
Preparing a First-order Knowledge Base for Fast Inference

Helmut Prendinger and Mitsuru Ishizuka
Department of Information and Communication Engineering

School of Engineering, University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

E-mail: {helmut,ishizuka}@miv.t.u-tokyo.ac.jp

Abstract

This paper presents an effective method to en-
code function-free first-order Horn theories in
propositional logic. To keep the resulting the-
ory within manageable size, we employ techniques
from (ir)relevance reasoning and theory transfor-
mation. Our approach allows for the compactness
of knowledge representation in first-order logic
and the efficiency of propositional reasoning mech-
anisms. The empirical evaluation with a hypo-
thetical reasoning mechanism indicates that our
approach has the potential to solve notoriously
hard problems in diagnosis, planning, and vision.

Introduction and Motivation

Declarative knowledge generated by a knowledge en-
gineer is not always in a form that can be efficiently
processed by present-day reasoning mechanisms. In
particular, knowledge bases should at least have the
expressiveness of first-order Horn clauses, and it is well-
known that reasoning with first-order theories is com-
putationally expensive. On the other hand, in recent
years considerable progress has been made in develop-
ing highly efficient mechanisms for propositional reason-
ing. GSAT is an efficient procedure for solving propo-
sitional satisfiability problems (Selman & Kautz 1993);
NBP and SL are fast mechanisms for solving propo-
sitional hypothetical reasoning problems (Santos 1994;
Ohsawa & Ishizuka 1997; Ishizuka & Matsuo 1998).
Hence it seems reasonable to first transform first-order
theories to propositional theories and then address the
task of satisfiability checking or hypotheses generation,
rather than directly using the first-order theory.

Our approach is similar in spirit to recent endeavors
of solving planning problems by propositional satisfia-
bility algorithms (Kautz & Selman 1996). They propose
various ways to encode first-order planning problems as
propositional satisfiability problems. The aim of this
paper is different from their work in two respects: first,
we develop a general theory for ‘encoding’ first-order
problems in propositional logic, as opposed to encoding

Copyright c©1999, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

particular problems such as planning problems; and sec-
ond, to validate our approach we target the problem of
efficient hypothetical (or ‘abductive’) reasoning rather
satisfiability testing.

For the case of Horn theories without function sym-
bols, a naive approach would suggest to apply all possi-
ble instantiations of constants for variables and output
a (finite) set of clauses that contains no variables. These
clauses can then be treated like propositional clauses.
This approach is certainly infeasible since the result-
ing set might be prohibitively large. Therefore, our
idea is to ‘reform’ the original first-order theory before
applying all instantiations. Knowledge base reforma-
tion aims at reducing both (i) the number of clauses
and (ii) the number of different variables in clauses. In
effect, the reformed theory lends itself to significantly
less instantiations and hence a smaller propositional
theory. In order to reduce the number of clauses we
will employ methods from relevance reasoning (Levy,
Fikes, & Sagiv 1997; Schurz 1998), whereas proce-
dures from theory transformation are used to reduce
the number of variables in clauses (Tamaki & Sato 1984;
Proietti & Pettorossi 1995). Relevance reasoning allows
to determine the part of the theory that does not con-
tribute to a proof of a query or a set of queries. Theory
transformation eliminates ‘unnecessary’ variables, i.e.,
variables that occur in the body B but not in the head
H of a clause (rule) H ← B.

Theory reformation is intended as an off-line pro-
cess that can be used to speed up on-line computation.
Therefore, theory reformation is a form of knowledge
compilation. Most importantly, the reformed theory is
generated independently of specific queries, and thus
has to be done only once for certain query types.

The paper is organized as follows. In the next sec-
tion, some terminology related to Horn logic and hy-
pothetical reasoning is introduced. Then we show how
techniques from relevance reasoning can be employed
to rule out irrelevant parts of a theory. The following
section describes the theory transformation procedure
which eliminates unnecessary variables from clauses.
By means of a small experiment we show the efficiency
gain resulting from reformation. In the last section, we
briefly discuss and conclude the paper.

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved. 



