
Copyrigth 1999 - American Association for Artificial Intelligence. All rigths reserved.
The official version of this paper has been published by the American Association for Artificial Intelligence (http://www.aaai.org).

Generalization Discovery for Proofs by Induction

in Conditional Theories

KOUNALIS Emmanuel, URSO Pascal
Université de Nice - Sophia Antipolis, Laboratoire I3S

Dpt. Informatique, Parc Valrose
06108 NICE CEDEX 2, France

kounalis@unice.fr, urso@essi.fr

Abstract
Several induction provers have been developed to
automate inductive proofs (see for instance: Nqthm, RRL
INKA, LP, SPIKE, CLAM-Oyster, ...). However,
inductive theorem provers very often fail to terminate. A
proof to go through requires either additional lemmas, a
generalization, a suitable induction variable to induce
upon , or a case split.

The aim of this paper is to present a simple and
powerful heuristic that allows to overcome, in many
cases, the divergence of induction provers when
working with conditional theories. We first provide a
new definition of induction variables and then formalize
a new transition rule for induction (named CGT-rule).
The essential idea behind it is to propose a generalized
form of the conclusion just before another induction i s
attempted and failure begins. This generalized form i s
based on the induction hypothesis and the current goal.

CGT-rule enables to prove many theorems completely
automatically from the functions definitions alone. We
illustrate computer applications to the correctness proof
of the insertion sorting algorithm and other programs
computing on lists and numbers. All of them have never
proved before without user-provided generalizations
and/or lemmas.

(Content Areas: Automated Reasoning, Theorem Proving)

Introduction
In this section, we first state the problem of induction, then
explain our interest in automated induction, and finally
discuss the aims of the present paper and related work.

The Problem
We assume familiarity with the basic notions of equational
logic and rewrite systems (see for instance (Dershowitz and
Jouannaud 91)). For simplicity of notation, we assume have
only one sort; all the results carry over to many-sorted case
without difficulty.

Let A be a set of conditional equations, i.e., expressions of
the form e1∧ ... ∧ en ⇒ en+1, where ei are equations which
are usually written as t = s. e1 ,..., en are the premises and
en+1 is the conclusion of e1∧ ... ∧ en ⇒ en+1. A clause i s
an expression of the form ¬e1∨...∨ ¬en ∨ e’1∨...∨e’m, where
e1,.., en, e’1,.., e’m are equations. We shall sometimes write

this expression in the following equivalent way: e1∧ ... ∧ en
⇒ e’1∨...∨ e’m . We identify a conditional equation and its
corresponding representation as an Horn clause. A clause φ i s
an inductive consequence (inductively valid) of a set A of
axioms if it is valid in the initial model. This will be denoted
by A |=ind φ. Inductive consequences are related to deductive
consequences as follows: A |=ind ¬e1 ∨ ... ∨ ¬en ∨ e’1 ∨ . . .
∨ e’m if and only if for any ground substitution σ, (for all i : A
|= eiσ) implies (there exists j such that A |= ejσ). For a detailed
discussion of initial models, see (Padawitz 88). Since ground
terms can easily be well-ordered, induction can be used as a
natural technique to prove clauses in the initial model.
Unfortunately, there is no a simple proof theory which
captures the semantic notion of the initial model. To overcome
this problem, one uses formula schemata to formulate an
induction rule which is used to prove formulas in the initial
model. Morever, no (recursively axiomatizable) set of
induction schemata is strong enough to constitute a complete
proof theory for the initial model.

