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Abstract

Self-adaptation has been frequently employed in
evolutionary computation. Angelinc [1995] de-
fines three distinct adaptive levels which are:
population, individual, and component level.
Cultural Algorithms have been shown to provide
a framework in which to model self-adaptation
at cach of these levels. Here, we examine the
role that different forms of knowledge can play
in the self-adaptation process at the population
level for evolution-based function optimizers. In
particular, we compare the relative performance
of normative and situational knowledge in
guiding the search process. An acceptance func-
tion using a fuzzy inference cngine is employed
1o sclect acceptable individuals for forming the
generalized knowledge in the belief space. Evo-
lutionary programming is used to implement the
population space. The results suggest that the
use of a cultural framework can produce sub-
stantial performance improvements in execution
time and accuracy for a given sct of function
minimization problems over population-only
evolutionary systems.

1 Introduction

Evolutionary Computation (EC) methods have been suc-
cessful in solving many diverse problems in search and
optimization due to thc unbiased nature of their opera-
tions which can still perform well in situations with little
or no domain knowlcdge [Fogel, 1995]. However, there
can be considerable improvement in EC's performance
when acquired problem solving knowledge during evo-
lution is used to bias the problem solving process in or-
der to identify patterns in an evolving population’s per-
formance environment [Reynolds, 1993, 1996; Chung
1996]). These patterns arc used to influence the genera-
tion of candidate solutions, promote more instances of
desirable candidates, or to reduce the number of less de-
sirable candidates in the population.

Adaptive evolutionary computation takes place when
an EC system is able to incorporate such knowledge into
its representation and associated operators in order to
facilitate the pruning and promoting activities mentioned
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above. These adaptations can take place at three different
scales: the population level, the individual level, and the
component level [Angeline, 1995]. At the population
level, aspects of the system parameters that control all
elements of the population can be modified. At the indi-
vidual Icvel, aspects of the system that control the action
of specific individuals can be modified. At the compo-
nent level, adaptive ECs dynamically alter how the indi-
vidual components of each individual will be manipu-
lated independently.

However, traditional ECs have limited or implicit
mcchanisms for representing and reasoning about the
collective experience of individuals in a population. So
we need an explicit mechanism for performing these ac-
tivitics that is compatible with an evolutionary learning
perspective. In human societies, culture can be viewed as
a vehicle for the storage of information that is globally
accessible to all members of the society and that can be
useful in guiding their problem solving activitics. As
such, groups that are ablc to support a cultural tradition
can usc their cultural heritage as knowledge with which
to bias the generation of individuals on at least a pheno-
typic level. This can be achieved by using collective
knowledge to facilitate the production of phenotypes that
are promising in a given environment on the one hand,
and deterring the production of phenotypes that are less
likely to be productive on the other.

Cultural algorithms have been developed in order to
model the evolution of the cultural component of an
evolutionary computational system over time as it accu-
mulates experience. As a result, cultural algorithms can
provide an explicit mechanism for global knowledge and
a useful framework within which to support self-
adaptation within an EC system.

Cultural Algorithms are computational models that
consist of a social population and a belief space. The
experience of individuals selected from the population
space by the acceptance function is used to generate
problem solving knowledge that resides in the belief
space. The belief space stores and manipulates the
knowledge acquired from the experience of individuals
in the population space. This knowledge can control the
cvolution of the population component by means of the
influence function. As such a Cultural Algorithm is a
dual inheritance system that supports the devclopment of
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hybrid systems consisting of an underlying evolutionary
search engine at the population level and a symbolic
learning component at the belief level. In this study, the
population component of the Cultural Algorithm will be
Evolutionary Programming (EP) and the global knowl-
edge will be represented using interval schema,

The purpose of this study is to find the relationships
between cultural algorithm mechanisms and optimization
performances. Our conjecture is that the knowledge
needed to control evolutionary search by cultural algo-
rithms will be dependent on the problem’s characteristics
and structure.

2 EP and Self-Adaptation

EC algorithms for optimization can be generally de-
scribed by the following equation:

x[p,n]"™" = s(v(xlp.n]"))
where x{p,n])’ is a population which consists of p candi-

date solutions with n parameters under a particular repre-
sentation at time t. v is a variation operator to be applicd
to generate new solutions, and s is the selection operator
that determines which candidate solutions will be sur-
vived in the next population x[p,n]"*'. In EP, s is imple-

mented by tournament selection mechanism. The fol-
lowing is the basic EP algorithm.

