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Abstract Objects
In a conceptual model for knowledge bases the data and
knowledge are represented formally as “items”.  The
foundation of this model is a “basis” consisting of data
items.  “Objects” are “item building” operators that are
applied to the basis to build the information items and
knowledge items in the conceptual model.  Objects may be
decomposed.  In this way the knowledge in the resulting
conceptual model is simplified.  Knowledge object
decomposition removes hidden and unwanted relationships
from the knowledge base.

In [9] items are defined formally, and objects are
introduced informally to build the conceptual model.  Here
objects and their decomposition are defined.

The type of an m-adic item is determined both by
whether it is a data item, an information item or a
knowledge item and by the value of m.  The type is
denoted respectively by Dm, Im and Km.  Items may also
have unspecified, or free, type which is denoted by Xm.
Formally, given a unique name A , a j-tuple (i1, i2,..., ij), j

variables (Q1, Q2,..., Qj) of type (X1
i 1, X2

i 2,..., Xj
ij)

respectively where each Xk represents a type such as X , D ,

I  or K , an n-tuple (m1, m2,..., mn), n ≥ j, M = Σι mi, n not
necessarily distinct variables (P1, P2,..., Pn) such that

(åx: 1≤x≤n)(ßy)(Px = Qy  and  mx = iy):

Introduction

The majority of conceptual models treat the “rule base”
component [1] separately from the “database” component,
[2] and [3].  This enables well established design
methodologies to be employed, but the use of two separate
models means that the interrelationship between the things
in these two models cannot be represented, integrated and
manipulated naturally [4].  Further, neither of these
separate models is therefore able to address completely the
maintenance [5] of the whole knowledge base [6].

• E is a j-argument typed λ-calculus expression of type
(X1

i1, X2
i2,..., Xj

i   j):
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The first step in a design methodology [7] is the

construction of a requirements model, and the second step
is the construction of a conceptual model that specifies
how the system will do what it is required to do.  The
conceptual model is expressed in terms of items and
objects.  The third step in that design methodology is the
construction of an external model [8] that shows how the
knowledge in the conceptual model may deliver the
functionality required.  The external model is also
expressed in terms of items and objects.

º J(y1
1...y 1

m1
...yn

mn
)]••

where  SB  is the semantics of item B, and if J is a
“separable” predicate as defined on the following page
then it should be shown in its separated form.  SB is a λ-
calculus expression that recognises the members of the
value set of item B as defined in [9].

• F is a j-argument typed λ-calculus expression of type

(X1
i1, X2

i2,..., Xj
i   j):

The conceptual model described in [9] is built by
applying “objects” as operators to data “items” in the
model “basis”.  Items and objects enable a uniform
approach to be taken to knowledge representation.  Items
and objects are viewed either formally as λ-calculus
expressions or informally as schema.  The λ-calculus view
provides a sound theoretical basis for the work; it is not
intended for practical use.  So the approach has both
theoretical and practical significance.  If the object
operators are decomposed then hidden and unwanted
relationships in the knowledge are removed and so the
resulting conceptual model is simplified.
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where  VB  denotes the value constraints of item B, and

K is essentially an m-argument predicate where
min(M,2) ≤ m ≤ M.  VB is a λ-calculus expression that
is satisfied by the members of the value set of item B as
defined in [9].
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• G is a j-argument typed λ-calculus expression of type

(X1
i1, X2

i2,..., Xj
i   j):

( Q1,Q2,...,Qj)[EA(Q1,Q2,...,Qj)  EB(Q1,Q2,...,Qj)]

( Q1,Q2,...,Qj)[FA(Q1,Q2,...,Qj)  FB(Q1,Q2,...,Qj)]

( Q1,Q2,...,Qj)[GA(Q1,Q2,...,Qj)  GB(Q1,Q2,...,Qj)]λQ1:X1
i1Q2:X2

i2...Qj:Xj
i   j•[CQ1

 º ........... º CQj If two objects are identical then they will not necessarily
have the same name.º ( L(Q1,..,Qj)) (A ,Q1,..,Qj)