To establish inductive consequences, classical theorem
proving provides either explicit induction ((Boyer and
Moore 79), (Aubin 79), (Zhang, Kapur, and Krishnamoorthy
88),...), or implicit induction (Dershowitz 82), (Jouanaud and
Kounalis 86 and 90), (Kounalis and Rusinowitch 90), (Reddy
90), (Bouhoula, Kounalis, and Rusinowitch 95), (Bouhoula
and Rusinovitch 95), (Bonsard, Hasker, and Reddy 96).
However, the hardest problems in using either approaches i s
to find an appropriate induction hypothesis and/or the lemmas
needed for the proof. Consequently, proving conjectures in
the initial model requires "eureka steps" such as selection of a
suitable variable to induce upon, additional lemmas, a
generalization, or case analysis for the proof to go through. In
some cases a combination of these concepts is needed. In this
paper we develop and implement a framework for automating,
in some cases, these "eureka steps".

Motivation
The need to be able to prove inductive theorems appears in
many applications including number theory, program
verification, and program synthesis. For example:

 Conditional equations may be used to define arithmetic
functions and express suitable properties about these
functions. Consider, for instance, the theory A of
nonnegative_integers with addition, multiplication and
exponentiation: A≡{x + 0 = x, x + S(y) = S(x + y), x * 0 = 0, x *
S(y) = x + (x*y), EXP(x, 0) = S(0), EXP(x, S(y)) = x * EXP(x,

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

y)}. Clearly, adding two integers, using the above equations,
yields a nonnegative integer. However if we consider the
property x+y = x+z ⇒ y = z, its validity cannot be established
by merely deductive reasoning. This is equivalent to prove
that the assertion is valid (true) in the theory of nonnegative
integers which is the initial model of the A (like any well-
known property of +, *, and EXP).

Aims of the Paper and Related Works
This paper deals with the problem of proofs of clauses in the
initial model of a set of conditional axioms. We first provide
an analysis of inductive variables, and then formulate an
inference rule for automatically generalizing conjectures. The
paper is a successor of (Kounalis and Rusinowitch 90 and 95)
and (Bouhoula, Kounalis, and Rusinowitch 95), where
induction was formulated as a combination of two concepts:
test sets and reduction orderings. Although this method has
proved several interesting theorems without assistance, its
attempts to prove many theorems fail without additional
lemmas and /or suitable generalizations.

Significant effort has been devoted to building heuristics
for speculating additional lemmas and for discovering
generalizations of equations in unconditional theories. The
rippling heuristic (Bundy et al. 93), the difference matching
procedure (Basin and Walsh 92), the divergence critic (Walsh
94), the use of proof planning (Ireland and Bundy 96 and
96a), and the speculate heuristic (Kapur and Subramaniam
96). Conceptually, all these approaches relies upon the
analysis of failed proof attempts to speculate generalizations
and lemmas to complete the proof. All these approaches deals
with proofs of unconditional equations in unconditional
theories.

The present paper formalizes a new heuristic method that
finds out automatically suitable generalizations to prevent
proof failure. The essential idea behind the method is to
propose a generalized form of the conclusion just before
another induction is attempted and failure begins. The
implication of such a idea is straightforward: it does not need
to know that a proof fails, nor the nature of the failure, nor the
type of induction being performed. For that purpose a simple
and powerful rule is introduced: the CGT-rule (see definition
4). Roughly speaking, the CGT-rule identifies positions in a
goal and generalizes the subterms at these positions after
filtering them through a set of representative ground terms of
TS(A). Further, one of the major problem of inductive theorem
provers is to find out the right variable to induce upon. Before
going on to the generalization problem, we comment on the
use of induction variables by the generate rule, and then
carefully define them (see definition 3). The proposed method
has been implemented in C. The initial experimentation is very
pleasing. For instance, the method can be employed to
automatically establish proofs for theorems (see examples) for
which all heuristically approaches to automated induction
fail to produce a proof.

Outline of our Approach : an Example
To illustrate the essential ideas behind our method let us
outline it on a rather complicated conjecture. Suppose our
goal is to prove the reflexivity property of the set inclusion
relation,

(*) D(L) = true ⇒ SUB(L, L) =true
This is part of a simple program verification problem.