2.1 A basic EP Algorithm

This is a basic EP algorithm framework [Fogel, 1995]
that will scrve as the population component for the Cul-
tural Algorithms described here.

(1) Select an initial population of p candidate solutions,
Apn]. from a uniform distribution within the given do-
main for each of the n parameters.

(2) Assess the performance score of each parent solutions by
the given objective function f.

(3) Generate p new offspring solutions from x[p,n] by ap-

plying the variance operator, v. Now there are 2p solutions
in the population.
x[2p.n]=v(x[p.n])

(4) Assess the performance score of each offspring solutions
by the given objective function f.

(5) For each individual, select ¢ competitors at random from
the population of 2p size. Conduct pairwise competitions
between the individual and the competitors. This proce-
dure can be described as:

For each x,, i =1,A 2p. a value, number of wins, w; is
assigned according to:

" L i f) S Fxy)
W, = w = : -
) ,2=:’ ! i {0. otherwise

where o#i, the index for a opponent o=truncate(2pu +1).

truncate(x) produces the greatest integer less than or

equal to x, ¢ is the number of competitions, and
u ~ U(0,1), uniform random variable.

(6) Select the p solutions that have the greatest number of
wins (w;, ) to be parents for the next generation.

(7) The process proceeds to step 3 unless the available execu-
tion time is exhausted or an acceptable solution has been
discovered.

Step (5) and (6) are procedures for the selection operator
s usually used in EP.

2.2 Component level SA mechanism

Schwefel [1995] devised a method for Evolution Strate-

gies to self-adapt ¢, a parameter used to calculate mu-

tation step sizes. This method can be represented as:
X[p,n]"' = s(v( X[p,n]"))

where X is a composite structure of both real number x

and o . In this paper we use the following notation to

represent this structure: X =<x,0> . Here, we denote jth

parameter value for ith individual as simply x; ., and the

i,j?
Jth o value for ith individual as simply o,,;- The varia-
tion operator in this method was defined as:
For all components j=1,A ,p and j=1A ,n
peig = X0y 10N ;(0,1)

Cpuiy =0, exp(t’ N, ,;(0.D+7-N,,(0,1)
where y, ,0,1) is a realization of a Gaussian normal devi-

X

ate for the jth parameter of ith individual. Xpis is an off-
spring of x, , before selection. The offspring’s step size

is log normal perturbation of the parent’s step size. The
global factor T-N, ,(0) allows for an overall change of

the mutability, whereas T-N,,(0.]) allows for individual

changes in the step size of mutation. His recommended

seitings for the parameters T and 17’ are

7' =(J2dn)". 7= (2n)" TEspectively.

2.3 Individual level SA mechanism

Here we developed an individual level self-adaptive EP
that can be represented as:

< X[ p,n),agelp}>"*'=s(v( < X[p,nl.age{p]>'))>
where gge, means the age for the individual i. This rep-
resents a survival index for an individual. When an indi-
vidual is initially generated by mutation, the age is zero.
After the tournament selection, if an individual survives,
then the count is increased by one. If the survival count
reaches the number of individuals in the population, the
counter is re-initialized to one. This index is used in the
following way. The older an individual, the more likely it
is to be associated with be a local optima. In order to
escape from this locality, a larger perturbation may be
required than normal. If we use this idea into Schwefel’s
self-adaptive method, the variation operator will be:

For all components i=1,A ,p and j=1,A ,n
Xpaij = X 1O, ;-age; 'Ni.j(ovl)
G, =0, -exp(t’-N, (OD+T- N, ;0.1
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3 How to Culture EP

In the cultural model, the results of selection and per-
formance evaluation at the population level arc used as a
basis for adjusting and reasoning about beliefs in the
belief space. These new beliefs, in turn, effect the selec-
tion and adaptation of individuals at the population level.
Thereforc we view Cultural Algorithms as supporting
population level self-adaptation [Reynolds, 1996].

