
Using genetic programming to determine software quality

Matthew Evett, Taghi Khoshgoftaar, Pei-der Chien
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, Florida 33431

{matt, taghi, chienp, allene}~ese.fau.edu

and Ed Allen

Abstract

Software development managers use software quality
prediction methods to determine to which modules ex-
pensive reliability techniques should be applied. In this
paper we describe a genetic programming (GP) based
system that classifies software modules as "faulty" or
’~ot faulty", allowing the targetting of modules for re-
liability enhancement. The paper describes the GP sys-
tem, and provides a case study using software quality
data from a very large industrial project. The demon-
strated quality of the system is such that plans are
under way to integrate it into a commercial software
quality management system.

Introduction

Buggy software is a fact of modern life. But while
customers will tolerate some bugginess in consumer-
market software, such as games and word processors,
this is generally not the case in the enterprise market.
In markets such as telecommunications, utility support,
and factory floor production control, customers will not
buy systems that do not have excellent reliability. Each
software flaw in these environments can result in large
financial loss to the owners. Consequently, software re-
liability is a strategic business weapon in today’s com-
petitive marketplace(Hudepohl 1990).

Correcting software faults late in the development
life cycle (i.e., after deployment into the field) is of-
ten very expensive. Consequently, software developers
apply various techniques to discover faults early in de-
velopment(Hudepohl et al. 1996). These reliability im-
provement techniques include more rigorous design and
code reviews, automatic test case generation to support
more extensive testing, and strategic assignment of key
personnel. While these techniques do not guarantee
that all faults are discovered, they greatly decrease the
probability of a fault going undiscovered before release.
When a fault is discovered, it can be eliminated, and
the repaired module possibly resubmitted for further
reliability review.

Because reliability enhancement can be quite expen-
sive, software development managers must attempt to
apply reliability improvement techniques only where

Copyright © 1999, American Association for Artificial Intelligence
(www.anal.org). All rights reserved.

they seem most likely to pay off, that is, to those soft-
ware modules that appear likely to suffer from flaws.
In earlier work (Evett et al. 1998), we demonstrated
a genetic programming-based system for targeting soft-
ware modules for reliability enhancement. In this paper
we extend this work in two significant ways: first, we
demonstrate that the system’s performance scales up by
succesfully completing an industrial case study that is
twenty-five times larger than that of our original study.
Second, we provide a new mechanism (including a fit-
ness evaluation process), dynamic partitioning evalua-
tion, for optimizing the use of the system. The demon-
strated quality of the resulting GP system is such that
plans are under way to include its use in a commercial
software quality management system.

Software Quality Modeling

Previous software quality modeling research has focused
on classification models to identify -fault-prone and not
.fault-prone modules(Khoshgoftaar et al. 1996). A soft-
ware development manager can use such models to tar-
get those software modules that were classified as fault-
prone for reliability improvement techniques.

However, such models require that "fault-prone" be
defined before modeling, usually via a threshold on the
nmnber of faults predicted, and software development
managers often do not know an appropriate thresh-
old at the time of modeling. An overly high thresh-
old could result in too few modules being classified as
fanlt-prone, allowing some faulty modules to avoid the
reliability testing that might have identified their flaws
before being released. An overly low threshold, on the
other hand, while it would likely result in the reliabil-
ity testing of most of the faulty modules, would do so
at excessive, probably prohibitive cost--more modules
would be classified as fault-prone than resource limita-
tions (manpower, deadlines) will permit.

To avoid this problem, we use dynamic partitioning
evaluation, a technique that does not require an a pr/-
ori threshold definition. Rather than providing a strict
classification system, our goal is to develop models that
predict the quality of each module relative to that of the
other modules. These predictions are then used to rank
the modules from the least to the most fault-prone.

EVOLUTIONARY COMPUTATION 113

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

We used GP to create models that predict the num-
ber of faults expected in each module, but we use these
predictions only to rank the modules. Our evaluation
of the quality of the generated models is based on or-
dinal criteria, rather than the amount of error in the
predicted number of faults.

With a given rank-order of the modules, the soft-
ware manager must decide which modules to submit to
reliability testing. This is done by selecting a thresh-
old (or cut-off), c, a percentage. In effect, the thresh-
old delineates the set of modules that are considered
"fault-prone" from those that are considered "not fault-
prone". The top c percent of the modules according to
the ranking (i.e., those designated "fault-prone") are
chosen for testing. Dynamic partitioning evaluation is
"dynamic" in the sense that the system presents the
manager with an approximation of the cost of using
different thresholds. The manager can use these ap-
proximations to optimize the selection of c.