Consider the following axiomatization A of subset (SUB),
element inclusion (∈), all_different_elements (D), wherein a
set is represented as a list L :

∈(x,L) = true ⇒ SUB(x.l, L) = SUB(l, L)
∈(x,L) = false ⇒ SUB(x.l, L) = false

SUB(∅,L) = true

Ε(x,c) = true ⇒ ∈(x,c.L) = true

Ε(x,c) = false ⇒ ∈(x,c.L) = ∈(x,L)

∈(x,∅) = false

∈(x,L) = true ⇒ D(c.L) = false

∈(x,L) = false ⇒ D(c.L) = D(L)

D(∅) = true
EQ(x,x) = true
true = false ⇒
false = true ⇒

Here, EQ is the identity comparison operator for elements.
Note that this simple conjecture is problematic for all
automated proof systems (e.g. Nqthm, RRL, INKA, LP,
SPIKE, CLAM-Oyster, etc...). None of them can prove it when
given just the above definitions. Of course, with the addition
of some lemmas all provers are able to prove this. Also, this
example cannot be treated by any of the heuristics proposed in
heuristic (Kapur and Subramaniam 96), (Ireland and Bundy 96
and 96a), (Walsh 94), (Basin and Walsh 92), (Bundy et al. 93).
Let see how our method allows an automatic proof of it.

To carry out a proof of (*) we first supply a well-founded
ordering > on terms (i.e., there is no endless descending
chain t1 > t2 >,... of terms). For example, we may compare terms
by using the lexicographic path order > generated by the
precedence SUB >p D >p ∈ >p . >p ∅. Then SUB(L, L) > true

holds in the lexicographic path order even though the two
terms presumably have the same semantics (see (Dershowitz
87)). Using a monotonic and stable well-founded ordering >
on terms we may apply a (conditional) equation for
simplification.

We then compute a Test Set TS(A) for A, i.e., a finite set of
terms which, in essence, is a finite description of the initial
model of A (see for instance: (Kounalis and Rusinowitch 90),
(Kounalis 92)). For example, the set TS(A) = {x.l, ∅, true,false}
constitutes a suitable test set for A. Note that every ground
term is equal to a term over SUB, ., ∈, D, ∅, true, and false. The
reason for considering test sets is to instantiate their elements
to variables in a conjecture in order to create the induction
shemes for the proof of a conjecture.

Finally, a set of transitions rules (see subsection 4.1) i s
applied to the conjectures; The generate rule that allows to
derive the induction schemes by instantiating an induction
variable (see subsection 4.2) with elements of TS(A). The case

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

analysis rule that simplifies a conjecture with conditional
rules and adds to the result the contexts where the respective
reductions are valid. The simplify rule reduces a conjecture C
with axioms from A, induction hypotheses and other
conjectures (therefore we can simulate mutual induction). The
premises of C considered as a conditional axiom can also help
to check that the preconditions of a rule being applied to C are
valid. The delete rule that removes trivial conjectures. Notice
that this set of inference rules is sound (see for a proof
(Bouhoula, Kounalis, and Rusinowitch 95)). The CGT-rule
that abstracts common subterms in a clause at well-defined
positions.

There are two fundamental ideas behind our proof strategy.
The first idea is to apply the generate rule on an induction
variable (see definition 3). The second idea is to apply (if
possible) the CGT-rule just before another induction
(generate rule) is attempted. In our example the proof starts
with the goal:

(*) ¬D(L) = true ∨ SUB(L,L) =true

To handle clause (*) we can use the generate rule: we first
instantiate the induction variable L with elements of the test
set, {x.l, ∅, true,false}, and then simplify (using the rules of
simplify and/or case analysis) the resulted instances. The first
step gives us two distinct clauses,

1. ¬D(∅) = true ∨ SUB(∅, ∅) = true

2. ¬D(x.l) = true ∨ SUB(x.l, x.l) = true

Notice that the clause, ∈(x, x.l) = true ∨ ∈(x, x.l) = false, i s
inductive valid in A. So the generate rule gives,

3. ¬true = true ∨ true = true

4. ∈(x, x.l) = true ⇒ (¬D(x.l) = true ∨ SUB(l, x.l) = true)

5. ∈(x, x.l) = false ⇒ (¬D(x.l) = true ∨ false = true)

To make clauses more readable when the case analysis rule
applies we use the notation p ⇒ q where p is the rule premise
and q the initial clause to which one simplification step was
performed.