]•

A  and B  are equivalent, written  A   B , if they are both
of the same argument type and there exists a permutation π
such that:

where  CB  denotes the item set constraints of item B as
defined in [9].  (A ,Q1,..,Qj) is the name of the item

that results from the application of object A  to items
{Q1,..,Qj}.  L consists of a logical combination of:

( Q1,Q2,...,Qj)[EA(Q1,Q2,...,Qj)  EB(π(Q1,Q2,...,Qj))]

( Q1,Q2,...,Qj)[FA(Q1,Q2,...,Qj)  FB(π(Q1,Q2,...,Qj))]
• Card lies in some numerical range; ( Q1,Q2,...,Qj)[GA(Q1,Q2,...,Qj)  GB(π(Q1,Q2,...,Qj))]
• Uni(Qk) for some k, 1 ≤ k ≤ n, and A  and B  are weakly equivalent, written  A  w B , if they

are both of the same argument type and there exists a
permutation π such that:

• Can(Qk, X) for some k, 1 ≤ k ≤ j, where X is a non-
empty subset of {Q1,Q2,...,Qj} - {Qk}

which are as defined in [9] then the named triple: ( Q1,Q2,...,Qj)[EA(Q1,Q2,...,Qj)  EB(π(Q1,Q2,...,Qj))]

A[E,F,G] As an example of the application of an object operator,
the part/cost-price item can be built from the items part
and cost-price using the costs  operator:

is an M-adic object with object name A , of argument type

(X1
i1, X2

i2,..., Xj
i   j).  E is the object semantics of A .  F is the

object value constraints of A .  G is the object set
constraints of A .  “Uni(a)” means that “all members of the
value set of item a must be in this association”.  “Can(b,
A)” means that “the value set of the set of items A
functionally determines the value set of item b”.  “Card”
means “the number of things in the value set”.  The
subscripts indicate the item’s components to which that set
constraint applies.

part/cost-price  =  costs(part, cost-price)

costs[λP:X1Q:X1•λxy•[SP(x) º SQ(y) º costs(x,y)]••,

λP:X1Q:X1•λxy•[VP(x) º VQ(y) º
((1000 < x < 1999)  (y ≤ 300)) ]••,

λP:X1Q:X1•[CP º CQ
º (Uni(P) º Can(Q, {P})) (costs ,P,Q) ]•]

where  (costs , P, Q)  is the name of the item
costs(P, Q).

The definition of an object refers to “separable”
predicates [10].  Given a predicate J of the form:

Data objects provide a representation of sub-typing.
Items are a universal formalism for representation but
make it difficult to analyse the structure of the whole
application.  For example, two rules that share the same
basic wisdom may be expressed in terms of quite different
components; this could obscure their common wisdom.  To
make the inherent structure of items clear ‘objects’ are
introduced as item building operators.  For example,
consider the [part/sale-price, part/cost-price, mark-up]
knowledge item which represents the rule “parts are
marked-up by a universal mark-up factor”.  This item can
be built by applying a knowledge object mark-up-rule
of argument type (I2, I2, D1) to the items part/sale-price,
part/cost-price and mark-up.  That is:

J(y1
1,...,y 1

m1
,y2

1,...,y 2
m2

,..........,yn
1,...,y n

mn
)

Define the set  {Y1, Y2,..., Yn}  by  Yi = {yi
1,...,y i

mi
}.  If J

can be written in the form:

J1 º  J2 º ... º Jm

where each  Ji  is a predicate in terms of the set of variables

Xi  with:

Xi    Y1  Y2 ...  Yn , and

for each X i  (ßj)  such that Xi does not contain any of the

variables in Yj then predicate  J  is separable into the

partition  {X1, X2,..., Xm}. [part/sale-price, part/cost-price, mark-up]  =
There are a number of different senses in which two

objects can be considered to be “equal”.  Three of these
senses of “object equality” are described now.  Given two
n-adic objects of identical argument type
(Xm1, Xm2,..., Xmn) where each X is a type such as X , K ,
I  or D  (standing respectively for “free”, “knowledge”,
“information” or “data”):

mark-up-rule(part/sale-price, part/cost-price, mark-up)

Objects also represent value constraints and set constraints
in a uniform way.  A “join” operation for items is defined
in [4].