These cost approximations are based on predicting
the degree to which the module ranking is accurate. For
the fault-prone detection, there are two distinct types
of misclassifications, type I and type H error. A type
I error occurs when a low-risk (i.e., not fault~prone)
module is classified as high risk (i.e., fault-prone). This
could result in some wasted attention to low-risk mod-
ules. A type H error occurs when a high-risk module is
classified as low risk. This could result in the release of
a low quality product. From the perspective of a soft-
ware manager, it is preferable to make a type I error
than a type II error, because the costs of type H error
are higher (usually at least an order of magnitude or
two) for correcting the faults later in the maintenance
phase.

The software manager approximates the cost of each
type of error (which varies greatly across domains), and
then selects from a set of thresholds that one which
appears most likely to minimize the overall cost, within
the limitations of the available financial and man-power
resources.

Predicting Software Quality

Most quality factors, including faultiness, are directly
measurable only after software has been deployed. For-
tunately, prior research has shown that software prod-
uct and process metrics(Fenton & Pfleeger 1997) col-
lected early in the software development life cycle can
be the basis for reliability predictions.

Process metrics measure the attributes of the devel-
opment process and environment. Some examples of
process metrics are programmer attributes such as lev-
els of programming experience, years of experience with
a programming language, years of experience construct-
ing similar software systems, use of object-oriented
techniques, use of editors, and team programming prac-
tices.

Product metrics are measurements of the attributes
of a software product. Product metrics are not con-
cerned about how the program was created. Examples

114 EVE’IF

of product metrics include data structure complexity,
program size, number of control statements, number of
lines of code, number of calls to other modules, and
number of calls to a certain module.

Our case studies of the models generated by our GP
system are based on actual industrial software devel-
opment projects. Our case study data consisted of the
software metrics for each module in these projects, as
well as the number of faults detected in the modules
after deployment. The metrics were collected via the
Enhanced Measurement for Early Risk Assessment of
Latent Defects (EMERALD) system, a collection of de-
cision support tools used to assess the risk of software
faults. It was developed by Nortel (Northern Telecom)
in partnership with Bell Canada and others(Hudepohl
et al. 1996). Such industrial systems make practical
use of software quality classification models.

The exact methodology used by our GP system to
create models on the basis of this data, and our evalu-
ation methodology is explained below.

System Description

We conducted a case study of a very large legacy
telecommunications system, written in a high level lan-
guage, and maintained by professional programmers in
a large organization. The entire system had signifi-
cantly more than ten million lines of code, and over
3500 software modules. This embedded computer ap-
plication included numerous finite state machines and
interfaces to other kinds of equipment.

This case study focused on faults discovered by cus-
tomers after release, CUST_PR, as the software quality
metric. A module was considered/ault-prone if any
faults were discovered by customers.

not/ault-prone if CUST_PR = 0Class = /suit-prone
otherwise (1)

Fault data was collected at the module level by a
problem reporting system. A module consisted of a set
of related source code files. The proportion of modules
with no faults among the updated modules was 7rl =
0.9260, and the proportion with at least one fault was
~r.~ = 0.0740.

Our goal was a model of the updated modules, where
predictions could be made after beta testing. Soft-
ware product metrics were collected from source code
})y the DATRIX software analysis tool (Mayrmld & Coal-
lier 1996), which is part of the EMERALD system, and
were aggregated to the module level.

Development process data was largely drawn from a
development metrics data base derived from configura-
tion management and problem reporting data. EMBR-
ALD interfaces with this data base. The product and
process metrics for a module consisted of those listed
below:

FILINCUQ The number of distinct include files.

LGPATH The base 2 logarithm of the number of inde-
pendent paths.

VARSPNMX The maximum span of variables.

USAGE A measure of the deployment percentage of the
module. Higher values imply more widely deployed
and used.

BETA_PR The number of problems found in this mod-
ule during beta testing of the current release.

BETA_FIX Total number of different problems that
were fixed for the current development cycle where
the problems originated from issues found by beta
testing of a prior release.

CUST_FIX Total number of different problems that
were fixed for the current development cycle where
the problems originated from issues found by cus-
tomers in a prior release.

SRC_GRO Net increase in lines of code due to software
changes.

UNQ_DES Number of different designers that updated
this module.

UPD_CAR The total number of updates that designers
had in their company careers when they updated this
module.

VLO_UPD Number of updates by designers who had
10 or fewer total updates in entire company career.

Experimental Methodology

The basic unit for software quality modeling is an
observation, which is a software module represented
by a tuple of software measurements, xj, for obser-
vation j. The xj values are vectors of the form <
x j:l, xj:2,..., xj:n >, whose components are discrete or
real-valued software metrics. The dependent variable of
a model is the quality factor, yj, for each observation j.
The quality factor usually is the number of faults in each
software module for this study. The programs resulting
from our GP system are the models. Let Ylj be the
estimate of yj by model i. We develop software qual-
ity models based on training data where measurements
and the quality factor are available for each module.

