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Abstract

We focus on the filter approach of feature selection.
We exploit geometrical information of the learning set
to build an estimation criterion based on a quadratic
entropy. The distribution of this criterion is approxi-
mately normal, that allows the construction of a non
pararnctric~l statistical test to assess the relevance of
feature subsets. We use the critical threshold of this
test, callcci the test o[" Relative Certainty Gain, in a for-
ward selection algorithm. We present some experimen-
tal results both on synthetic a~ld natural domains of
the UCT databa~ rep~sitory, which show significa~ltly
improvements on ttne accuracy estinmtes.

Introduction
While the problem of feature selection has always been
at the center of statistic researches, it is only recently
that this problem received attention in computer sci-
cnce. Beyond the intcntion of improving the perfor-
mance of their algorithn~s, machine learning researchers
studied featurc selection methods to face the explosion
of data (not always relevant) provided by recent data
collecting technologies (the Web for instance).

Prom a theoretical standpoint, the selection of a good
feature subset is of little interest. Actually, a Bayesian
classifier is monotonic, i.e., adding features can not de-
crc~.sc the model’s performance. This is generally true
only for infinite learning sets for which the estimate er-
rors can be ignored. In fact, practical algorithms not al-
ways being perfect, the monotonicity assumption rarely
holds (Kohavi 1994). Thus, irrelevant or weakly rele-
vant features may" reduce the accuracy of the model.
A study in (Thrun et al. 1991) shows that with the
C4.5 algorithm (Quinlan 1993) non deletion of weakly
relevant featur~ generates deeper decision trees with
lower performanc~ than those obtained without these
features. In (Aha 1992), the author shows that the stor-
age of the IB3 algorithm increases exponentially with
the number of irrelevant features. Same sort of conclu-
sions arc presented in (Langley and Iba 1993). These
results have encouraged scienti~s to elaborate sophis-
ticated feature sclection methods aUowing to:
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¯ Reduce classifier’s cost and complexity.

¯ Improve model accuracy.

¯ Improve the visualization and comprehensibility of
induced concepts.

According to the terminology proposed in (John, Ko-
havi and Pfleger 1994), two approaches are available:
the wrapper and filter models.

In filter models, the accuracy of the future induced
classifier is assessed using statistical techniques. The
method "filter out" irrelevant features before the induc-
tion process. In wrapper methods, we search for a good
subset of features using the induction algorithm. The
principle is generally based on the optimization of the
accuracy rate, estimated by one of the following meth-
ods: holdout, cross-validation (Kohavi 1995), or boot-
strap (Efron and Tibshirani 1993).

Whatever the method of feature selection we use, the
goal is always to assess the relevance of alternative sub-
sets. A survey of relevance definitions is proposed in
(Blum and Langley 1997).

In this article, we consider the filter approach to find
relevant features. We will explain in detail arguments
about this choice. We exploit characteristics of a neigh-
borhood graph built on the learning set, to compute a
new estimation criterion based on a quadratic entropy.
We show that the distribution of this criterion is ap-
proximately normal, that allows the construction of a
non parametrical test to assess the quality of feature
subsets. We use this statistical test (more precisely
the critical threshold) in a forward selection. Finally,
we present some experimental results on benchmarks of
the UCI database repository, comparing performances
of sdected feature subsets with rcsults obtained in thc
original spaces.

Feature Selection and Filter Model

Presentation

Given a p-dimensional representation space, where p
is the number of features characterizing a S .set of n
learning ixtstances. Each instance ~ai is represented by
a p-dimensional input vector X(wi) = (x~l,x~2,..,x~p),
and by a label Y(wd) E 1I, Y = {Yl, Y2, ...,Yk}. We would
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like to build a hypothesis h so that h(xil, xi2,.., xip) 
Y(w~) the more often. Even if h can be built from all the
attributes, we would like the selected hypothesis to use
only a small subset of features for reasons mentioned
above.

The feature selection problem in general is NP-hard.
Actually, there are 2p different combinations to test.
Then, the optimal selection can only be done with few
features. In front of large representation spaces, a lot of
works in machine learning has developed a large num-
ber of heuristics for performing the search of a "good
subset" efficiently. According to the paper of Langley
(Langley 94), four basic issues determine the nature 
the heuristic search process:

¯ The starting point in the space: with an empty space
(forward selection) or with all the features (backward
selection).

¯ The organization of the search: addition or deletion
of an attribute at each stage, never reconsidering the
previous choice.