Cultural Algorithm for optimization problems can be
represented in general as:

XL pon1" = Snnre OV curnare (XL ponY Jbeliefs’ ), beliefs')
beliefs can be used for influencing variance operator
and/or selection operator. beliefs itself can be adjusted as
the following:

beliefs""' = adjast(heliefs', uccept(p,t))

There arc two basic categorics of knowledge that we will
consider: normative and situational. Normative knowl-
edge is expressed here in interval form and provides
standards for individual behavior and as well as guide-
lincs within which individual adjustments can be made.
Situational knowledge provides a set of exemplar cases
that are useful for the interpretation of specific individ-
ual experience. While there are other types of knowledge
that can be contained within a cultural system, these two
were sclected because they are viewed to be fundamental
to the operation of cultural systems.

3.1 Beliefspace structure

The formal syntax of the beliefs defined in this study is a
pair structure < E, N|a|>, where E is a set of cxemplar
best individuals that constitute the situational knowledge.
The normative component, N, is a collection of interval
information describing cach of the n paramcters. Each
one of the intervals in the belief space is represented as a
triple< J,L,U >. I corresponds to a closed interval, a
continuous set of real numbers x, represented as a an
upper and lower boundary pair:
I'=1lu]={xll< xS u}.

Both of the bounds ., /(lower bound) and u« (upper
bound), arc initialized by the given domain values. L,

represents the performance score of the lower bound [ for
parameter j. U, represents the performance score of the

upper bound u for parameter j. They arc initialized as
+oo,

3.2 Acceptance function

The following fuzzy accept function as shown in figure 1
determines the number of individuals which can be used
to adjust the belicfspace.

Current . .
. Fuzzy Inference Number of Individuals
Generation . -
Acceptance —+ which will impact the
Success __ Function current beliefs
Ratio

Figure 1. The Fuzzy Inference Acceptance Function
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The antccedent membership functions used here arc
given in figures 2 and 3. The consequent membership
function is shown in figure 4. The sct of rules used here
arc shown in table 1. -

I'T:
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N N 4 1
v T T T y T T T

10 50 90

Figure 2 Membership functions for Current Generation

v

Figure 3 Membership functions for Success Ratio
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Figure 4 Membership functions for num. individuals
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Table 1 Fuzzy Inference Rules

3.3 Adjusting the belief space

Here, the situational knowledge consists of the current
best and the old best parameter vector found so far, that
is, E= {E',E"') and updated by the following rule:

g,..={ E, i sy <rd

ontherwise
where £ denotes the best individual (solution parameter

st

vector) in the population at time t.

The normative knowledge component in the belief
space, N, is updated as follows. The parameter values for
individuals selected by the acceptance function are used
to calculate the current acceptable interval for cach pa-
rameter in the beliel space. The idea is to be conscrva-
tive when narrowing the interval and be progressive
when widening the interval. Therefore, we can lormulate
the interval update rule as the following (assume ac-
cepted individuals from the operator accept(p,t) are ith

and kth individual):
For the lelt boundary and its score for parameter j:



ol = x, ifx; 81 or flxiy<L
! y otherwise

{f(X.) if x,S 1 or fix)<L,

L= L otherwi:
'y rwise

1
where the ith individual affects the lower bound for pa-
rameter j. )| is the lower limit for parameter j at genera-

tion 7 and £ denotes the performance score for that lower
limit.
For the right boundary and its score for parameter j:
. {x,_, if x,2u or f(x)< U]
u} = !
u

A otherwise

U = fx) if x 24 or f(x)<U,
! U, otherwise

where the kth individual affects the upper bound for pa-
rameter j. u! represents upper limit for variable j at gen-

eration ¢ and ¢ denotes the performance score for it.
I

3.4 Cultured EP algorithm

The first step below should be inserted between (2) and
(3) and the second step between (6) and (7) in the basic
EP algorithm shown in subsection 2.1.

e Initialize the belief space with the given problem
domain and candidate solutions. The structure of the
belief space was given in subsection 3.1.

e Update the belief space using the acceptance func-
tion in 3.2, The beliefspace update rule is described
in sections 3.3 and 3.4.