A conceptual model consists of:

• a basis, which is a fundamental set of data items on
which the conceptual model is founded;

A[ EA , FA , GA  ] and
• an object library, that is a set of object operators which

are used to construct the items in the conceptual model
with the exception of the items in the basis;

B[ EB , FB , GB  ]

A  and B  are identical, written  A  ≡ B , if:



• a conceptual diagram, that shows how the objects in the
object library are used to construct the items in the
conceptual model, and

variables that correspond to ‘P’, ‘y’ is a string of inner
variables that correspond to ‘Q’ and ‘z’ is a string of inner
variables that correspond to ‘R’.  Then the object with
name A  ⊗C B  is the join of A  and B  on C and is defined to
be:• maintenance links  that join two items in the conceptual

diagram if modification to one of them necessarily
means that the other has at least to be checked for
correctness if validity is to be preserved.

(A  ⊗C B)[

λP:TPQ:T QR:TR•λxyz•[EA(π(P,Q))(ρ(x,y)) º
The conceptual diagram provides a convenient, high-level
view of the conceptual model.

EB(π'(Q,R))(ρ   '(x,y))]•,

λP:TPQ:T QR:TR•λxyz•[FA(π(P,Q))(ρ(x,y)) º

Object Decomposition
FB(π'(Q,R))(ρ'(x,y))]•,

[GA(ρ(P,Q)) º GB(ρ'(Q,R))]• ]

If A  and B  are two information objects with a single
shared argument in the set C then  A  ⊗C B is their “join”,
in the conventional sense, on the domain represented by
the single shared argument.  If A  and B  are two functional
associations and if C represents both the argument of one
of these functions and the range of the other then  A  ⊗C B
is the functional composition of these two functions.  C
may be empty.  If C = Á  then  A  ⊗C B   is the Cartesian
product of A  and B .

Object decomposition removes hidden and unwanted
relationships from knowledge [11].  Given two objects:

A[ EA , FA , GA  ] and

B[ EB , FB , GB  ]

then EA , FA , EB  and FB  all have the form:

λ<string of typed outer variables>•λ<string of inner
variables>•[...]••

Both GA  and GB  have the form:
If two objects A  and B  are such that for each argument

of A  there exists an argument of B  with identical type and
object B  has at least one argument that is not an argument
of object A , and A  ⊗C B  = B , then object A  is a sub-object
of object B , written  A   B .  The composition  A  ⊗C B   is
a monotonic composition if  A  ⊗C B   is not weakly
equivalent with either A  or B .  If  A  ⊗C B   is a monotonic
composition and the set C identifies one argument only of
A  and B  then  A  ⊗C B   is a unit composition.

