
Robustness of Case-Initialized Genetic Algorithms

Sushil J. Louis
Genetic Adaptive Systems LAB

Department of Computer Science
University of Nevada

Reno- 8955?
sushil@cs.unr.edu

Judy Johnson
Genetic Adaptive Systems LAB

Department of Computer Science
University of Nevada

Reno- 8955?

Abstract

We investigate the robustness of Case Initialized Ge-
netic AlgoRithm (CIGAR) systems with respect
problem indexing. When confronted with a series of
similar problems CIGAR stores potential solutions in
a case-base or an associative memory and retrieves
and uses these solutions to help improve a genetic al-
gorithm’s performance over time. Defining similarity
among the problems, or indexing, is key to performance
improvement. We study four indexing schemes on a
class of simple problems and provide empirical evidence
of CIGAR’s robustness to imperfect indexing.

Introduction
Genetic algorithms (GAs) are randomized parallel
search algorithms that search from a population of
points (Holland 1975; Goldberg 1989). We typically
randomly initialize the starting population so that a ge-
netic algorithm can proceed from an unbiased sample
of the search space. However, we often confront sets of
similar problems. It makes little sense to start a prob-
lem solving search attempt from scratch with a random
initial population when previous search attempts may
have yielded useful information about the search space.
Instead, seeding a genetic algorithm’s initial population
with solutions to similar previously solved problems can
provide information (a search bias) that can reduce the
time taken to find a quality solution. Our approach bor-
rows ideas from case-based reasoning (CBR) in which
old problem and solution information, stored as cases
in a case-base, help solve a new problem (Riesbeck
Schank 1989).

The case-base does what it is best at -- memory or-
ganization; the genetic algorithm handles what it is best
at -- adaptation. The genetic algorithm also provides
a ready-made case generating mechanism as the indi-
viduals generated during a GA search can be thought
of as cases or as parts of cases. CBR systems usually
have difficult in finding enough cases; our problem is
the opposite. We need to sift through a large number
of cases to find potential seeds for the initial population.

Copyright (~)1999, American Association for Artificial Intel-
ligence (www.aaal.org). All rights reserved.

CIGAR uses the stored cases to initialize it’s popula-
tion when attempting a new problem. Cases are chosen
based on an index of similarity between the new prob-
lem and the problems stored in the case-base. As the
GA proceeds, these solutions are changed by the GA
operators of crossover and mutation to adapt and be-
come solutions to the new problem. We hope that, by
storing solutions to similar problems in a case-base, we
will be storing building blocks common to solutions to
our new problems. When we inject these stored solu-
tions into our initial population for the new problem, we
will already have some of the schemata that are needed
to build the solution we want.

From the machine learning point of view, using
cases instead of rules to store information provides an-
other approach to genetic based machine learning. Hol-
land classifier systems (Holland 1975; Goldberg 1989)
use simple string rules for long term storage and genetic
algorithms as their learning or adaptive mechanism. In
our system, the case-base of problems and their solu-
tions supplies the genetic problem solver with a long
term memory and leads to improvement over time.

Indexing is a major issue for case retrieval, especially
in "poorly-understood" problems. We use a prototype
system on a test problem to study the effect of different
indexing schemes on performance. Studying a well un-
derstood simple problem provides the necessary analy-
sis and intuition that will allow principled application of
our system on more complex real-world problems. Pre-
liminary results indicate that CIGAR is resilient with
respect to indexing scheme and even improves perfor-
mance when a misleading noisy indexing scheme is used.

The next section provides some background and de-
fines our set of similar test problems. Section describes
our methodology and outlines our baseline indexing
scheme. Results from our baseline indexing scheme and
variations on this scheme follow. The last section pro-
vides conclusions and directions for future research.