4 Cultured EP versions

The belief space knowledge can influence the evolution-
ary operator v, variation, in two ways: (1) determining
the size of the changes, step size (2) and determining the
direction of change, e.g. increase or decrease the current
value. Four basic categories of Cultural Algorithms were
produced by to support each of these possible permuta-
tions.

4.1 CAEP(Ns)

This version uses only normative knowledge for deciding
the step size of mutation.

X, =X, ; +size(};)-N, (0,1)
where size(/,) represents the size of belief interval for
the parameter j .
4.2 CAEP(Sd)

This version uses only situational knowledge for decid-
ing the direction of mutation,

x,Hoy Non i x,<E,
xpon.j = xl.l —lol'.j - Nt.; (ovl)l ‘r xi.j > Ei
x,+0,, N, otherwise

where g, represents the individual level step size for ith

variable of jth individual. E, is the best exemplar pa-

rameter value as the situational knowledge for variable j
in the belief space.

4.3 CAEP(Ns+Sy)

This version integrates both normative knowledge for the
step size and situational knowledge for mutation direc-
tion together as shown in the following influence rule.

X, +|siz¢(lj). N,._l.(O,])I if x,<E,
Xpeij =% —lsize(l,-)-N,._, (0.1)| if x,>E,
x,; +size(1))-N,,(O)) otherwise

4.4 CAEP(N,+Ny)
This version uses only normative knowledge for both
step sizes and directions. The basic idea behind this ver-
sion is to perturb small when the parameter value of a
parent is in good acceptable range at random direction;
otherwise perturb according to the current belief range
found toward the current range in the belief space.

X,y +|sizett ) N, o) if x,<l

Ky =% Xy —l.riz:(l,-)-N,-_,-(O.l)l if x;>u,
x;;+B-sizet],)- N, (01 otherwise

where {, and «; means the current lower limit and upper

limit in the belief space for the parameter j respectively.
Bis setto 0.2.

5 Implementation and Test Results

In this study we implement systems with different level
of self-adaptation as shown in table 2. We investigate
how the different sclf-adaptation mechanisms and knowl-
edge types affects problem solving performance of 28
different optimization Jroblems, shown in Figure 5.
Self-adaptive level

System Name

Schwefel's SA

Indv. Level SA

CAEP(Ns), CAEP(Sd),
CAEP(Ns+Sd), CAEP(Ns+Nd)
Table 2 Implemented Sysytems

Component Level
Individual Level
Population Level

For fair comparisons, we used the same population size
(p=40), the same number of function evaluations, the
same number of maximum generations, and the same
same number of tournament competitions. Evolution
starts from the same initial population for each problem.
Used initial sigma for Schwefel’s SA was 5.0.

It is possible that a perturbed offspring can violate the
given domain constraints. When that happened a sto-
chastic correction method is employed to prodcue a legal
individual. For example, if a mutation violates the
boundary for the parameter, the new value for the pa-
rameter will be forced to be stochastically near the
boundary but within the required range. This is achieved
by the following rule.

dll+lN,-_,(0.0.l)I if Xp.,,<di,
Xpey =4, =N, (0,000 if Xy ;>du,

Kparj otherwise
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where dl, and du, represent the lower and upper limits

of the domain constraints for parameter j.
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Since no single search algorithm is best for ull optimiza-
tion problems, we are trying to test as many different
functions possible. A broad spectrum of function optimi-
zation problems [Fogel, 1995; Salomon, 1996; Schwefel,
1995], shown in figure 5, reflect different degree of
complexity. Also we developed a metric to assess the
difficulty of evolutionary learning for a function. This
metric can also be used to predict the number of genera-
tions nceded to solve a problem based upon features of
its functional landscape. The features are based upon
parameters that have long been associated with hard to
solve functions in Al as suggested by Winston. The pa-
rameters in this metric are dimension, modality, and de-
composibility. As shown in table 3, modality is assigned
0 if a function is unimodal, a 1 if a function has a few
local minimums, a 3 if a function has many local mini-
mas. If a parameter is independent of other parameters in
a function, this function is regarded as easy to optimize,
since optimization can be performed in a sequence of n
independent optimization processes. From this observa-
tion, the following condition is developed to find
whether a function is easy to optimize or not [Salomon
1996].