Conjecture 3 is a tautology, so is deleted. For conjectures 4
and 5 the case analysis rule gives,

41. EQ(x, x) = true ⇒ (¬true = true ∨ ¬D(x.l) = true ∨
SUB(l,x.l) =true)

42. EQ(x, x) = false ⇒ (¬∈(x,l) = true ∨ ¬D(x.l) = true ∨
SUB(l,x.l) =true)

51. EQ(x, x) = true ⇒ (¬true = false ∨ ¬D(x.l) = true ∨
false = true)

52. EQ(x, x) = false ⇒ (¬∈(x, l) = false ∨¬D(x.l) = true ∨
false = true)

The premise EQ(x,x)=false in clauses 42 and 52 is simplified
using A to true=false and the result reduces by A to a
tautology by A . Clause 51 is a tautology. Clause 41 can be
rewritten using the case analysis rule to

 411. ∈(x, l) = true ⇒ (¬false = true ∨ SUB(l, x.l) = true)

 412. ∈(x, l) = false ⇒ (¬D(l) = true ∨ SUB(l, x.l) = true)

Now clause 411 is reduced A to a tautology. Application of
CGT-rule to 412 gives (see definition 4),

6. ¬∈(x, W) = false ∨ ¬D(W) = true ∨ SUB(W, x.l) =
SUB(W, l)

This is the only clause proposed by CGT-rule. Roughly
speaking CGT-rule works in two steps: at the first step i t
takes as argument an induction hypothesis and a derived
clause from it (w.r.t. generate and simplification), and produces
a new clause. This new clause is generated in such a way that
both sides of a positive literal share non-trivial common
subterms. Further, at least one of these subterms is at a
position which is a suffix of inductive positition of R (see
definition 1). At the second step the GGT-rule generalizes
these subterms using a fresh variable as well as all occurrences
of these subterms in the whole clause.

To handle clause 6 we can use the generate rule. The first
step gives us two distinct clauses,

7. ¬∈(x, ∅) =f alse ∨ ¬D(∅) = true ∨ SUB(∅, x.l) = SUB(∅,
l)

8. ¬∈(x, y.Z) = false ∨ ¬D(y.Z) = true ∨ SUB(y.Z, x.l) =
SUB(y.Z, l)

which are rewritten using A. Simplification of clause 7 gives a
tautology. Simplification of clause 8 gives,

81. EQ(x, y) = true ⇒ (¬true = false ∨¬D(y.Z) = true ∨
SUB(y.Z, x.l) = SUB(y.Z,l))

82. EQ(x, y) = false⇒(¬∈(x, Z) = false ∨ ¬D(y.Z) = true ∨
SUB(y.Z, x.l) = SUB(y.Z, l))

Now clause 81 is reduced by A to a tautology. Using cases
analysis, clause 82 gives

821. ∈(y, x.l) = true ⇒ (¬EQ(x, y) = false ∨ ¬∈(x, Z) =
false ∨ ¬D(y.Z) = true ∨ SUB(Z, x.l) = SUB(y.Z, l))

822. ∈(y, x.l) = false ⇒ (¬EQ(x, y) = false ∨ ¬∈(x, Z) =
false ∨ ¬D(y.Z) = true ∨ false = SUB(y.Z, l))

