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Abstract

Efficient multiprocessor task scheduling is a long-
studied and difficult problem that continues to be a
topic of considerable research. This NP-complete
problem is typically solved using a combination of
search techniques and heuristics. Traditional
solutions require a deterministic search of the
solution space, which is computationally and
temporally exhaustive. Genetic algorithms are
known to provide robust, stochastic solutions for
numerous optimization problems. This paper
describes the design and implementation of a
genetic algorithm for minimizing the schedule
length for a general task graph to be executed on a
multiprocessor system. The implementation is
scalable and adaptable to a variety of task graphs
and parallel processing systems. Several
improvements over state-of-the-art approaches lead
to a vigorous solution.

1. Introduction

The multiprocessor scheduling problem is
generally stated this way: given a multiprocessor
computing system and numerous tasks to execute, how
does one efficiently schedule the tasks to make optimal
use of the computing resources? In general, a
deterministic search of the solution space to identify an
optimal solution to this NP-complete problem is
computationally and temporally exhaustive. The
problem difficulty depends chiefly upon the following
factors: the number of tasks, execution time of the
tasks, precedence of the tasks, topology of the
representative task graph, number of processors and
their uniformity, inter-task communication, and
performance criteria. Classic solutions to this problem
(De Jong and Spears 1989; Ercal 1988; Zahorjan and
McCann 1990) use a combination of search techniques
and heuristics. While these techniques often produce
adequate solutions, the resulting schedule is usually
suboptimal. These techniques are also criticized for
lacking both scalability and performance guarantees.

Genetic algorithms (Holland 1975; Goldberg
1989) provide robust, stochastic solutions for
numerous optimization problems. This paper describes
the implementation of a genetic algorithm for

minimizing the schedule length of a task graph to be
executed on a multiprocessor system, and identifies
several improvements over state-of-the-art solutions
(Hou, Ansari and Ren 1994; Kwok and Ahmad 1997).

In this paper, the multiprocessor scheduling
problem is given as a parallel program represented by
an acyclic directed task graph. Precedence relations are
derived from the task graph, and the execution time of
each task is randomly set. All processors are assumed
to be identical, are non-preemptive, and use the shared
memory model (zero communication delays between
tasks). Unlike previous solutions, the program
developed in this project may be applied to a wide
range of scheduling problems; it is scalable and
adaptable to a variety of task graphs and parallel
processing systems. The number of tasks is easily
changed to allow schedule optimization for a variety of
task graphs with various numbers of tasks. Task and
task graph characteristics such as execution times and
precedence are readily modified. The number of
processors on the target multiprocessor system is
freely modifiable to yield schedules for arbitrary
parallel processors. Other parameters that are easily
modified include the number of iterations of the
genetic algorithm (number of generations) and
population size. Finally, the program described herein
has been constructed to execute efficiently on a
personal computer, eliminating the need for high
performance workstations traditionally employed in
this application.

2. Related Work

Hou, Ansari, and Ren (Hou, Ansari and Ren 1994)
presented a genetic algorithm that solved the
multiprocessor scheduling problem for a directed task
graph using simple genetic operations in combination
with a variety of random selection techniques. This
algorithm provided a basis for the improved genetic
task scheduler implemented for this research.

3. Implementation

Throughout this description, references to the actual
C++ implementation are contained in italics. The
executable program generated by this implementation
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is named SCHEDULE. Following traditional genetic
algorithm methodology (Holland 1975; Davis 1991),
candidate solutions are evolved by SCHEDULE from
the random initial population using fitness-
proportionate reproduction, crossover, and mutation.

3.1 Tools and Language

SCHEDULE was implemented in the C++
programming language using the Borland Turbo C++
v. 4.5 compiler. Extensive use was made of the Array
and Set classes of the Borland Container Class Library
included in the compiler. Frequent use was made also
of the Borland random number generator. The
computer used for this development was a Dell
Lattitude XPi laptop computer with an Intel Pentium
150 MHz processor.