λ<string of typed outer variables>•[...]•

Suppose that EA  has n typed outer variables, and that EB
has m typed outer variables.  Some of the outer arguments
of A  and B  may have identical argument types.  Suppose
that k pairs of outer arguments of A  and B  that have
identical argument types are identified, where k ≥ 0.  Let C
be a set of k pairs of indices where the first index in each
pair identifies an outer variable of A  and the second
identifies an outer variable of B  of identical type.  C may
be empty.  To ensure that C is well defined the pairs of
indices in C occur in ascending order of the first index of
each pair.  Let A*  be an object that is identical to object A
except for the order of its outer and inner variables.  The
last k outer variables in A*  are those outer variables in A
that are referred to by the indices of A  that are in the set C.
The inner variables of A*  are a permutation of the inner
variables of A  to ensure that A*  is identical to A , except
for the order of its variables.  Let B*  be an object that is
identical to object B  except for the order of its outer and
inner variables.  The first k outer variables in B*  are those
outer variables in B  that are referred to by the indices of B
that are in the set C.  The inner variables of B*  are a
permutation of the inner variables of B  to ensure that B*  is
identical to B , except for the order of its variables.  Let π
be a permutation that turns the ordered set of outer
variables of A*  into the ordered set of outer variables of A .
Let π' be a permutation that turns the ordered set of outer
variables of B*  into the ordered set of outer variables of B .
Let ρ be a permutation that turns the ordered set of inner
variables of A*  into the ordered set of inner variables of A .
Let ρ' be a permutation that turns the ordered set of inner
variables of B*  into the ordered set of inner variables of B .
Suppose that ‘P’ is an (n - k)-tuple of typed variables, ‘Q’
is a k-tuple of typed variables and ‘R’ is an (m - k)-tuple of
typed variables.  Suppose that ‘x’ is a string of inner

The following are properties of ⊗:
• A  ⊗K A   =  A   where  K  KA  and KA  is the set of

arguments of A
• A  ⊗K B     B  ⊗K A   where  K  (KA  KB)

• A  ⊗K (B  ⊗L C)    (A  ⊗K B) ⊗L C   where

K  (KA   KB)  and  L  (KB   KC)

If  A  ⊗K B  = A   then  K = KB  KA .

Using the rule of composition ⊗, knowledge objects,
information objects and data objects may be combined
with one another.  Object O  is decomposable into
D  = {O 1, O2, ..,O n} if

• O i is not tautological for all i,

• O  = O1 ⊗ O2 ⊗ ... ⊗ On  , where

• each composition is monotonic

If object O  is decomposable then it does not necessarily
have a unique decomposition.

Principles for Decomposition

Principles for decomposition assist with the recognition of
decomposable objects.  For example, object decomposition
enables:



two-type[ λP:D1Q:D1R:X 1•λxyz•[ SP(x) º SQ(y) º two-type   =  comp  ⊗{(2,1)} has-type

Another decomposition may be derived from the partition
{(y, z)}  because  J1(y, z) = has-type(y, z).  This
decomposition is simpler than the decomposition above.

SR(z) º has-type(y, z) ]••,

λP:D1Q:D1R:X 1•λxyz•[ VP(x) º VQ(y) º VR(z) ]••,

λP:D1Q:D1R:X 1•[CP º CQ º CR (Uni(P) º Uni(Q) º If the predicate in an object’s semantics is separable then
this does not necessarily mean that that object is
decomposable.  So when looking for decomposable objects
it is useful to have decomposition principles that are based
on other parts of an object’s specification besides its
semantics.  The remainder of this section discusses other
principles that are based on the object’s set constraints.

Can(R, {Q})) (two-type ,P,Q)]•]

to be decomposed into the data object:

comp[ λP:D1Q:D1•λxy•[ SP(x) º SQ(y) ]••,

λP:D1Q:D1•λxy•[ VP(x) º VQ(y) ]••,

λP:D1Q:D1•[CP º CQ º (Uni(P) º There are two different types of object.  This distinction
is based on whether or not an object represents an
“association”.  If an object does not represent an
association then that object is a data object.  If an object
does represent an association then that object is either an
information object or a knowledge object [12].  If an object
represents an association and that association is functional
then that object can be classified by the structure of the
candidate constraints that occur within its set constraints.
The set constraint Can(Q, {P}) means that the value set of
{P} functionally determines the value set of Q.