Background
Early work in combining genetic algorithms and case-
based systems was done by Louis, McGraw (Louis,
McGraw, & Wyckoff 1993) and Wyckoff, who used
case-based approach to explain the process of gener-

EVOLUTIONARY COMPUTATION129

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

ating solutions using a genetic algorithm. Their ap-
proach was more concerned with using the case-base to
gather information about the development of the solu-
tions over the intermediate generations of the genetic
algorithm. This study also had initial promising results
from seeding their populations with promising schema
generated early in the GA run and later lost (Louis,
McGraw, & Wyckoff 1993). Later work by Louis dealt
with the open-shop scheduling problem, circuit design,
and a host of other applications providing empirical ev-
idence of the combined system’s efficacy (Liu 1996;
Xu & Louis 1996; Louis & Li 1997; 1998; Louis & John-
son 1997). The thrust of this work involved research
into selecting appropriate cases to inject and the num-
ber of cases to use in seeding the population. Again, re-
sults were promising, with better solutions being found
in a shorter time period.

Other early work in this field was done by Ramsey
and Grefenstette (Rmnsey & Grefensttete 1993). They
used a case-base to initialize populations for a GA find-
ing the best strategies in a tracker/target simulation
with a periodically changing environment. Solution
strategies for similar environments were used to initial-
ize the population ea(~ time the environment changed.
Improvements in results with the case-base were ob-
served both when compared to the GA running with no
knowledge of the chmlge in environment and when the
GA was restarted when the environment was altered.

More current work by Louis and Johnson shows
that combined genetic "algorithm case-based systems
improve their performance with experience on a sim-
ple test problem and on problems in combinational cir-
cuit design, traveling salesman, and scheduling (Louis
& Johnson 1997). Other problems, however, may not
have the properties of our test problem set that allowed
us to use a simple problem indexing scheme. To test our
systcm on other types of problem distances we change(!
the method we used to choose cases for injection and
studied performance on our test problem reviewed be-
low.

Our problem set is based on the number of one’s in
a bit string. We considered problems where a string
of ones was followed by a string of zeros. Consider a
string of length 10. Choose a position M in this string.
Let nl be the number of ones to the left of M and no
the number of zeros to the right of M. The fitness of
this string is fitness = nl + no We let M be the index
of a problem in this class. The maximum fitness of
any of the problems in this class is l, the length of the
string. Indexing is easy since the index of problem i,
Pi is simply M the position that defines the start of
zeros in the string. The distance between two problems
P~ and Pj is I Pi - PJ I. When the distance between
two problems is smaU the solution strings are similar;
if two problems are within distance one of eadl other,
the difference in the solution is one bit position. The
number of problems in the class is equal to the length
of the string used for the solution.

Having constructed a problem with a simple known

130 LOUIS

effective indexing scheme we tested CIGAR’s perfor-
mance on a 50 problem set to establish a baseline for
comparison. We then perturbed our indexing scheme
to test CIGAR’s robustness with respect to indexing.

Case-Based Initialization
Choosing the correct cases to inject is an important pa-
rameter. Liu found the following general trends in case
selection (Liu 1996). 1) As problem distance increases,
injecting cases with lower fitness results in better solu-
tions. 2) This trend is emphasized with larger problem
sizes. 3) A quicker flattening out of the performance
curve (average or maximum fitness versus time) is seen
when higher fitness individuals are injected. Keeping
these trends in mind, we wanted an indexing strategy
that would chose lower fitness individuals when prob-
lem distance was high and higher fitness individuals
when problem distance was low. For indexing, we set
a threshold value and calculated the linear distance,
dist(Pi, Pj), of the new problem to a problem stored
the case-base.

dist(Pi, Pj) =t Pi- Pjl

where Pi is the new problem mid Pj is a problem from
the case-base. If this distance was less than the thresh-
old value, the solutions to problem Pj were put in
the usable list. Seed individuals were chosen from the
strings in the usable list using distance proportional se-
lection. The probability Probp; that solutions to prob-
lem Pj would be chosen for injection was:

dist (P~, Pj)
Probpi = 1 - ZP~eCB dist(Pi,P/)

where CB denotes the case-base and dist(P/, Pj) desig-
nat.cs the linear distance between problems Pi and Pj.
This distance proportional selection is similar to roulette
selection used for the classical GA. More strings are
chosen from those solutions in the case-base that are
solutions to a problem close to the new problem. If
no previous solutions are within the threshold distance,
problems are randomly chosen from the case-base and
solutions to those problems are placed in the usable list.
In either case, individuals are chosen from generations
based on the problem distance, with the probability of
choosing an individual from a particular generation in-
versely proportional to the problem distance. When
Pj is close to the new problem Pi, solutions are chosen
f’rom later generations or from the best solutions which
are also stored in the case-base. If Pj is not close to
the new problem, Pi, the GA is seeded with solutions
from earlier generations which are presumed to be of
lower fitness in solving the Pj, the problem stored in
the case-base.