We impartially divided the available data on updated
modules into approximately equal fit and test data sets,
so that each data set had sufficient observations for sta-
tistical purposes. The fit data set was used to build the
model, and the test data set was used to evaluate its
accuracy.

The following steps outline the methodology we used
to evaluate the effectiveness of our GP-based modeling
system:

1. For each set of system parameters to be tested, make
a number of runs sufficient to argue statistical vaiidity
(17 runs in this case).

(a) Train a GP system using only the training data set
to yield a best model for each run.

(b) Use each best-of-run model to predict the quality
factor in the validation modules, and order them
accordingly.

(c) Evaluate each best-of-run model using dynamic
partitioning criteria (based on the dependent vari-
able) detailed in Section.

2. Summarize the evaluation results across the best
models of all runs.

Dynamic Partitioning Evaluation
Let C be management’s preferred set of cut-off per-
centiles of modules ranked by predicted quality factor,
and let nc be the number of percentiles in C. In the
case study, we chose the percentiles {90, 85, 80, 75,
70, 65, 60, 50} (corresponding to denoting the top ~10,
15, 20, 25, 30, 35, 40, 50} percent of the ranking as
fault-prone). Because the dataset was actually 7.4%
fault-prone, the 92.6 percentile was added to the set
as the highest reference point. Another project might
choose different percentiles, but this set illustrates our
methodology.

Let Gtot be the total number of modules, and G~p be
the total number of fanlt-prones in the validation data
set’s software modules. The following is our evaluation
procedure used in Step lc for each model. Given an
individual, i, and a validation data set indexed by j:

1. Determine the perfect ranking of modules, R, by or-
dering modules according to y#. Let R(j) be the
percentile rank of observation j.

2. Determine the predicted ranking, Ri, by ordering
modules according to Yi#. Let Ri(j) be the percentile
rank of observation j.

3. For each cutoff percentile value of interest, c E C:

(a) Account the number of modules, Go, above the cut-
off.

(b) Account the number of actual fault-prones, Go(i),
above the cutoff.

(c) Calculate the type I error and type II error for var-
ious cutoff, c.

typeI~(c) Gc- Gc(i) (2)G,o, - G#

typelIi(c) GD- Gc(i) (3)G#
Because type II errors much more costly than type

I errors, our primary measure of the accuracy of each
quality model is the rate of type II errors.

Details of GP System

This section specifies the GP system used by this study.

Function and terminal sets The function set con-
sists of

~" = {+, -, x,/, sin, cos, exp’,log) (4)

where exp’(x) -- exp(vfz-), to lessen the risk of arith-
metic overflow. Divide (/), exponentiation (exp’),

EVOLUTIONARY COMPUTATION115

Table 1: The Tableau used in the case studies.

Terminal set: Software product and process
metrics available from each data
set and ~, varying over the range
[0,1].

Function set: {+,-, x,/, sin, cos, exp’,log}
Initialization: Ramped half-and-half.
Fitness cases: 1825 (cccs) module observa-

tions, each a tuple of numeric
software metrics.

Raw fitness: summation of correct prediction
rate of fanlt-prones modules (see
Equation 5).

Std. fitness: same as raw fitness.
Wrapper: Ranks fitness cases on basis of

predicted number of faults.
Parameters: M = 2000, G = 50.
Success Pred.: Ranking of modules obtained by

best-of-generation exactly equals
that based on actual faults.

ADFs?: No

and natural logarithm (log) are modified to protected
against invalid inputs. The terminal set, T, consists of
the available software product and process metric vaxi-
ables (the independent variables of the data sets) and
the ephemeral random constant generator function, ~,
taken from Koza(Koza 1992).

Fitness function. Raw fitness of individual i is de-
fined as the type H error rate of individual i.

f.d~(i) = 1 - typelI~(p) (5)

where p, the "training cut-off", is a cut-off percentage
value. We made 17 runs for each of three different val-
ues of p: { PII = 7.4%, PI2 = 30%, Pa’3 = 50%}.

We intend to optimal the results at specific points
of cutoff, in order to discover the impact to prediction
results.

Run termination criterion. A run is terminated if
an individual i with fadj(i) = 1 is encountered, a "per-
fect" solution to the problem, or when the maximum
number of generations is reached. The maximum num-
ber of generations is 30.

Table 1 is the Koza Tableau for the GP runs, listing
the system parameters used.

Results of the Case Study
We completed 17 runs for each of the three different
training cut-offs The runs were executed on a Spaxc
20, using a modified version of Zongker et a/’s Lil-gp
system. Because of the size of the observation set anti
the number of variables involved, each run consumed
over 6 hours of CPU time.

116 EVETr

Product and p _roce~___ metric
100 .. .

I
i90 i

80 - --

3O

2O

10

0 5 10 15 20 25 30 35 40 45 50 55
Cutoff %

Figure 1: Misclassification rate for product and process
metric.