3.2 Chromosome Representation

SCHEDULE manipulates chromosomes that contain a
sequence of task identifiers whose order indicates the
order of execution of tasks assigned to a processor.
Multiple strings collectively containing all tasks to be
executed on the processors in a parallel computing
system constitute a schedule and are called genomes
(Figure 1). Note that the precedence relations of the
tasks in each string are strictly enforced. In this
manner, the order of execution of tasks represented in
a string is legal. This representation also allows us to
ignore interprocessor precedence – the order between
tasks on different processors – during genome-
manipulating operations; interprocessor precedence is
considered only when the finish time of the schedule is
calculated. The fitness of a particular genome is
inversely proportional to the finish time of the
corresponding schedule: smaller finish times indicate
better fitness.

3.3 Initialization

SCHEDULE begins in main() by reading two input
files describing the task graph. The first file contains
task numbers and their execution times. A master list
of task objects, master, is constructed in
build_master() from the information in this file. Tasks
are numbered in consecutive increasing order
beginning with 1. Master is implemented as an array of
sets whose indices correspond to the task number and
where each set contains one task object.

The second input file contains a list of task pairs
that represent the edges leading from one task to the
next. This edge data conveys information about task
precedence. Edge data allows build_sets() to construct
of two arrays of sets, pred_array and succ_array,
whose indices correspond to task numbers and point to
sets of tasks which either precede or succeed that
particular task.

Additional information derived from the edge data
is task height. Height is calculated and assigned to
each task as a means of ordering tasks on a processor.
The height of a task is zero for any task with no
predecessors; otherwise, height is defined as one plus
the maximum height from the set of all immediate
predecessor tasks. By examining pred_array, the
height of each task is calculated in compute_height()
and stored with each task object in master.

The “height prime” (h’) of each task is derived
next. Hou et al (Hou, Ansari and Ren 1994) introduced
h’ to allow variability in task ordering and thus
increase the number of schedules in the solution space.
The value of h’ is defined as a random integer ranging
from the height of the task itself to the minimum
height of all immediate successors, minus one. The
example in Figure 2 illustrates how task 4 can have a
h’ value of either two or three. The height of task 4 is
two and the minimum height from the set of

Figure 1. An Example Genome - 7 tasks scheduled on a dual processor system
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Figure 2. Task Graph for height’ Example.

immediate successor tasks is four. Therefore the h’
value of task 4 can be either two or three. When a
particular schedule is created, one of the two values is
randomly selected as the h’ value of the task. Task 4
can be ordered on a processor after tasks of height 1
and before tasks of height 4 and not violate ordering
constraints. This example illustrates how h’ adds
variability to task ordering and increases the number of
schedules for evaluation. (Kwok and Ahmad 1997)
achieved comparable results using the start-time
minimization method.

The function compute_height_prime() uses
succ_array to randomly determine a h’ value for each
task and stores the result with each task object within
master. At this point, succ_array is no longer needed
and is deleted with the function delete_set(). A graph-
generating program described later in this report
creates input files containing task graph information
data.

Another data structure created during initialization
is the at_height array. At_height is an array of sets
whose indices correspond to h’ values, where each set
contains all the tasks with that particular h’ value. This
array is useful for quickly finding all the tasks with the
same h’ value, as required by the mutation operator
described in Section 3.5.2.

3.4 Generating the Initial Schedules

Generate_schedule() generates the initial schedules.
The number of schedules to be generated is determined
by the global variable defined in defines.h, POP,
which is the population size or number of genomes in

each generation. The schedules are stored in a three-
dimensional array of sets named genomes. The first
dimension of genomes distinguishes one genome from
the next. The second dimension identifies the
processor and the third dimension demarcates the
tasks. Due to its potentially large size, genomes is
declared globally to avoid overflowing the run-time
stack.

The process for selecting tasks and ordering them
on p processors provided an opportunity to eliminate a
shortcoming in the algorithm described by Hou et al
(Hou, Ansari and Ren 1994). In their description, the
tasks are partitioned into sets G(h), which are sets of
tasks with height h, according to their value of h’. For
each of the first p-1 processors, a random number r is
generated in the range 0 to N for each G(h), where N is
the number of tasks in the set. r determines the number
of tasks selected from the set G(h) and assigned to the
current processor p. This approach was implemented
but frequently caused either very many or very few
tasks from a set to be assigned to a single processor,
resulting in generally poor initial schedules. Also, their
description states that they “pick r tasks from G(h),
remove them from G(h), and assign them to the current
processor.”  It is not specified whether the first r tasks
in the set are always picked, or whether the tasks are
selected in some random fashion.