Preliminaries
Logic
A first-order Horn clause C has the form

q(X̄n+1)← p1(X̄1) ∧ ... ∧ pn(X̄n)
where q(X̄n+1), p1(X̄1), ..., pn(X̄n) are atomic formulas,
and X̄i denotes the sequence of variables Xi,1, ...,Xi,mi .
The atom q(X̄n+1) is called the head of the clause, de-
noted by hd(C), the conjunction p1(X̄1) ∧ ... ∧ pn(X̄n)
is called the body of the clause, denoted by bd(C). The
variables occurring in a clause are implicitly univer-
sally quantified. A Horn theory T is a set of Horn
clauses. Since we deal with Horn clauses (theories)
only, we will sometimes omit the reference to Horn
and simply speak of clauses (theories). A clause C is
function-free if it does not contain function symbols.
Let V(hd(C)) denote the set of variables occurring in
the head of a clause C, and V(bd(C)) the set of vari-
ables occurring in the clause body. A clause C is range-
restricted if V(hd(C)) ⊆ V(bd(C)). All clauses consid-
ered here are Horn, function-free, non-recursive, and
range-restricted. Moreover, we impose the restriction
that the set of clauses is acyclic (i.e., the correspond-
ing directed graph contains no cycles). If the head of
a clause C does not occur elsewhere in T , C is called
a definition clause. A clause (theory) containing no
variables is called ground (or simply propositional).

Hypothetical Reasoning
In hypothetical (or abductive) reasoning, we are given
a background knowledge base T , a hypothetical knowl-
edge base H, and a query or goal Q. The background
theory T is a Horn theory as described above. The
hypothetical knowledge base H contains atoms of the
form hi(t̄) (t̄ a sequence of terms) that might be as-
sumed in order to prove the query; atoms in H are
sometimes called ‘abducibles’. The nonmonotonicity of
hypothetical reasoning is encoded by so-called inconsis-
tency constraints I. The set I ⊂ T contains clauses of
the form “inc ← h1(t̄1) ∧ ... ∧ hn(t̄n)” where hi ∈ H
and the symbol “inc” denotes the impossible state (the
logical constant falsum). Informally, an inconsistency
constraint expresses the fact that certain hypotheses
cannot hold together.

The task of hypothetical reasoning consists in finding
sets H1, ..., Hn (Hi ⊆ H), such that the following condi-
tions are satisfied: (i) T ∪Hi ` Q, and (ii) T ∪Hi 6` inc.

It has been shown that hypothetical reasoning can be
used for a variety of evidential reasoning tasks, where
some parts of a system are observed and other (not
observable) parts are to be inferred (Poole 1998). Ev-
idential reasoning tasks include diagnosis, perception
(vision), and planning. In diagnosis we observe symp-
toms and want to determine the faulty parts of the sys-
tem. In perception (vision) we are given a stream of
sensor data and the task is to find a description (map)
of the locations and shapes of the objects in the scene.
Planning starts from a set of goals and searches for a
set of actions that would bring about the goals.

Reformation by Relevance Reasoning
In this section we introduce procedures that reduce the
number of clauses in a theory. The theoretical foun-
dations for this kind of reduction are discussed in the
area of relevance reasoning (Levy, Fikes, & Sagiv 1997;
Schurz 1998). Specifically, all clauses that can never
contribute to a solution of some problem, called strongly
irrelevant clauses, are removed from the theory.

Theory Factorizing
The idea of theory factorizing is to split a theory T into
disjoint subtheories T1, ..., Tn such that no clause C in
a given subtheory Ti resolves with some clause D from
a different subtheory Tj . This means that the search
space for a given (atomic) query Q can be restricted to
a single subtheory Ti (assuming that Q resolves with
some clause in Ti). All clauses in subtheories different
from Ti are strongly irrelevant to proving Q.

Example 1 Let the original theory T be as follows,
with query type p(X, Y ):

(r1) p(X, Y )← q(X, Y ).
(r2) p(X, Y )← r(X,Y ).
(r3) q(X,Y )← q1(X,Z) ∧ h 1(Z, Y ).
(r4) r(X, Y )← h 2(X, Y ).
(r5) r(X, Y )← h 3(X, Y ).
(r6) s(X, Y )← s1(X,Y ).
(r7) t(X,Y )← h 4(X, Y ).
(f1) s1(a, b).