Each best-of-run was applied to the validation set of
observatkms to achieve a ranking of those modules. We
then calculated the Type I and Type II error rates for
each of the cut-offs in C. Figure 1 plots the results, the
misclassification rates obtained at each percentile level,
c, calculated over the validation data set. There axe
four pairs of curves in the graph, each pair showing the
Type I mid Type II error rates for each of the fitness
functions (there are three, one for each training point),
mid one showing the error rates that would be expected
if modules were chosen randomly for reliability enhance-
ment (i.e., if the cut-offs were applied to random order
rankings of the modules.) Each data point was the av-
erage of 17 +~alues, mid the standard deviation for the
data points varied from 0.24% to 7.66%.

Comments
The results of our case study showed that the GP-
generated software quality models far outperformed
random reliability testing. This is not particularly
surprising, but the degree of superiority is gratifying
nonetheless.

The different values of the training cut-off, p, in the
fitness function did not make any significant changes
in type I error rate. However, the type II error rate
did seem to be affected. The figures show that the pre-

dictive performance of the GP generated models were
greatest at those cut-off percentages that were similar
to the training cut-off. The Ptl (a 7.4% cut-off) trained
GP models achieved the lowest Type II error rates at
the 7.4% cut-off for the validation data. Likewise the
PI2 and Pts trained GP models achieved the lowest
Type II error rates at the 30% and 50% cut-offs. To
achieve optimum performance from the system, then,
it should be trained at a pre-set training cut-off.

In using this system, a software manager would ob-
tain a graph much like Figure 1 using different training
cut-offs. The manager can then look at the error rates
obtained by the various cut-off values, and use those
rates to determine which cut-off value is obtains error
rates that optimize the cost of reliability analysis, but
which are within the financial and man-power resource
constraints.

The manager can then execute an additional set of
GP runs, using training cut-offs clumped closely around
the desired cut-off value. Our experiments show that
the resulting GP generated model should be quite ac-
curate, enjoying the lowest type II error rate of all the
models evaluated in the process on the validation or
novel data.

Lastly, the addition of process metrics did yield mod-
els with greater accuracy. The type II errors rates of
the models using both process and product metrics were
generally superior to those models generated using only
product metrics.

Conclusion

This paper, in combination with our related previous
work (Evett et aL 1998) has demonstrated the effec-
tiveness of GP to generate accurate software quality
models in real-world, industrial domains. Because of
the authors expertise in the field of software quality
management, we are confident that our system’s perfor-
mance compares very well with other methods. Indeed,
our current work involves the integration of this GP
system into the existing EMERALD industrial software
management system. Our future, however, work will
concentrate on completing formal comparative studies
between our GP-based system, and mature industry
techniques already embraced by the software engineer-
ing community, such as discriminant analysis, and var-
ious regression tools. Such results will further bolster
GP’s claim to be a significant, real-world tool.

Acknowledgements

This work was supported in part by a grant from Nortel.
The findings and opinions in this study belong solely to
the authors, and are not necessarily those of the spon-
sor.

References
Evett, M.; Khoshgoftar, T.; der Chien, P.; and Allen,
E. 1998. Gp-based software quality prediction. In
Koza, J.; Banzhaf, W.; Chellapilla, K.; Kaiyanmoym,

D.; Dorigo, M.; Fogel, D. B.; Garzon, M. H.; Gold-
berg, D. E.; Iba, H.; and Riolo, R., eds., Genetic Pro-
gramming 1998: Proceedings o] the Third Annual Con-
Ierenee. San Francisco, CA: University of Wisconsin,
Madison, Wisconsin.
Fenton, N. E., and Pfleeger, S. L. 1997. Software
Metrics: A Rigorous and Practical Approach. London:
PWS Publishing, 2d edition.
Hudepohl, J. P.; Aud, S. J.; Khoshgoftaar, T. M.;
Allen, E. B.; and Mayrand, J. 1996. Emerald: Soft-
ware metrics and models on the desktop. IEEE Soft-
ware 13(5):56--60.
Hudepohl, J.P. 1990. Measurement of software
service quality for large telecommunications systems.
IEEE Journal of Selected Areas in Communications
8(2):210-218.
Khoshgoftaar, T. M.; Allen, E. B.; Kalaicheh, an, K. S.;
and Goel, N. 1996. Early quality prediction: A
case study in telecommunications. IEEE Software
13(1):65-71.
Koza, J. 1992. Genetic programming: on the program-
ming o] computers by means o] natural selection. MIT
Press.
Mayrand, J., and Coallier, F. 1996. System acqui-
sition based on software product assessment. In Pro-
ceedings o] the Eighteenth International Conference on
Software Engineering, 210-219. Berlin: IEEE Com-
puter Society.

EVOLUTIONARY COMPUTATION117