Clauses 821 and 822 can be rewritten (case analysis), using A,
to

821. ¬∈(y, l) = true ∨ ¬EQ(x, y) = false ∨ ¬∈(x, Z) = false
∨ ¬D(y.Z) = true v SUB(Z, x.l) = SUB(Z, l)

822. ¬∈(y, l) = false ∨ ¬EQ(x, y) = false ∨ ¬∈(x, Z) = false
∨ ¬ D(y.Z) = true ⇒ false = false

Clause 822 is a tautology. Using Case Analysis, we can
reduce Clause 821 to

8211. ∈(y, Z) = true ⇒ (¬∈(y, l) = true ∨ ¬EQ(x, y) = false
∨ ¬∈(x, Z) = false ∨ ¬false = true ∨ SUB(Z, x.l) =
SUB(Z, l))

8212. ∈(y, Z) = false ⇒ (¬∈(y, l) = true ∨ ¬EQ(x, y) =
false ∨ ¬∈(x, Z) = false ∨ ¬D(Z) = true ∨ SUB(Z, x.l) =
SUB(Z, l))

The first clause is reduced by A to a tautology. Using the
induction hypothesis (6) , 8212 is reduced to

¬∈(y, Z) = false ∨ ¬∈(y, l) = true ∨ ¬EQ(x, y) = false ∨
¬∈(x, Z) = false ∨ ¬D(Z) = true ∨ SUB(Z, l) = SUB(Z, l)

which is a tautology. This completes the proof of initial
conjecture.

Induction in Conditional Theories : the
Machinery

In this section we first provide a set of transition rules for
induction with an extention of the case analysis rule, then
properly define the notion of induction variable, and finally

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

present ths CGT-rule.The standard automatic method of
performing induction in a given theory A is by means of test
sets (see (Kounalis and Rusinowitch 90) and (Bouhoula,
Kounalis, and Rusinowitch 95)), or cover sets (see (Zhang,
Kapur, and Krishnamoorthy 88), (Reddy 90), (Bonsard,
Hasker and Reddy 96)). A test set (resp. a cover set) is, in
essence, a finite description of initial model. In general, a test
set (Kounalis 92) is more powerfull concept than the a cover
set since, in combination with a ground convergent set of
axioms, a test set can be used to refute every false conjectures
(Bouhoula, Kounalis, and Rusinowitch 95), (Bouhoula and
Rusinovitch 95).

Transition Rules for Conditional Theories
The induction procedure is formalized by the following set

of transitions rules (Bouhoula, Kounalis, and Rusinowitch
95), (Kounalis and Rusinowitch 95), (Bouhoula and
Rusinovitch 95) applied to pairs of the form (E,H), where E i s
the a set of clauses which are conjectures to be proved and H
the set of inductive hypotheses. The initial set of conditional
equations A is oriented with a well-founded ordering to a
rewrite system R. The inference system for induction contains
the transition rules given below. Roughly speaking, the
generate rule allows to derive the induction schemes by
instantiating an induction variable (see next subsection) with
elements of TS(R). These induction schemes are then simplified
by R either by conditional rewriting or by case analysis. The
resulting conjectures are collected to ∩σEσ. The case
simplify rule simplifies a conjecture with conditional rules,
where the disjunction of all conditions is inductively valid
(see definition below). The simplify rule reduces a clause C
with axioms from R, induction hypotheses from H and other
conjectures (therefore we can simulate mutual induction). The
rules Subsume and Delete delete redundants clauses.

Case analysis is a very important rule in the setting of
inductive proofs, where case splittig arises naturally from an
induction hypothesis. Case simplification illustrates the case
reasoning: it simplifies a conjecture with conditional rules
provided that the disjunction of the preconditions i s
inductively valid in R. Let R be a rewrite system for the set of
axioms A and let l ∨ r be a clause. Define
Case_Analysis(l[gσ]q∨ r) as the set { P1σ ⇒ l[d1σ]q∨ r;...;
Pnσ ⇒ l[dnσ]q∨ r} if Pi ⇒ g→di is in R and P1σ ∨...∨ Pnσ
is inductively valid in R.