Because we want to determine the subtheories indepen-
dent of the particular instantiations that clauses will
eventually take, the theory factorizing procedure is per-
formed by considering only the predicate symbols in a
clause, i.e., the goal types such as p(X̄) or q(X̄). In the
resulting partition of T , the arguments of predicates are
removed. Since clauses in the theory are indexed, the
original clauses can be restored any time.

T1 = {← p; p← q; p← r; q ← q1 ∧ h 1;
r ← h 2; r ← h 3}

T2 = {s← s1; s1}
T3 = {t← h 4}

If the problem formulation contains inconsistency con-
straints ic ∈ I, the set I is factorized accordingly.

Essentially, the factorizing procedure does the follow-
ing: (i) if a clause C does not resolve with any indepen-
dent subset of the already generated partition, then {C}
is added as a new partition; (ii) if a clause C resolves
with independent subsets D1, ...,Dk ∈ P, then those
subsets and C form a new partition P ′. The procedure
halts when all clauses of the original clause set T are
processed.

Since the theory factorizing procedure generates a
partition, it has to be applied only once, and further
query types can be assigned to their respective sub-
theories. The theory factorizing procedure is an ef-
fective method to extract relevant information in tree-
structured systems (Stumptner & Wotawa 1997). A



theory T is tree-structured if the graph corresponding
to T consists of subtrees S1, ..., Sn such that each Si has
only one top node and there exists only one path from
every node in Si to the top node. For the more general
class of acyclic systems, however, there is a more pre-
cise way to determine the relevant part of the theory.
This is done by means of an algorithm that computes
all clauses that are reachable from the query type. In-
formally, a clause C is reachable from a query type p if
there exists some path from p to the head of C.

Theory Simplification
A given (independent) theory may (still) contain clauses
that do not contribute to answering any query, since
they contain subqueries that cannot be resolved with
a fact or the head of some clause. Those clauses can
be removed on grounds of irrelevance as well (Schurz
1998).

Theory simplification is best explained by continuing
the previous example. Let T1 be our initial theory

T1 = {← p; p← q; p← r; q ← q1 ∧ h 1;
r ← h 2; r ← h 3}

Since q1 does not resolve with any clause, the clause
q ← q1 ∧ h 1 can be deleted from T1. In general, we
may also remove clauses that resolve with a deleted
clause. After applying the simplification procedure, the
remaining theory is

T ′1 = {← p; p← r; r ← h 2; r ← h 3}
Observe that clauses having hypotheses h ∈ H in their
body are not necessarily deleted, since hypotheses may
contribute to a proof (if they are assumed). In the
presence of inconsistency constraints, the set I can be
simplified as well.

Theorem 1 Given a theory T , clause C, and query
type q(X̄). If some C is removed from T by theory
factorizing or theory simplification, then C is strongly
irrelevant to prove q(X̄) in T .

In other words, theory factorizing and theory simplifi-
cation provide neccessary conditions for strong irrele-
vance. In general, those procedures do not give suffi-
cient conditions for strong irrelevance: after factorizing
and simplifying a theory, the theory may still contain
strongly irrelevant clauses. This is a consequence of ig-
noring particular instantiations of predicates. A more
elaborate procedure may provide sufficient conditions
as well (Levy, Fikes, & Sagiv 1997).

From now on, we assume that the first-order version
of the factorized and simplified theory is available.

Reformation by Theory Transformation
The motivation for applying unfold/fold transforma-
tions is to reduce the complexity of a theory as mea-
sured by the number of possible ground instantiations of
clauses. Since a theory is exponential in the number n
of different variables occurring in each clause, we try
to minimize n. More specifically, we try to eliminate

unnecessary variables, i.e., variables that occur in the
body bd(C) but not in the head hd(C) of a clause C.
Then a clause is uv-minimal if has the smallest possible
number n of unnecessary variables (n ≥ 0).

Definition 1 A set of Horn clauses is optimally reduced
if each of its clauses is uv-minimal.