¯ The strategy used to evaluate alternative subsets of
attributes (filter or wrapper model).

¯ The criterion for halting search through the space
of feature subsets. Probably the simplest solution
consists in fixing in advance the feature subset size
k. We propose in our approach a more sophisticated
statistical criterion.

We consider in this article a filter approach with a
statistical criterion for halting search. We explain this
position by the following arguments: while the wrap-
per approaches often provide better accuracy estimates
than a statistical measure, they tend to be more compu-
tationally expensive. Moreover, the bias of the learning
algorithm does interact with the bias inherent in the
feature selection algorithm. In fact, we think that the
relevance of a feature subset must not depend on a given
classifier. This relevance is an intrinsic property of the
concept represented by the attributes. That’s why we
believe (it is a postulate !) that the feature selection
must be an a priori preprocessing, and requires then a
filter approach. This preprocessing step must use gen-
eral charac~,eristics of the training set.. It requires sta-
tistical or information criteria to measure the feature
relevance.

Estimation Criteria

We present here different estimation criteria used for
feature selection or feature weighting algorithmst. We
refer to some algorithms using these criteria.

¯ Interi)~tance distance: this criterion is used in the
Kira and Randall’RELIEF (Kira and Rendell 1992).
This method selects a random training case wj, a

1Feature selection algorithms are weighting algorithms,
where irrelevant or weakly relevant features have a zero
weight. For more details about feature weighting see
(W’ettschereck and Aha 1995)

similar positive case wa, and a similar negative case
Wb. It then updates the w~ feature weight using:

wi = wi - di//(=ji, x~) diff(=j~, =s)
where diff is a given metric

Based on this principle, Kononenko proposes an
extension of RELIEF in (Kononenko 1994).

¯ Interclass distance: the average distance between in-
stances belonging to different classes is a good cri-
terion to measure the relevance of a given feature
space. However, the use of this criterion is restricted
to problems without mutual class overlaps.

¯ Probabilistic distance: in order to correctly treat class
overlaps, a better approach consists in measuring dis-
tances between probability density functions. This
way to proceed often leads to the construction of ho-
mogeneity tests (Rao 1965).

¯ Class Projectior~ this approach assigns weights using
conditional probabilities on features that can be in-
discriminately nominal, discrete or continuous (Stan-
fill and Waltz 1986).

¯ Entropy: one can speak about feature selection in
terms of information theory. One can then assign fea-
ture weights using the Shannon’s mutual information
(Wettschereck and Dietterich 1995); see also (Koller
and Sahami 1996) where the cross-entropy measure
is used.

We propose in the next section a new way to pro-
ceed using both the contribution of information the-
ory and the rigor of statistical tests. We assume that
classifier ability to correctly label instances depends on
the existence in the feature space of wide geometrical
structures of points identically labelled. We character-
ize these structures using information contained in the
well-known Minimum Spanning Tree. This information
is used to apply the following test of Relative Certainty
Gain.

The Test of Relative Certainty Gain
Geometrical concepts
Our approach is based on the research of characteristics
of the learning sample in a neighborhood graph. More
precisely we use the Minimum Spanning 7~ee, which is
simple to build, and has interesting geometrical prop-
erties. The construction of this neighborhood graph al-
lows to exploit local and global infornmtion of the con-
cept to learn. We review before some useful definitions
about graphs and information measures.

Definition 1 A tree is a connected graph without cy-
cles.

Definition 2 A subgraph that spans all vertices of a
graph is called a spanning subgraph.

Definition 3 A subgraph that is a tree and that spans
all vertices of the original graph is called a spanning
tree.
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Definition 4 Among all the spanning trees of a
weighted and connected graph, the one (possibly more)
T~ith the least total weight is called a Minimum Spanning
Tree (MST).

So, if we have a given metric over the p-dimensional
representation space, we can easily build a MST consid-
ering the weight of an edge as the distance between its
extremities. When features have real values (it is too
often an implicit hypothesis in feature selection algo-
rithms!), standard euclidean metric is sufficient. In or-
der to be able to deal with any type of feature (nominal,
discrete, continuous), our approach requires using spe-
cific metrics. In (Wilson and Martinez 1997), new het-
erogeneous distance functions are proposed, called the
Heterogeneous Euclidean-Overlap Metric (HEOM), the
I Ictcrogeneous Value Difference Distance (H VDM), the
Interpolated Value Difference Metric (IVDM), and the
Windowed Value Difference Metric (WVDM). These
distance functions properly handle nominal and con-
tinuous input attributes and allow the construction of
a MST in mixed spaces. They are inspired by the Value
Difference Metric (Stanfill and Waltz 1986) which de-
fines the dist, ance between two ~’alues x and y of an
attribute a as following:

