple summary where both attributes
are generalized to ANY and a single-tuple surmnary
that was an artifact of the concept hierarchies used), as
these summaries are considered to contain no informa-
tion and are, therefore, uninteresting by definition. The
summaries in Table 2 are shown in increasing order of
the number of non-ANY attributes and the number of
tuples in each summary, respectively.

The Rank column for each interestingness measure
uses a ranking scheme that breaks ties in the inter-
estingness scores by averaging the ranks and assigning
the same rank to each summary involved in the tie,
even though the resulting rank may be fractional. For
example, if two summaries are tied when attempting
to rank the fourth summary, each is given a rank of
(4 + 5)/2 = 4.5, with the next summary ranked sixth.
If instead, three summaries are tied, each is given a rank
of (4 + 5 + 6)/3 - 5.0, with the next summary ranked
seventh. The general procedure should now be clear.
This ranking scheme was adopted to conform to the
requirements of the Gamma correlation coefficient used
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to analyze the ranking similarities of the interestingness
measures and described later in this section.

Table 2 shows there are numerous ties in the ranks
assigned by each interestingness measure. For exam-
ple, Summaries 1 and 8, the most interesting one- and
two-attribute summaries, respectively, have a rank of
1.5. This tie is also an artifact of the concept hierar-
chies used in the discovery task. Summary 1 is shown
in Table 3. In the concept hierarchy associated with
the Prouince attribute, there is a one-to-one correspon-
dence between the concept Canada in Summary 8 and
the concept ANYin Summary 1. Consequently, this re-
sults in a summary containing two non-ANY attributes
being assigned the same interestingness score as a sum-
mary containing one non-ANY attribute. All ties in
Table 2 result from a similar one-to-one correspondence
between concepts in the concept hierarchies used.

Table 3: Summary i from N-;~

I e,~.i,==. I o,,=Co,~ I co,,,. I
IANY I Other I 8370 I

ANY [ Computer [ 387 J

Table 2 also shows some similarities in how the four
interestingness measures rank summaries. For example,
the six most interesting summaries (i.e., Summaries 1,
8, 2, i0, 3, and 9) are ranked identically by the four in-
terestingness measures, as are the four least interesting
summaries (i.e., Summaries 19, 20, 21, and 22). There
are also similarities among the moderately interes~.ing
summaries. For example, Summary 11 is ranked sev-
enth by the lwar,/’a~e, and/’co,= measures, and Summary
12 is ranked twelfth by the laf~, Itot, and Icon measures.

To determine the extent of the ranking similarities
between the four interestingness measures, we can cal-
culate the Gamma correlation coefficient for each pair
of interestingness measures. The Gamma statistic as-
sumes that the summaries under consideration are as-
signed ranks according to an ordinal (i.e., rank order)
scale, and is a probability computed as the difference
between the probability that the rank ordering of two
interestingness measures agree minus the probability
that they disagree, divided by 1 minus the probabil-
ity of ties. The value of the Gamma statistic varies in
the interval [-1, I], where values near I, 0, and -I rep-
resent significant positive, no, and significant negative
correlation, respectively.

The Gamma correlation coefficients (hereafter called
the coefficients) for the two-, three-, and four-attribute
discovery tasks are shown in Table 4. In Table 4, the
Interes~ngneas Measures column describes the pairs of
interestingness measures being compared and the N-2,
N-3, and N-~ columns describe the coefficients corre-
sponding to the pairs of interestingness measures in the
two-, three-, and four-attribute discovery tasks, respec-
tively. Table 4 shows that the ranks assigned to the
summaries by all pairs of interestingness measures are
similar, as indicated by the high coefficients. The co-
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efficients vary from a low of 0.82862 for the pair con-
tainiug the l, ot and/con measures in the three-attribute
discovery task, to a high of 0.96506 for the pair contain-
ing the I=~g and /con measures in the same discovery
task. The ranks assigned by the pair containing the l~ar
and .rang measures are most similar, as indicated by the
average coefficient of 0.95494 for the two-, three-, and
four-attribute discovery tasks, followed closely by the
ranks assigned to the pair containing the I=v~ and Ico,
measures with an average coefficient of 0.95253. The
ranks assigned by the pairs of interestingness measures
in the three-attribute discovery task have the least simi-
larry, as indicated by the average coefficient of 0.90166,
although this is not significantly lower than the two-
and four-attribute average coefficients of 0.91813 and
0.92555, respectively. Given the overall average coeffi-
cient is 0.91511, we conclude that the ranks assigned by
the four interestingness measures are highly correlated.