Example: Let R ≡ { perm?(∅, ∅) = true; perm?(∅, y.L) =

false; ∈(x, L) = true ⇒ perm?(x.l, L) = perm?(l, (x, L)); ∈(x, L) =

false ⇒ perm?(x.l, L) = false } and let C ≡ perm?(c.Z, ins(c, Y))
= perm?(Z, Y) be a clause. Then Case-Analysis(C) is the set
{∈(c,ins(c, Y)) = true ⇒ perm?(Z, del(c, ins(c, Y))) = perm?(Z,

Y), ∈(c,ins(c, Y)) = false ⇒ false = perm?(Z, Y) } since ∈(c,

ins(c, Y)) = true ∨ ∈(c, ins(c, Y)) = false is inductively valid.

The inference system we use is the following:
 GENERATE : (E ∪ {C}, H) –ι (E ∪ (∪σEσ), H ∪

{C}),
if C≡(a=b)

ε
∨ r and for all test substitution σ:

either Cσ is a tautology and Eσ = ∅,

or a→R[HUE];rσa’ and Eσ = {(a’=bσ)
ε

∨ rσ }
otherwise Eσ= Case Analysis(Cσ).

 CASE_SIMPLIFY: (E ∪ {C}, H) –ι (E ∪ E’, H)

if E’ = Case analysis(C)

 SIMPLIFY: (E ∪ {(a=b)
ε

∨ r }, H) –ι (E ∪ {(a’=b)
ε

∨
r }, H)

if a→R[HUE];ra’ or a→HUE[R];r a’ ≡ a[t]p and p≠ ε.

 COMPLEMENT: (E ∪ {¬(aσ=bσ) ∨ r }, H) –ι (E ∪
{(aσ=b’σ) ∨ r }, H)

if {¬(b = b’) is in R, a=b ∨ a = b’ is in E ∩ H and bσ≥b’σ.

 DELETE : (E ∪ {C}, H) –ι (E, H)

if C is a tautology .

 Fail : (E ∪ {C}, H) –ι //.

if no condition of the previous rules hold for C.

 A succesfull defivation is a sequence of transitions (E, H)
– (E1, H1) – –(En, Hn) such that En = ∅. The fail
rule is a kind of conjecture disprover. It is very important,
when a convergent set of axioms exist for ground terms, to
guard against false lemmas. We othen work with boolean
axiomatizations, that is conditional rules with boolean
preconditions over free constructors: Every rule in R is of the
type a1=b1∧ ... ∧ an=bn ⇒ s→t where for all i in [1..n], bi ∈
{true, false}. Conjectures can also be boolean clauses i.e.
clauses whose negative literals are of the type ¬a=b where
b∈{true, false}. If we assume that any defined function i s
completely defined, for any function f with boolean values, the
following is inductively valid: f(t1,...,tn) = true ∨ f(t1,...,tn)
= false. We can reformulate the complement rule as follows:

 COMPLEMENT: (E ∪ {¬(a=b) ∨ r }, H) –ι (E ∪
{(a=b

−
∨ r }, H)

if b ∈ {true, false}.

Designing Good Induction Schemes
The generate rule captures the essence of induction. It allows
to obtain the induction schemes that entails the proof of the
conjecture under consideration. An induction scheme must be
formed in the way that has a good chance of success. In some
sense, the success of a proof is strongly depends to what
variable the generate rule applies. Then a question naturally
arises: What is the best variable to replace in order to be
able to apply a definition and eventually the induction
hypothesis? For example consider the following set R of
conditional axioms that defines the intersection of two lists,

∈(x, L) = true ⇒ INT(x.l, L) → x.INT(l, L)

∈(x, L) = false ⇒ INT(x.l, L) → INT(l, L)

INT(∅, L) → ∅
Ε(x, c) = true ⇒ ∈(x, c.L) → true

Ε(x, c) = false ⇒ ∈(x, c.L) → ∈(x, L)

∈(x, ∅) → false
E(x, x) = true
true = false ⇒

Assume we want to prove the following conjectures:

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright ' 1999, AAAI (www.aaai.org). All rights reserved.