Elitist selection provided results that were much bet-
ter than roulette selection, and we used it for the rest
of the work presented in this paper. In the next section
we study the time taken to find the best solution to the
problem.

Baseline Results

We chose a string length of 100 and the GA was run 10
times with different random seeds, solving 50 randomly
chosen problems with indices between 25 and 75. l~-
sults were averaged over these 10 runs. Each run of
the GA generated it’s own set of 50 problems, and dur-
ing each run of 50 problems it was possible that the
same problem could be chosen more than once. Fig-
ure 1 (top) shows the number of generations taken
find the best solution (y-axis) for each problem attempt
(x-axis). Using injected cases, we see a decrease in the
number of generations taken to arrive at the best so-
lution. Without injected cases the time taken to the
best solution remains approximately the same. By the
time approximately 1/2 of the problems have been at-
tempted, there is a statistically significant decrease in
the time take to solve a new problem. When we look

7=

wren

".=.~ j J

Figure 1: Solving 50 randomly generated problems with
possible repetitions. Left: Time to best solution Right:
Best fitness

at the quality of solutions generated, it can be seen
in figure 1 (bottom) that the best fitness found with
injected cases increases with experience. Without in-
jection, the maximum fitness found is fairly constant.
Using CIGAR the maximum fitness increases as more
problems are solved.

We next ran the GA for 50 problems using the same
set of problems in the same order for both the case-
initialized GA and the random GA and for eac~l of the
10 runs of the GA. It was still possible to repeat a prob-
lem during any of the 10 runs. Once again, the time
taken to the best solution was shorter with our case-
base injection than without. (Figure 2 left). The best
fitness found was also better with the injected cases
than without. (Figure 2 right).

Looking at the set of 50 problems where each prob-
lem is only attempted once and the same problems are
evaluated in the same order in each of the 10 runs, we
get similar results again. Time taken to best solution
decreases (Figure 3 (top)) and best fitness found
creases (Figure 3 (bottom)). In this case the quality
of the solutions found using CIGAR was approximately
the same as when repetition of problems was allowed.
The time taken to the best solutions was slightly longer
on average without repetition than when repetition was

Figure 2: Solving 50 randomly ordered problems with
possible repetitions. Identical order for all ten runs.
Left: Time to best solution Right: Best fitness

allowed, but once again there was a statistically signif-
icant decrease in time to best solution once approxi-
mately 1/2 of the problems were solved.

....... !i
!,,

!_ j... J /.. ..I.. -’ -..
h .M... n.,l..,n ~ r,..v.

Figure 3: Solving 50 randomly ordered problems with-
out repetitions. Identical order for all ten runs. Left:
Time to best solution Right: Best fitness

These are the results we want from a learning sys-
tem; the system improves with experience, taking less
time to arrive at better solutions. Our system conforms
to Mitchell’s definition of a learning system (Mitchell
1997). Mitchell defines a machine learning program as
follows (MitcheU 1997):

A computer program is said to learn from experi-
ence E with respect to some class of tasks T and
performance measure P, if its performance at tasks
in T, as measured by P, improves with experience
E.

Each problem confronted by the system is a task and
our performance measure has two facets, time and qual-
ity. A decrease in time taken or an increase in solution
quality result in a performance measure improvement.
Our results so far, show that both performance mea-
sures improve but we will be satisfied with an improve-
ment in either and expect to find real-world problems
where only one performance measure improves.