= - Po+,oi
c---- 1

where

* .’Ya,x is the number of instances in the training set S
that have value x for attribute a,

¯ :Y,,.z~ is the number of instances in S that have vahm
x for attribute a and output class c,

¯ k is the number of out.put cl&~ses,

¯ q is a constant, usually I or 2,
)¯ 1,~.~.,: is the conditional probability that the output

(’lass is c given that attribute a has the value x, i.e.,
P(clXa).

In the case of continuous attributes, HEOM, HVDM,
IVDM and WVDM apply different strategies :

¯ I~-~° for HEOM, where maxa and min~ are the

maximum and minimum values for attribute a,
¯ Iz~-~° for HVDM, where era is the standard devia-

40"a
tion of the nm~mric values of attributes a,

¯ discretization approaches for IVDM and WVDM.

Entropy Notions
Definition 5 (riven

(’)’1...,’)~,..,’~’~.) ¯ 

}

kSk = Vj : I ....
k 7j > O and ~%i=1

j-~l

the k-dimensional simplex, where k is a positive in-
teger.

An entropy measure is an application from Sk in
IR+, with the following properties (for more details
see (Breiman, Friedman and Olshen 1984)): Symme-
try, Minimality, Maximality, Continuity and Concavity

Definition 6 The Quadratic Entropy is a fi,nction QE
[0,1]k in [0, 1],

QE : Sk --* [0, 1]
k

(71, ..,Tk) ~ QE((Tt, ..,Tk)) = Z Tj (l. 
j----1

where k is the number of clP-sses (k = card(Y) with
our notations).

Local and Total Uncertalntics in the MST

Given the previous definitions, we use the quadratic
entropy concept to measure local and total uncertainties
in the MST built on the learning set.

Definition 7 we define the neighborhood V/~’i) of a
given ~i instance belonging to S as following:

V(w0 = {wj ¯ S / "i is linked by an edge to ~ in the
MST} u { )

Definition 8 the local uncertainty Uioe(.vi) for a given.
wi instance belonging to S is defined as follouPing:

k

I’/+oc(~i) = ~ n’s(1 - _~t)ni. TI,Ij=l

where n~. = eard{V(wi) 
and n~j = card{~t ¯ V(wi) Y(wt) = yj

Definition 9 the total uncertainty l.." tot in the learning
sample is defined as following:

n k
v,o = "-’-¯ 2i 111,I. ?ln/ffiX " j----I

where n.. =~ hi. =n.+2(n- 1) = 3n---2
i=l

There are always n- 1 edges in a MST and each edge
is count 2 times (for each of the two extremities).

The Statistical Test

The previous critcrion Utot allows to estimate the infor-
mation level of the learning sample in a given feature
space. We propose in this section to provide more than
a simple criterion, building a statistical test. In order to
correctly estimate feature relevance, a performing ap-
proach consists in measuring the clv.~s overlap degree of
the probability density functions, and compare this one
with the degree obtained with a total overlap. This way
to proceed consists in applying an homogeneity test..
with the following null hypothesis H0:

HO : FI(X) = F2(x) ..... Fk(’g) ---- F(x)
where /~(x) is the repartition fimction of the class 

2~2 SEBBAN



To be able to apply this test, we must know the law
of the statistic used in the test (here, the Utot total un-
certainty) under the null hypothesis. Works proposed
in (Light and Margelin 1971) show that the distribu-
tion of the relative quadratic entropy gain is a X2 with
(n - 1)(k - 1) degrees of freedom. Rather than 
ing directly Utot as variable, we then use the following
Relative Certainty Gain,

RCG -- uo
where [To is the uncertainty of the learning set before

the construction of the MST.
k

j----1

where nj - card{w~ / Y(a~i) = yj 

According to Light and Margolin,

n. RCG- 2X(,- 1)(k- 
E(n..RCG) (n - 1)( k- 1)
v(n..Rcc) = 2(n- X)(k- 

For reasonably large learning sets (n > 30), the distri-
bution of n RCG is approximately normal with mean
(,’,- 1)(k - 1) and variance 2(n- t)(k 

n..RCG ~ N((n- 1)(k - 1),2(n - t)(k- 

The null hypothesis will then be rejected (with an 
risk) if and only if:

u,-. 4 ’.,
n..RCG > (n - 1)(k - 1) -I- U... ~/2(n - 1)(k 

where U~ is the value of the repartition function of the
normal law N(O, 1) at the a risk.