Uni(Q)) (comp ,P,Q) ]• ]

and the information object:

has-type[λP:X1Q:X1•λxy•[ SP(x) º SQ(y) º
has-type(x, y) ]••,

λP:X1Q:X1•λxy•[ VP(x) º VQ(y) ]••,

λP:X1Q:X1•[CP º CQ
º (Uni(P) º Can(Q, {P})) (has-type ,P,Q)  ]•]

Object decomposition applies to all objects.  If an object
is an information object or a knowledge object then it
represents an association.  Associations are sometimes
functional.  Associations in knowledge can be represented
as “if-then rules”.  Associations in information can be
represented as relations with a key.  No distinction is
drawn here between information and knowledge functional
associations.  So the following principles can be employed,
for example, to decompose an information object using a
knowledge object or vice versa.

The recognition of decomposable objects may not be
difficult.  If a given object is decomposable then its
semantics permits that object to be represented as the join
of two other objects.  A decomposable object’s semantics
may be phrased so as to hide the fact that the object is
decomposable.  A principle for identifying decomposable
objects is to examine an object’s semantics expression and
to note the extent to which the predicate in that expression
is separable.  An object’s semantics is an expression of the
form:

Objects are classified below according to the structure of
the candidate constraints within their set constraints.  X, Y
and Z are the names of argument sets.  Suppose that:

λQ1:X1
i1Q2:X2

i2...Qj:Xj
i   j•λy1

1...y 1
m1

...yn
mn

•[ SP1
(y1

1,...,y 1
m1

)

º SP2
(y2

1,...,y 2
m2

) º ........... º SPn
(yn

1,...,y n
mn

)
X = {X1, X2,.., Xp}

º J(y1
1...y 1

m1
...yn

mn
) ]•• Y = {Y1, Y2,.., Yq}

where the Xk are one of X , D , I  or K  for 1≤k≤j. Z = {Z1, Z2,.., Zr}
Principle 1.  If the predicate in an object’s semantics

is separable in the sense defined above then investigate
whether that object is decomposable into objects
containing the argument sets identified by the separability
of that predicate.

Suppose that object A  has the two argument sets X and Y.
Object A  is then denoted by A(X, Y).  The notation  X  Y
denotes that:

{ Can(Xi, {Y1, Y2,.., Yq} ):  for all  i = 1,..,p }

The semantics of the  two-type   object is: The notation CA[G1, G2,.., Gk] where each Gi is a term of
the form  Y  X  denotes that the set  {G1, G2,.., Gk}
consists of all of the valid candidate constraints on object
A .  Suppose object C  is decomposable by:

λP:D1Q:D1R:X 1•λxyz•[ SP(x) º SQ(y) º SR(z) º
has-type(y, z) ]••

The predicate in this expression is separable into the
partition  {(x, y), (y, z)}  because:

C(X, Y, Z)  =  A(X, Y)  ⊗{(2,1)}  B(Y, Z)

where  CA[X  Y]  and  CB[Y  Z].  Principle 2 is derived
by applying object decomposition to this single join
decomposition.

J1(x) = T(x, y)

J2(y, z) = has-type(y, z)

where  T   is the constant true predicate.  If the predicate in
an object’s semantics is separable into a partition then the
next step is determine whether the entire object is
decomposable using the argument set indices identified by
that partition.  As is shown above:

Principle 2.  Given object C , if the objects A  and B
are not tautological, and the argument sets X, Y and Z all
non-empty with:

CC[X  Y, Y  Z]



CA[X  Y] CC[Z  X]
CB[Y  Z] CA[Z  Y]

then check whether: CB[Y  X]

C(X, Y, Z)  =  A(X, Y)  ⊗{(2,1)}  B(Y, Z) Normalisation can be applied to data, information or
knowledge objects, or to any combination of these.  If the
object operators are decomposed then hidden and
unwanted relationships in the knowledge are removed and
so the resulting conceptual model is simplified.

If it does then discard object C  in favour of A  and B .
The wisdom behind this principle is that object C

contains objects A  and B  implicitly embedded within it.  A
special case of Principle 2 is derived by letting  Z  be
Y  W  and object C  becomes  CC[X  (Y, W)]  and
object B  becomes CB[Á].  The functional structure of this
special case generalises the structure of the second
classical normal form [13].
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