Results with other Indexing Schemes

Our system does generate better results in less time
when we have a good indexing system. Real world prob-

EVOLUTIONARY COMPUTATION131

lems, however, don’t usually have the properties of our
problem set. that allowed us to use a simple linear prob-
lem distance indexing scheme. We therefore perturbed
the simple linear indexing scheme (shortened to linear
scheme in the rest of the paper) to study CIGAR per-
formance under more realistic conditions.

Randomized Indexing

We studied cases where the distance was not linear.
First we looked at a rmldomized case, where the prob-
lems were randomly inserted into all array and the array
indices were used to calculate problem distmme. Dis-
tance was calculated as

Distcalc =l i-Jl

where i azld j are indices into the array of randomly
ordered problem numbers. The actual distance is

Distactu,~ =1 ProbArray[i] - ProbArray[j]]

and, therefore,

Dist,,ct,,,t # Distc,ae

As can be seen from Figure 4 (top) the linear array ar-
rived at the best fitness faster than the random array
based injection., but, the random injection still reaches
it’s best fitness faster thazl a purely random initializa-
tion (canonical GA). Figure 4 (bottom) shows the
fitness found is higher with a linear distance calculation
than with random distance, but both are better than a
purely random initialization. This is the expected be-
havior, since using the random array to choose cases

I,I.. j:-
i:ii
:2

"’ " IIA

.............. 1 .. .1.. J 1

Figure 4: Solving 50 randomly ordered problems with-
out repetitions. Identical order for all ten runs. Linear
and random injection versus canonical GA. Left.: Time
to best solution Right: Best fitness

for injection creates a situation where cases are chosen
randomly with no respect to problem distance. We ex-
pect that. using the true measure of problem distance to
choose cases for injection will result in selecting more
appropriate cases thml a system which merely chooses
them at random. The random case injection still has
better performance than random initialization becanse
even randomly chosen cases axe still solutions to a prob-
lem which requires a block of ones in a row and then

132 LOUIS

a block of zeros. These blocks of ones and zeros be-
come buihling blocks to solutions for problems which
require similar blocks of ones and zeros, therefore they
help the GA to find a solution faster thin1 a random
initial population.

Quadratic and Exponential Indexing

We also studied CIGAR’s robustness with respect to
indexing when the index used is a quadratic or expo-
nential function of problem distance. Problem distance
was therefore calculated using

Distc.lc : problem distmlce"

,’md
Distc,lc = 2pr°biemdis~ance

for quadratic and exponential indexing respectiw,ly. We
used a population of 50 mid ran the GA for 50 gen-
erations. In Figure 5 (top) it can be seen that the
qtr,~lratic distance gets to it’s best fitness in t.he least
time, with lineal" indexing (baseline) producing similar
results. Exponential distances get poor improvement in
the time to best solution, producing results similar to
random initialization. Looking at Figure 5 bottom)..

~u,..l~..l

" - l .iiwar

y
.... ~u . ". .-

Figure 5: Solving 50 randomly ordered probh.ms with-
out repetitions. Identical order for all ten runs.
Quadratic, Exponential, and Linear initialization. GA.
Left: Time to best solution Right: Best fitness

both linear and quadratic indexing achieve similar best
fitnesses with exponential indexing generating lower fit-
ness solutions. Changing the distance flmction to a
qtvadratic rather than a linear flmetion, places nmre
emphasis on choosing c~-ses from those problelns in the
(’ase-base that are close to the new problein. This ad-
ditional emphasis helps with this problem set, and sim-
ilar results are achieved in less time than with ~ linear
distance function. However, when we increase this em-
phasis on closeness even nmre by using an CXl)onential
distance function, we decrease the fitness of the soht-
tions we generate and increase the time taken to arrive
at those solutions. For this problem, exponential dis-
tances place too nmch emphasis on the cases closer to
the new probleln, causing too much exploitatkm and
not enough exploration.

CIGAR’s resistance to noise was tested by adding
a randomly chosen number between -5 and 5 to the

problem distance and using this for indexing. This was
studied for a 20, 50 or 80 percent probability of adding
the random factor. With respect to the time taken to
the best solution, basing injection on a noisy distance
calculation produced results similar to linear distance
injection. There was a downward trend in the time
taken as more problems were solved.