a5

dx

If this condition is satisfied, the function is as easy to
optimize as decomposable functions, because it allows us
to obtain solutions for each y independently of all other

= gl (D

parameters. Table 3 shows all the characteristics of
functions tested. Column 6 of the table shows the results
of applying this condition; if the function s
decomposable, the symbol D is ussigned; if not, then ND
is assigned. From the above information, we measure the
function difficulty metrics, f,,, by the tollowiny tunction.
£ (N, M, Dy=200+ 5% N *2" * D

where N: Number of Parameters; M: Modality(0 ~3). D:
(1 - Decomposable, 2 - Not decomposable). The 7th col-
umn of the table shows the calculated function metrics
for each function. This valuc predicts the number of re-
sources (in this case temporal in terms of generations)
needed to solve the problem based upon its structure.
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Table 3 Characteristics of the test functions

Table 4 shows the test results from 20 runs of each on
a Pentium processor for each system and test function.
The first value in a cell shows the average CPU time in
milliseconds 1aken to complete cach run. Completion
occurs if either the solution is found or the given number
of generations has been reached. The time is measured in
such a way that one the solution is found to 6 significant
figures, then the process is stopped; otherwise the proc-
ess is continued unless the maximum number of genera-
tions has been rcached. The sccond value in parenthesis
gives the average percentage of finding the global mini-
mum for the 20 runs. The mean best value for the func-
tion at completion is given as the third value. The best
system for each function is given in bold characters
based upon accuracy with generations, and mean best
value used as tie-breakers in that order. The bottom row
shows the average % of runs that found the global mini-
mum for cach system.
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Table 4 Performance Results

6 Conclusion

The test results indicate that the population only systems
were always outperfromed by at least one of the cultural
Algorithm configurations. However, since a “cultured”
system must have additional overhead to process the
knowledge contained in the belief space is it necessarily
true that Cultural versions need more time to compute
the solution as opposed 1o the population only systems.
Our results demonstrate that if the accumulated knowl-
cdge is effective at guiding the search process, then
fewer trials and fewer generations may be needed. There-
fore, the best cultural system actually used less CPU time
to reach the required global optimum for each problem.

Also, higher level self-adaptation gives better results
in general. The results demonstrate that the use of a cul-
tural framework for self-adaptation in EP can produce
substantial performance improvements as cxpressed in
terms of CPU time, the percentage of finding global
minimum, and the mean best. The nature of these im-
provements depends on the type of knowledge used and
the structure of the problem. For example, situational
knowledge may not be useful for high dimensional
problems, since systems which use situational knowledge
like CAEP(Ns+Sd), CAEP(Sd), were not the best per-
formers for such problems. Systems that used normative
knowledge exclusively CAEP(Ns+Nd) consistently out-
performed those using situational knowledge. Also the
best performance is produced by systems that use knowl-
edge to decide both step size and direction.

References

[Angeline, 1995] Angcline, Peter A., Adapuve and Self-
Adaptive Evolutionary Computation, in Computation Intel-
ligence, 1EEE Press, New York, pp. 152-163.

[Fogel, 1995] Fogel, David B., Evolutionary Compitation:
Toward a New Philosophy of Machine Inteligence. 1EEE
Press, Piscataway, NJ

[Reynolds, 1993] Reynolds, Robert G. and Maletic, Jonathan
I., The Use of Version Spuce Controlled Genelic Algo-
rithms to Solve the Boole Problem, lnternational Journal
on Artificial Intelligence Tools. Vol. 2, No. 2, pp.219-234

[Reynolds. 1996] Reynolds, Robert G., and Chunyg, C., A Sell-
adaptive Approach to Representation Shifis in Cultural Al-
gorithms, in Proceedings of IEEE International Conference
on Evolutionary Computation, Nagoya, Japun, pp.94-99

[Salomon, 1996] Salomon, Ralf, Re-evaluating genetic algo-
rithm performance under coordinate rotation of benchmark
functions. A survey of some theoretical and practical as.
pects of genetic algorithms, in BioSystems, 39, pp.263-278

[Schwertel, 1995] Schwefel, H. P., Evolution and ptimum
Seeking, John Wiley and Sons, Inc., New York.

EVOLUTIONARY COMPUTATION 139