Table 4: Comparison of ranking similarities
lnteremfingneH

Mearureo

I~=r k laws 0.94737 0.95670 0.96076 0.95494
Ira. L. riof 0.92963 0.86428 0.91904 0.90438
I~o, L. 1~o., 0.91228 0.93172 0.94029 0.03110
Ia~g L. Itot 0.91228 0.86380 0.90947 0.89510
laua 2. J’cou 0.94737 0.96500 0.94516 0.95253
Iiot k lco,~ 0.85963 0.82862 0.88957 0.85261
Ave~e 0.91813 0.90166 0.92855 O.91&ll

We now discuss the complexity of the summaries
ranked by the various interestingness measures. We de-
fine the complezity indez of a summary as the product
of the number of tuples and the number of non-ANY
attributes contained in the summary. A desirable prop-
erty of any ranking function is that it rank summaries
with a low complexity index as most interesting. How-
ever, although we want to rank summaries with a low
complexity index as most interesting, we do not want
to lose the meaning or context of the data by present-
ing summaries that are too concise. Indeed, in previ-
ous work, domain experts agreed that more information
is better than less, provided that the most interesting
summaries are not too concise and remain relatively
easy to understand [11]. Although the most interesting
summaries ranked by our interestingness measures are
concise, they are generally in accordance with the low
complexity property and provide a reasonable starting
point for further analysis of more complex summaries.

One way to analyze the interestingness measures and
evaluate whether they satisfy the guidelines of our do-
main experts, is to determine the complexity indexes of
summaries considered to be of high, moderate, and low
interest, as shown in Table 5. In Table 5, the Task ID
column describes the discovery task, the Relative Inter.
eat column describes the relative degree of interest of
the corresponding group of summaries on a three-tier
scale (i.e., H=High, M=Moderate: L--Low), the Tuples
and NA columns describe the average number of tu-
pies and the average number of non-ANY attributes,



n 2.0 1.5 $.0 1.5 1.0 1.6 1.5 1.0 1.6 1.5 1.0 !.5
M 9.0 1.3 13.3 5.3 1.0 5.5 10.0 1.6 15.0 10.0 1.5 19.5
L 34.0 !.6 61.0 68.3 2.0 !17.0 58.6 2.0 liT.0 38.3 2.0 117.0

N-3 H 4.1 1.6 6.6 3.0 1.4 4.2 3.0 1.4 4.3 3.0 1.4 4.2
M 29.T 2.2 58.T 24.9 2.2 54.8 23.4 2.4 60.2 33.9 2.1 58.0
L 318.4 2.7 689.T 232.4 3.0 097.2 253.1 3.0 759.0 232.4 3.0 60T.2

N-4 H 8.3 1.7 14.1 T.9 1.7 13.4 6.5 1.6 10.4 7.9 1.T 13.4
M 139.5 2.9 404.6 136.1 2.8 881.1 146.2 3.0 430.0 1’/’1.9 2.9 498.3
L 1014.2 3.7 3’/’62.6 1044.8 3.0 3960.1 10T8.8 3.9 4195.0 1044.5 3.3 3969.1

C-2 H 5.0 1.2 6.0 4.4 1.1 4.8 4.4 1.1 4.3 4.3 1.2 5.4
M 10.3 1.0 30.0 21.4 1.7’ 30.4 22.3 1.7’ 37’.0 00,5 1.3 I04.T
L 101.7’ 1.3 103.1 101.7 1.8 103.1 101.7’ 1.0 18,t.1 101.7 1..1 183.1