Instead of fixing the a risk in advance (generally 5%),
we can calculate the c~c critical threshold necessary for
rejecting H0. Then, we can optimize ctc as an esti-
mation criterion to search for the feature subset which
allows to be the farthest from the H0 hypothesis. Ac-
tually, the smaller this risk is, the further from the H0
hypothesis we are. We use then this ~c risk in the fol-
lowing feature selection algorithm.

The Feature Selection Algorithm
Given p features, Xx,X2,...,X n. Among these p at-
tributes, we search for the most diseriminant ones using
the following algorithm. The heuristic search remains
a forward selection, optimizing the critical threshold of
the test.

1. eo ’-- I; E = ¢; X = {XI,X2, ...,Xp}

2. For each Xi e X do
Compute the ~ci critical threshold in the E U Xi fea-
ture space

3. Select Xmi n with ~min = Min{c~d}

Set # fsatl Aecl # feat2 Acc2
Syntl 10 95.44-2.2 2 96.04-1.3
Synt2 I0 58.24-3.6 1 58.24-2.2
Synt3 10 73.24-6.8 5 78.84-1.9
Iris 4 88.54-4.5 2 94.74-3.0

Breast 13 66.24-6.1 3 82.74-4.9
Vote 16 91.54-3.7 1 95.74-2.3

Glass2 9 72.04-5.6 4 73.24-6.3
Xd6 l0 78.14-2.9 9 79.94-3.1

Hepatitis 19 82.49:6.0 7 81.04-4.7
EchoCardio 6 72.64-8.0 3 74.84-6.9
Audiology 69 80,14-4.2 21 80,34-3.0

Table 1: Results on synthetic and natural domains:
Accl corresponds to the accuracy estimates with all
the original features (# featl is the space size) and
Acc2 presents results with the selected feature subset
(~ feat2 is the subspace size).

4. If CVmin <~<~ O/O then
x = x -
F, = E u }
a~) 4--- CVmin
Return to step 2
else Return E.

Experimental Results

In order to show the interest of a new approach, an ex-
perimental study should satisfy two criteria: relevance
and insight (Langley 1998). That’s why, in this section,
we present some experimental results on two types of
problems. The first one concerns synthetic domains.
In that case, we know the a priori number of relevant
and irrelevant features. This way to proceed allows to
verify the effects of the algorithm. The second type of
problems concerns natural domains. We test our algo-
rithm on 11 datasets, among which 8 belong to the UCI
database repository2. We run also our algorithm on the
three following synthetic problems:

¯ Synt 1: t0 features, among whom 7 are more or
less relevant (V1 - ]/2 the more relevant), and 3 are
irrelevant ones (Vs ~ Vlo).

¯ Synt 2:10 features, among whom three are exactly
redundant features (V 1 ~ V3) , and 7 are irrelevant
(v4 V,o).

¯ Synt 3:10 features, including seven identically dis-
tributed relevant features (V1 "+ VT), and 3 irrelevant

V o).
~b.: For irrelevant features, simulated classes are

identically distributed by a normal law N(0, 1).
Result~ of table 1 show that performances of our

feature selection algorithm are interesting, eliminating
both irrelevant and redundant features. In the major-
ity of cases, the accuracy estimates obtained with a

2http://www.ics.uci.edu/" mlearn/MLRepcsitory.html
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5-fold-Cross-Validation using a 1-nearest neighbor clas-
sifier are better in the selected feature subspace than
with the all set, and moreover with smaller standard
deviations.

Conclusion

With the development of new data acquisition tech-
niques, and with databases huger and huger, compre-
hensibility is became very important in machine learn-
ing. It is then the duty of algorithms to achieve a
high level of performance and explicativity. Feature
selection is became a central problem in machine learn-
ing. We have presented in this paper a feature selection
model based both on information theory and statistical
tests. A feature is selected if and only if the informa-
tion given by this attribute allows to statistically reduce
class overlap. Results on synthetic and natural domains
show that our statistical tool is suited to treat irrele-
vant and redundant features, even in very large feature
spaces. This is a filtcr approach which avoids the choice
of a given learning method. In future work, we should
(i) compare our results with other filter models used for
feature selection or feature weighting, and (ii) try to re-
duce the computational costs linked to the construction
of the MST.
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