As a motivating example, consider the clauses

C1 : q(X,Y )← p1(X, Z1, Z2) ∧ p2(Z1) ∧ p3(Z2, Y )

C2 : newp(X, Z2)← p1(X,Z1, Z2) ∧ p2(Z1)

Clause C1 can be folded with C2 as the folding clause,
yielding

C3 : q(X,Y )← newp(X, Z2) ∧ p3(Z2, Y )

For simplicity, assume that each of the variables X, Y ,
Z1, and Z2 can be instantiated to any of five constants.
Then there exist 5× 5× 5× 5 = 625 possibilities to in-
stantiate C1, and 125 possibilities for each of C2 and
C3. Hence the original theory T = {C1, C2} allows for
750 propositional clauses, whereas the reformed theory
T ′ = {C2, C3} has only 250 instantiations. The unnec-
essary variable Z1 in bd(C1) is eliminated. In general,
clauses such as C2 are not given in advance but have to
be invented by the so-called definition rule (Tamaki &
Sato 1984).

Variable Elimination Procedures
We start with some terminology to distinguish different
kinds of clause bodies. The distinction is intended to
cover a broad range of possible clause bodies. Below we
suggest procedures to eliminate unnecessary variables
from clause bodies. The most central notion is that of
a block of a clause body.

Definition 2 (block) Given a clause C and a set B of
atoms in bd(C). We define a binary relation R over B
such that: given two atoms B1 and B2 in B, R(B1, B2)
if and only if V(B1) ∩ V(B2) 6= ∅. We let R∗ denote
the reflexive and transitive closure of R over bd(C). By
partbd(C) we denote the partition of the body of C
into blocks wrt. R∗. Note that each variable occurs in
at most one block of partbd(C).

For instance, let C be the clause

q(X,Y, Z)← p1(X, X1) ∧ p2(Y, Y 1) ∧ p3(X1, Z)

Here partbd(C) has two blocks, {p1(X, X1), p3(X1, Z)}
and {p2(Y, Y 1)}.

A block can have a variety of syntactical forms.

Definition 3 (chain) Given a clause C and a parti-
tion partbd(C). Let Bl be a block in partbd(C) with
k atoms where all atoms in the block can be grouped
such that (i) for all adjacent Ai, Aj , R(Ai, Aj), (ii) the
first and the last atom in the (reordered) block con-
tain at least one variable occurring in hd(C), (iii) no
other atom contains a variable occurring in hd(C), and
(iv) the intersecting variables in R(Ai, Aj) are distinct.
Then Bl = {〈A1, ..., Ak〉} is called a chain.



Let C be the clause

q(X, Y )← p1(X,Z1) ∧ p2(Z1, Z2) ∧ p3(Z2, Y )

The (single) block {p1(X,Z1), p2(Z1, Z2), p3(Z2, Y )}
forms a chain; X in p(X, Z1) and Y in p3(Z2, Y ) are
called embracing variables. A loop is a special form of
a chain that has the form “q(X) ← p1(X,Y1) ∧ ... ∧
pn(Yn−1, X)”.
Definition 4 (isolated blockpart) Let C be the
clause A← B1 ∧ ...∧Bn where bd(C) is a block. Given
an atom Bi in bd(C) such that for some X ⊂ V(Bi),
X ∩ (V({A, B1, ..., Bn})\X) = ∅. Then the variables
occurring in X are called isolated variables in bd(C),
and Bi an isolated blockpart in bd(C).
Let C be the clause

q(X,Y )← p1(X, Z) ∧ p2(Z, Y ) ∧ p3(Z,Z1)

The variable Z1 in bd(C) is isolated, and p3(Z, Z1) is
an isolated blockpart.

The following procedures automatize the definition
rule for a broad class of clause bodies.

Procedure 1 (block) Given a clause C with a block
Bl ∈ partbd(C), and atoms Bi, Bj in Bl such that
R(Bi, Bj) (see Def. 2). If there are at least two un-
necessary variables in Bl, generate a new clause

newp(Y1, ..., Ym)← Bi ∧Bj

where newp/2 is a fresh predicate symbol and Y1, ..., Ym

is defined as (V(Bi) ∪ V(Bj))\(V(Bi) ∩ V(Bj)), else do
nothing. Let C be the clause

q(X, Y )← p1(X,Z1, Z2) ∧ p2(Z1) ∧ p3(Z2, Y )

where the clause body forms a single block (which is
not a chain). The new clause

newp(X, Z2)← p1(X,Z1, Z2) ∧ p2(Z1)

is generated. Observe that this procedure is non-
deterministic.