C-3 H 9.2 1.8 16.0 9.7 1.7 14.8 9.0 1.8 14.9 9,1 1.7 15.5
M 82.8 2.4 199.7’ 79.4 2.4 190.1 100.8 2.2 221.,1 108.4 2.4 260.2
L .161..1 2.7’ 976.6 301.1 2.T 97.5.0 ,161.,1 2.7’ 07’5.5 ,143.1 2.3 950.7’

respectively, in the corresponding group of summaries,
and the Cl column describes the complexity index of
the corresponding group of summaries. High, moder-
ate, and low interest summaries were considered to be
the top, middle, and bottom 10%, respectively, of sum-
maries as ranked by each interestingness measure. The
two-, three-, and four-attribute NSEKC discovery tasks
generated sets containing 22, 70, and 214 summaries,
respectively, and the two- and three-attribute Customer
discovery tasks generated sets containing 106 and 1016
summaries, respectively. Thus, the complexity index of
the summaries in the two-, three-, and four-attribute
NSERC tasks is based upon two, seven, and 22 sum-
maries, respectively, and the complexity index of the
summaries in the two- and three-attribute Customer
tasks is based upon 20 and 102 summaries, respectively.

Table 5 shows that each interestingness measure
ranks summaries with a low complexity index as most
interesting, and vice versa. For example, the complex-
ity index of the l,,r measure for the two-attribute task
shows a typical result. Summaries of high, moderate,
and low interest have complexity indexes of 3.0, 13.5,
and 51.0, respectively. This result is consistent for all
interestingness measures in all discovery tasks.

A comparison of the complexity indexes of the sum-
maries ranked by the four interestingness measures for
the two-, three-, and four-attribute discovery tasks are
shown in the graph of Figure 1. In Figure 1, the first,
second, and third row of bars, where the first row is at
the front of the graph, correspond to the two-, three-,
and four-attribute discovery tasks, respectively. For the
two- and three-attribute discovery tasks, the summaries
ranked as most interesting by the Ia,o, Itot, and Ico,
measures have the lowest complexity indexes, followed
by the I, ar measure. For the four-attribute discovery
task, the summaries ranked as most interesting by the
Itot measure have the lowest complexity index followed
by the Ia,g and/’co, measures, and the l,-r measure.

The fourth row of bars in Figure 1 shows the average
complexity index of summaries derived from the two-,
three-, and four-attribute discovery tasks for each inter-
estingness measure. For example, the average for the
I~r measure was derived from the complexity indexes
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Figure 1: Relative complexity of summaries

3.0, 6.6, and 14.1 for the two-, three-, and four-attribute
tasks, respectively, for an average complexity index of
7.9. The summaries ranked as most interesting by the
Itot measure have the lowest complexity index, followed
by the I,,~g and/co, measures, and the I,.r measure.

Conclusion and Future Research
We described heuristics for ranking the interestinguess
of summaries generated from databases. The four in-
terestingness measures evaluated rank summaries in a
similar manner, as indicated by the high Gamma cor-
relation coefficients for all possible pairs of interesting-
ness measures. Although all four interestingness mea-
sures rank summaries with a low complexity index (i.e.,
those with few tuples and/or non-ANY attributes) as
most interesting, summaries ranked by the Ito~ mea-
sure have the lowest complexity index. Domain experts
agree that a low complexity index is a desirable prop-
erty, and that summaries with a low complexity index
provide a reasonable starting point for further analysis
of discovered knowledge.

Future research will focus on developing new heuris-
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tics. KL-distance will be further studied a.s an interest-
ingness measure. Additional diversity measures from
information theory and statistics will be evaluated. Fi-
naily, techniques for attaching domain knowledge to the
measures will be investigated, to allow closer mimicking
of domain experts’ rankings.
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