C1 ≡ ∈(x L) = true ∧ ∈(x, S) = true ⇒ ∈(x, INT(L, S)) =
true

C2 ≡ INT(X, INT(Y, Z)) = INT(INT(X, Y), Z)

(Boyer and Moore 79) put in evidence the fact that only
recursive variables are suitable canditates for variables to
induce upon. However, a more profound analysis of inductive
proofs, entails that among these recursive variables certain
variables are of particular importance. For instance: take C1
and suppose we want to learn whether all ground instances of
the conclusion can be proved equal whenever the
corresponding ground instances of the preconditions are
proved equal. To learn it, we must learn about the values of the
variables L and S since variable x is not an induction variable.
S is a good induction variable since the definition of INT will
apply in the precondition part of C1. However, the definition
of INT cannot be used anymore in the conclusion. The reason
is that INT is defined by recursion on the first argument. This
implies that variable L is better to induce upon since i t
allows the definition of INT to simplify both the precondition
and the conclusion parts of C1. Take now C2 and suppose we
want to learn whether all its ground instances can be proved
equal. To learn it, we must learn about INT(X, INT(Y, Z)) and
INT(INT(X, Y), Z). To learn about INT(X, INT(Y, Z)) we must
learn about X. But we do not know about X, so X is a
canditate induction variable. Similarly, to learn about
INT(INT(X, Y), Z) we must know about INT(X,Y). To learn
about INT(X, Y) we must learn about X and therefore X is a
canditate variable for doing induction. That's why X is the
best variable to induce upon.

Definition 1. (inductive position set). If R is a set of axioms
and f a function symbol in F, then IP(R,f) ≡{p | p ≠ ε and ∃ (P

⇒ l → r) in R such that l(ε) ≡ f and l(p) ∈ F} is the inductive
position set of function f w.r.t. R. IP(R) denotes the set
{IP(R,f)| f∈F} and is the inductive position set of R.

Example. For the set R of rules that define the intesection of
two lists, we get IP(R,INT) ={1}, IP(R,∈) = {2}, IP(R,EQ) =
{1,2}.

Definition 1 allows to select among the set of variables of
an equation, a subset which is suitable for the application of
generate rule. However, we may cut down this set by
discarding variables judged useless since they lead to goals
to which definitions fail to apply. Let C ≡ ¬a1=b1 ∨.. .∨
¬an=bn ∨ an+1=bn+1∨...∨am=bm. We denote by comp(C)
the set of atoms of C: {t | t is either ai or bi for i = 1,2,...,m}.

Definition 2. Suppose R is a left-linear set of conditional
rules, and C is a clause. Ux(t) is defined to be the set of
positions u in t labelled by x such that whenever there is a
rule P ⇒ l → r in R such that l unifies with t/v for some prefix
v of u then, |u/v| < D(R) and there is a position p in IP(R,l(ε))
such that p is a prefix of u}. The multiset Ux(C) of variable x in
C is then defined as {{ u | u ∈ Ux(t) and t ∈ comp(C) }}.