When we looked at the best fitness found, noisy in-
dexing generated better fitness solutions than both the
random initialization and the strictly linear distance in-
dexiag. The different probabilities did not make a great
difference in results. Figure 6 shows random initializa-
tion, linear injection and noisy injection with a proba-
bility of 80%. In this figure CIGAR is linear indexing
injection, CIGARso is noisy injection with 80% prob-
ability of noise being added to the indexing (distance)
calculation, and RANDOM is the randomly initialized
GA. Here again we see a tradeoff between exploration
and exploitation. Linear injection is able to exploit the
closeness of the injected solutions to the new problem
solution and arrive at the best fitness in less time than
the GA using the noisy injection technique. Noisy in-
jection, however, was able to achieve better fitness so-
lutions because of increased exploration of the search
space.

Figure 6: Misleading vs Linear Initialization, best fit-
hess found

Conclusions
The results demonstrate that CIGAR is robust with re-
spect to a variety of inde~ng schemes one our test prob-
lem, for our selection strategy. Thus, these preliminary
results provide evidence that we may expect CIGAR
to learn to improve performance in poorly understood
domains where we do not have enough information to
design a good indexing scheme. These results help ex-
plain the increased performance on a number of CIGAR
applications in poorly-understood domains (Liu 1996;
Xu & Louis 1996; Louis & Li 1997; 1998; Louis & John-
son 1997). Simply injecting randomly selected solutions
to similar problems results in a performance increase
while noise may actually benefit solution quality. Our
current results provide evidence of CIGAR’s robustness
and point out areas for further investigation.

We need to investigate the effects of different selection
strategies and crossover operators and are working on

quantifying our results based on a mathematical model
of our system. Another area for research is in using
an indexing scheme that is based on candidate solution
similarity rather than problem similarity. This reduces
our domain information requirements and decrease the
application dependence of indexing schemes for CIGAR
systems.

Acknowledgments
This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 9624130.

References
Goldberg, D. E. 1989. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley.

Holland, J. 1975. Adaptation In Natural and Artificial
Systems. Ann Arbour: The University of Michigan
Press.
Liu, X. 1996. Combining Genetic Algorithm and Case-
based Reasoning for Structure Design. University of
Nevada, Reno. M.S. Thesis, Department of Computer
Science.
Louis, S. J., and Johnson, J. 1997. Solving simi-
lar problems using genetic algorithms and case-based
memory. In Proceedings of Seventh International Con-
ference on Genetic Algorithms, 101-127.

Louis, S. J., and Li, G. 1997. Augmenting genetic
algorithms with memory to solve traveling salesman
problems. In Proceedings of the Third Joint Confer-
enee on Information Sciences, 108-111.
Louis, S. J., and Li, G. 1998. Combining robot control
strategies using genetic algorithms with memory. In
Proceedings of the Sixth Annual Conference on Evolu-
tionary Programming, 431-442. Springer-Verlag.
Louis, S. J.; McGraw, G.; and Wyckoff, R. 1993. Case-
based reasoning assisted explanation of genetic algo-
rithm results. Journal of Ezperimental and Theoretical
Artificial Intelligence 5:21-37.

Mitchell, T. M. 1997. Machine Learning. Boston, MA:
WCB McGraw-Hill.
Ramsey, C., and Grefensttete, J. 1993. Case-based
initialization of genetic algorithms. In Forrest, S., ed.,
Proceedings of the Fifth International Conference on
Genetic Algorithms, 84-91. San Mateo, California:
Morgan Kanffman.

Riesbeek, C. K., and Schank, R. C. 1989. Inside Case-
Based Reasoning. Cambridge, MA: Lawrence Erlbmzm
Associates.
Xu, Z., and Louis, S. J. 1996. Genetic algorithms
for open shop scheduling and re-scheduling. In Pro-
ceedings of the ISCA 11th International Conference on
Computers and Their Applications., 99-102. Raleigh,
NC, USA: ISCA.

EVOLUTIONARY COMPUTATION133