Procedure 2 (chain) Given a clause C and a chain
〈A1, ..., Ak〉 (k > 2) of a block in bd(C). Generate a
new clause

newp(X1, ...,Xn)← A1 ∧ ... ∧Ak−1

with X1, ...,Xn the embracing variables of A1, Ak−1.

Procedure 3 (isolated blockpart) Let
C be a clause with p(X1, ...,Xn) (n ≥ 1) an atom in
a block Bl in bd(C) where Ȳ is the set of isolated vari-
ables in Bl and X̄ ′ = {X1, ...,Xn}\Ȳ . Generate a new
clause

newp(X̄ ′)← p(X1, ...,Xn).
As an example, consider the clause

q(X,Y )← p1(X, Z) ∧ p2(Z, Y ) ∧ p3(Z,Z1)

where Z1 in p3(Z, Z1) is isolated. According to the
procedure, the new clause “newp(Z) ← p3(Z, Z1)” is
generated.

The theory transformation procedure can be sum-
marized as follows. For definitions of the unfolding and
folding rules, the reader is referred to (Tamaki & Sato
1984).

Theory Transformation Procedure

Input theory T and definition clause C.
Output a set T ′ of transformed clauses.
Initially D = {C}, N = ∅, (N is set of already processed
clauses), T ′ = ∅.

For each definition clause D ∈ D that contains unneces-
sary variables do {
1. Unfolding step: unfold some atom in the body of D

using non-unit clauses in T and put the resulting clauses
into a set UD;

2. Definition steps: for each clause E ∈ UD

for each block Bl ∈ partbd(E) where

• Bl contains at least one unnecessary variable, and

• Bl is not a faithful variant of the body of any clause
in D ∪N ,

do {
• if Bl is a chain, apply Proc. 2,

• if Bl contains an isolated blockpart, apply Proc. 3,

• else apply Proc. 1;

and add the new definition rule to D };
3. Folding steps: for each clause E in UD add to T ′ the

clause resulting from E as follows:

for every block Bl of partbd(E) which is a faithful variant
of a body of a clause N in D∪N , fold Bl in E using N .

D = D\{D}, N = N ∪ {D} }

As opposed to the procedure of (Proietti & Pettorossi
1995), the procedure is guaranteed to terminate.

Example and Empirical Evaluation
Since the speedup effect of relevance reasoning is al-
ready shown in (Levy, Fikes, & Sagiv 1997), we will
briefly discuss the efficiency gain of theory transforma-
tion. Let the theory Tpath consist of a following clauses.

(r1) path(X, Y )← link1(X, Z1) ∧ link2(Z1, Z2)∧
link3(Z2, Z3) ∧ link4(Z3, Y )

(r2) inc← link1(X, Y ) ∧ link3(Y,X)

The predicates link1–4 are abducible. After applying
the transformation procedure, r0 can be replaced by

(r′1) path(X,Y )← newp1(X,Z3) ∧ link4(Z3, Y )
(r′′1 ) newp1(X,Z3)← newp2(X,Z2) ∧ link3(Z2, Z3)
(r′′′1 ) newp2(X,Z2)← link1(X,Z1) ∧ link2(Z1, Z2)

The ic (r2) remains unchanged. While (r1) has three
unnecessary variables, each of the three transformed
clauses has only one unnecessary variable. Observe that
unfolding is not needed in this example.