The approach implemented by Hou et al (Hou,
Ansari and Ren 1994) is valid for the limited case of
two-processor systems, but lacks scalability in the
number of processors used and is unacceptable for 3 or
more processor systems. Their task selection strategy
has the effect of, on average, assigning ½ of the tasks
to the first processor, then ½ of the remaining tasks to
the next processor, and then ½ of the remaining tasks
to the next processor, and so on. As a result, in many
cases, some processors are assigned many tasks while
others are assigned very few or none. The potential for
maximum parallelization of the tasks is lost.

For each task in a set G(h) and each processor p,
SCHEDULE generates a random floating-point
number r between zero and one and the task is
assigned to p if r < 1/n, where n is the number of
processors in the system. This technique tends to
distribute the tasks more evenly over all of the
available processors and maximizes the potential to
exploit parallelism.

3.5 The Genetic Algorithm

SCHEDULE terminates after MAXGEN generations
have been evolved, or when a suitable solution has
been produced. The actual number of generations
needed depends upon the number of tasks and
population size. Generally, the fewer the number of
tasks and the larger the population size, the fewer the
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number of generations required for a convergent
solution. Continuing to run the algorithm for more
generations does not improve the result.

Crossover is the first genetic operation performed
on the genomes. In each generation, all the genomes in
the population are randomly paired for crossover. For
each genome pair, crossover() is called with a
probability of PROBCROSS. The crossover site, or
location where crossover occurs in the genome pair, is
randomly selected from the valid crossover sites in a
genome pair. A valid crossover site is a point in both
genomes where the value of h’ for all the tasks before
the site is lower than the value of h’ for all the tasks
after the site. A valid site must also have at least one
task both before and after the site. Otherwise, either
none or all tasks would be swapped, and the resultant
genome would be no different than the original.

Following the crossover operation, mutation is
performed by calling mutate() with probability
PROBMUTATE for each genome. When a genome is
picked to be mutated, a randomly selected task is
swapped with another randomly selected task with the
same h’, both within the same genome.

After breeding a new generation of schedules, the
fitness of each genome in the population is computed
by calling fitness(). In fitness(), the finish time of each
genome is first computed and stored in the array
finish_times[]. Finish times are determined by
constructing a Gantt chart for the schedule represented
in the genome. At this point, interprocessor task
precedence is important and must be taken into
consideration. Figure 3 illustrates the Gantt chart for
the task graph in Figure 2 and the schedule of Figure 1.
Since tasks within a chromosome are ordered by h’, no
precedence constraints are violated. Task precedence
between processors must be enforced to when
considering the time to complete all of the tasks
scheduled in a genome. Notice, for instance, that task 4
cannot execute until task 3 has finished and task 6
cannot begin until task 5 has completed. Also notice
that tasks 1 and 2 are not dependent on each other and
can execute concurrently. When the finish times for all
the genomes in a population are known, the fitness of
the genomes can be calculated. Since the objective is
to minimize the finishing time of the schedule, the
fitness value of the schedule will be the maximum
finishing time observed in a population, minus the

finish time of the schedule (fitval[]  = worst_time -
finish_time[]). One is added to the fitness value of all
genomes so that even the genome with the worst
fitness value is non-zero, giving that genome a chance
to be selected for reproduction. Fitness values are
returned to the main function in fitness_values[].

Reproduction is applied by calling reproduce().
Reproduce() creates a new population of genomes by
selecting genomes from the current population using
weighted random numbers based on their fitness
values. Thus, genomes with higher fitness values
(shorter finish times) have a better chance of surviving
to the next generation.

It is possible for two genomes comprised of totally
different schedules to have equal fitness values.
SCHEDULE guarantees that one copy of a genome
with the best overall fitness value survives to the next
generation. The particular genome selected is the first
one in genomes with the best fitness value in the
current generation. The rest of the genomes to be
reproduced are selected via a biased roulette wheel
weighted on genome fitness values. Conceptually, a
roulette wheel is constructed where each genome
occupies a slot on the wheel whose area is proportional
to the fitness value of the genome. Random numbers
are generated and used to index into the wheel and
select a genome to be passed to the next generation.
Because genomes with higher fitness values occupy
more space on the wheel, they are more likely to
reproduce to the next generation.

Consideration was given to propagating all
genomes with the best fitness value to the next
generation. However, it was found that this approach
quickly removed variability from the population and
frequently caused rapid convergence to very poor
schedules.

3.6 Schedule Selection

At the end of a run, a call to fitness() returns the fitness
values, the best finish value is found, and the first
genome of those with the best finish time is selected
for the result schedule. The output file out.txt is
generated during the course of the program. Examining
this file reveals the desired schedule.

Figure 3. A Gantt chart displays a schedule for 7 tasks on a dual processor system
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3.7 SCHEDULE Algorithm

The algorithm for the SCHEDULE program is given
here:

Schedule (S)
Solve the multiprocessor scheduling problem:
S1. Initialize: Build the master task list. Build the

successor and predecessor task lists.
S2. Compute h’ for every task.
S3. Call Generate-Schedule and store the created

genomes (schedules) in GENOMES.
S4. Repeat S5-S6 GENERATIONS number of

times.
S5. Randomly pair the genomes in GENOMES and

call Crossover for each pair with a probability of
PROBCROSS.

S6. For each genome in GENOMES, call Mutate
with a probability PROBMUTATE

S7. Compute the fitness value of each genome. Store
the results in FITNESS_VALUES.

S8. Call Reproduce.
S9. Compute the fitness value of each genome. Store

the results in FITNESS_VALUES. Select the
genome (schedule) from GENOMES with the
best (smallest) fitness value.

Generate-Schedule  (GS)
Randomly generate initial schedules for the given

task graph for a multiprocessor system with p
processors:

GS1. Build N genomes (schedules) where N is the
population size. For each genome in the
population, repeat GS2-GS5.

GS2. Partition the tasks into different sets G(h)
according to the value of h’.

GS3. For each of the first p-1 processors do step
GS4.

GS4. For each set G(h) do step GS5.
GS5. For each task in the set, randomly generate a

number r between 0 and 1. If r < 1/p, select the
task from G(h) and assign it to the current
processor.

GS6. Assign the remaining tasks in the sets to the
last processor.

Crossover (C)
Perform the crossover operation on two genome

pairs A and B:
C1. Select crossover sites: Generate a random

number c between 0 and the maximum h’ of the
task graph.

C2. Do C3 for each processor Pi in genomes A and
B.

C3. Find crossover sites: Find the task Tji in
processor Pi that has height c, and Tki is the task

following Tji where c = h’(Tji) < h’(Tki) and
h’(Tji) are the same for all i.

C4. Do C5 for each processor Pi in genome A and B.
C5. Using the crossover sites selected in C3,

exchange the bottom parts of genomes A and B.

Reproduce (R)
Perform the reproduction operation on the

population of genomes POP and generate a new
population NEWPOP:

R1. Construct roulette wheel: Let FITNESS_SUM
be the sum of all fitness values of genomes in
POP; form FITNESS_SUM slots and assign
genomes to occupy the number of slots according
to the fitness value of the genome.

R2. Select the first genome in POP with the highest
fitness value. Add this genome to NEWPOP.

R3. Let NPOP be the number of genomes in POP.
Repeat R4 NPOP-1 times.

R4. Generate a random number between 1 and
FITNESS_SUM. Use it to index into the slots to
find the corresponding genome. Add this genome
to NEWPOP.

Mutate (M)
Mutate a genome to form a new genome:
M1. Randomly pick a task Ti that has at least one

other task with the same h’.
M2. Randomly select another task Tj with same h’ as

Ti.
M3. Form a new genome by exchanging the two

tasks Ti and Tj in the genome.