We performed a small experiment that is intended to
show the speedup effect of theory transformation. In
the figure, number of constants refers to the number



0

1

2

3

4

5

6

2 3 4 5

time

number of constants

‘ref’ 3

3 3 3
3

‘no-ref’ +

+

+

Figure 1: The effect of theory transformation in the
path example. Time in seconds.

of possible bindings of each variable; time is the run-
ning time of the Networked Bubble Propagation (NBP)
method (Ohsawa & Ishizuka 1997) on a Sun Ultra2 (320
MB memory). Since the number of different variables
occurring in a clause is an exponential factor for the
possible ground instantiations of the clause, the effi-
ciency of reformation increases with the number of con-
stants. It is important to note that while the number
of hypotheses is constant, the number of body atoms
of clauses in the reformed theory is reduced from four
atoms to two atoms. Comparing theories with almost
the same number of rules reveals that the theory with
two body atoms per rule is more than twice as efficient
as the theory with four atoms (per rule).

Discussion and Conclusion
We have presented a general theory for knowledge ref-
ormation that takes as input a first-order Horn theory
and outputs a propositional Horn theory of manageable
size. The reformation method is based on extensions
of well-established compilation methods, originally in-
vestigated in the areas of database systems (relevance
reasoning) and logic programming (theory transforma-
tion). It is important to note that theory reformation is
an equivalence-preserving form of knowledge compila-
tion that can be applied in a modular way, i.e., it is pos-
sible to apply only a subset of the available reformation
procedures. Empirical results indicate that reformation
may dramatically reduce the complexity of reasoning
problems. The experiment deals with a rather ‘patho-
logical’ case where each variable can be instantiated by
any of the constants occurring in the theory. In prac-
tice, the range of possible values for attributes (ground
instantiations for atoms) tends to be small. However,
in (Prendinger & Ishizuka 1998) we present promising
results for problem instances of model-based diagnosis.

Future research will focus both on more specialized
reformation methods and particular applications. For
instance, predicate abstraction methods allow to project
out predicate arguments that are irrelevant to a set of

queries, thereby reducing the number of (different) vari-
ables in a clause. On the practical side, we hope to
validate our approach on various evidential reasoning
tasks, in particular, on planning problems.

Acknowledgments
The first author was supported by a fellowship from the
Japan Society for the Promotion of Science (JSPS).

References
Ishizuka, M., and Matsuo, Y. 1998. SL method
for computing a near-optimal solution using linear
and non-linear programming in cost-based hypotheti-
cal reasoning. In Proceedings 5th Pacific Rim Confer-
ence on Artificial Intelligence (PRICAI-98), 611–625.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search.
In Proceedings 13th National Conference on Artificial
Intelligence (AAAI-96).
Levy, A. Y.; Fikes, R. E.; and Sagiv, Y. 1997. Speeding
up inferences using relevance reasoning: a formalism
and algorithms. Artificial Intelligence 97:83–136.
Ohsawa, Y., and Ishizuka, M. 1997. Networked bub-
ble propagation: a polynomial-time hypothetical rea-
soning method for computing near-optimal solutions.
Artificial Intelligence 91:131–154.
Poole, D. 1998. Learning, Bayesian probability, graph-
ical models, and abduction. In Flach, P., and Kakas,
A., eds., Abduction and Induction: essays on their re-
lation and integration. Kluwer. Forthcoming.
Prendinger, H., and Ishizuka, M. 1998. Efficient di-
agnosis based on theory reformation and hypothetical
reasoning. Submitted to the European Journal of Ar-
tificial Intelligence.
Proietti, M., and Pettorossi, A. 1995. Unfolding—
definition—folding, in this order, for avoiding unnec-
essary variables in logic programs. Theoretical Com-
puter Science 142:89–124.
Santos, E. 1994. A linear constraint satisfaction ap-
proach to cost-based abduction. Artificial Intelligence
65:1–27.
Schurz, G. 1998. Relevance in deductive reasoning: A
critical overview. Conceptus-Studien 13:9–56.
Selman, B., and Kautz, H. 1993. Domain-independent
extensions to GSAT: Solving large structured satis-
fiability problems. In Proceedings 13th International
Conference on Artificial Intelligence (IJCAI-93), 290–
295.
Stumptner, M., and Wotawa, F. 1997. Diagnosing tree
structured systems. In Proceedings 15th International
Conference on Artificial Intelligence (IJCAI-97), 440–
445.
Tamaki, H., and Sato, T. 1984. Unfold/fold transfor-
mation of logic programs. In Proceedings Second In-
ternational Logic Programming Conference, 127–138.