There are several differences between SCHEDULE
and the algorithm presented by Hou et al (Hou, Ansari
and Ren 1994). As described in Section 3.4, the most
important of these is the method by which tasks are
allocated to processors in GS4 of the Hou et al
algorithm and GS5 in the SCHEDULE algorithm. For
each task in a set G(h), SCHEDULE generates a
random floating-point number r between zero and one
and the task is selected if r < 1/n, where n is the
number of processors in the system. This technique
offers an improvement over the approach by Hou et al
as it spreads the tasks more evenly over all the
available processors and maximizes the potential to
exploit parallelism when n > 2.

The goal of SCHEDULE is to find the shortest
execution time for a particular set of tasks executing
on a specified multiprocessor system. In this
implementation, an optimal schedule for a particular
task graph may depend on one or more tasks being
assigned the right h’ value, assigned to the right
processor, and placed in the right sequence. These are
all probabilistic events and it is evident that the larger
the population, the greater the chance that the right
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combination of events will occur. However, the h’
values assigned to tasks are constant throughout the
execution of the program. If the optimal solution
depends on the correct value of h’ being assigned to
one or more tasks, and if that doesn’t occur, then the
optimal solution for that run will never be found. In
this particular case, increasing the population size will
not benefit the chance of finding the optimal solution.

4. Results

The genetic algorithm was implemented and tested on
arbitrary task graphs of 20, 40 and 50 tasks. A program
was written to randomly generate the data to represent
task graphs of arbitrary size. The output of this
program was used as the input data for the
SCHEDULE program. The task data generation
program was written to arbitrarily allow each task to
have as many as four immediate successors. Each task
was allowed a random execution time of 1 to 40 time

units. Figure 4 shows the task graph used for the test
case of 40 tasks.

Table 1 shows the results (*best finish time found
and **average of 20 runs) of schedules for task graphs
with the number of tasks indicated. All results are
based on schedules for a four-processor system.
SCHEDULE took approximately 2 seconds to
complete for 20 tasks, 14 seconds for 40 tasks, and 60
seconds for 50 tasks. Execution time depends primarily
on the number of generations.

Suboptimal solutions identified by SCHEDULE
were often the result of premature convergence
(Schaffer, Eshelman and Offutt 1991). This condition
was evidenced by many genomes arriving at the same
suboptimal schedule after relatively few generations.
Various strategies have been proposed to avoid
premature convergence, including employing mating
strategies, managing crossover, and managing the
population (Eshelman and Schaffer 1991).
SCHEDULE could benefit from one or more of these
techniques.

Figure 4. Test Task Graph with 40 Tasks
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Tasks Generations Population Prob.
Crossover

Prob.
Mutate

Optimal
Schedule

*GA **GA (GA – Opt)/
Opt

20 20 10 1.0 0.1 159 159 161 1.2 %
40 100 26 1.0 0.1 218 230 243 11.4 %
40 100 26 1.0 0.2 218 218 233 6.8 %
50 100 18 1.0 0.2 unknown 319 339 unknown
50 500 18 1.0 0.2 unknown 319 331 unknown

Table 1. Test Results (*best finish time found and **average over 20 runs)

5. Conclusions

In this research, a genetic algorithm was implemented
in the SCHEDULE program to solve the
multiprocessor scheduling problem. Created to run on
a personal computer, SCHEDULE is a simple and
easy-to-use tool for modeling and scheduling tasks on
a multiprocessor system. It is easily modified to
correctly schedule arbitrarily complex task graphs onto
specified multiprocessor architectures. The user can
change the number of processors in the target system,
the task graph representation (the number of tasks and
their execution times), and the parameters of execution
(the number of generations and population size). Minor
changes to the program would easily support the
introduction of interprocessor communication delays
and overhead costs of the system (Jesik et al 1997), as
well as other options.

In only 20 generations, the genetic algorithm
found an optimal solution in 75% of the runs for 20
tasks, and was within 1.2% of the optimal solution on
average. For the larger problem of 40 tasks the genetic
algorithm found a good solution in 100 generations. A
suitable solution for 50 tasks was found in 500
generations. Limitations of the compiler caused the
effectiveness of the solution for larger problems to
degrade. In future research, the adaptable and scalable
methodology established by this investigation may be
applied to increasingly complex task graphs.
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