Example. Suppose C1 ≡ ∈(x, L) = true ∧ ∈(x, S) = true ⇒
∈(x, INT(L, S)) = true. Then, Ux(∈(x, L)) = ∅, UL(∈(x, L)) =
{2} (with v ≡ ε) Ux(∈(x, S)) = ∅, US(∈(x, S)) = {2}, Ux(∈(x,
INT(L, S))) = ∅, US(∈(x, INT(L, S))) =∅, UL(∈(x, INT(L, S))) =

{21} (here v ≡ 2). Therefore Ux(C1) = {∅}, US(C1) = {{2}}
and UL(C1) = {{2, 21}}. Suppose now C2 ≡ INT(X, INT(Y,
Z)) = INT(INT(X, Y), Z). Then, Ux(INT(X ,INT(Y, Z))) = {1},
UY(INT(X, INT(Y, Z))) = {1}. Notice that the term, INT(X,
INT(Y, Z)) unifies with INT(x.l, L), the left-hand side of rule
∈(x,L) = true ⇒ INT(x.l, L) → x.INT(l, L), but Y in INT(X,
INT(Y, Z)) is not a suffix of a position in IP(R, INT).
UZ(INT(X, INT(Y, Z))) = {∅}. Similarly, Ux(INT(INT(X, Y),
Z)) = {1}, UY(INT(INT(X, Y), Z)) = {∅}, and UZ(INT(INT(X,
Y), Z)) = {∅}. Therefore Ux(C2) = {{1, 1}}, UY(C2) = {{1}}
and UZ(C2) = {∅}.

The main reason for considering the set Ux(C) is just to
select the best variables in a clause to induce upon. The
motivation behind the requirements of definition 2 is the
following. First, the condition of unifiability is well-
understood since if a term t/v does not unify with R, any
instance of t/v using the elements of a test set could not be an
instance of R. Second, assume that t/v unifies with R: If a
variable x is at position u in t/v and the lentgh of u is greater
than or equal to the length of the variable positions in R, then
further instantiation of x cannot create instances of R since R
is assumed to be left linear so eventual substitutions are too
shallow to matter. Further, if u is not a suffix of an induction
position, then instantiation of this variable cannot gives
further information about t/v. The following definition defines
formally the notion of induction variables in our setting :

Definition 3 (induction variables): Variable x in C is an
induction variable if for all variables y in C either x is a
generalized variable and y is not a generalized variable or
|Uy(C)| < |Ux(C)|.
A variable x is said to be generalized if x is the variable
introduced by the CGT-rule below, i.e. if x is the variable
obtained by replacing common non-trivial subterms in a
clause by x. Notice that this requirement is consistent with
definition 2 since the CGT-rule generalizes subtems that are at
positions suffixes of positions in the induction position set of
a function. Notice also that in the case when |Uy(C)| = |Ux(C)|
either x or y may be used to induce upon.

Example. Suppose that in C1 no variable is generalized.
Since |Ux(C1)| < |US(C1)| < |UL(C1)|, L is the induction
variable in C1. Assume that in C2 no variable is generalized.
Since |UZ(C2) | < |UY(C2)| < |UX(C2)|, X is the induction
variable in C2. Suppose now that in C3 ≡ INT(X,W) =
INT(W,X) W is generalized and X is not. Then W is the
induction variable in C3. However, if we suppose that both X
and W are not generalized variables, then either W or X may
be considered as induction variable, since |UW(C)| = |UX(C)|.

Finding Generalizations in Conditional
Theories: the CGT-rule
We now introduce an inference rule which turns out to be an
indispensable part of practical inductive theorem prover.The
essential idea behind the inference rule is to propose a
generalized form of the conclusion just before another
application of generate rule is attempted and failure begins. At
the basis of our method for generalizing is the following

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

observation: By proving a more general property and less
complex (with respect to the number of a function occurrence
in a conjecture), we have the advantage of the
correspondingly more general induction hypothesis. This
would increase the chances of applicability of induction
hypothesis to induction conclusion. There are two questions
that natural arise:

1. What do we need to know about transforming a clause
into a more general one?

2. Which subterm occurences in a clause can we consider as
better canditates for generalization?

The CGT-rule below provides a way to transform
conjectures into more general ones by abstracting a common
non-trivial term that is a suffix of an inductive position. A term
is trivial if it is a linear variable in a clause. CGT-rule works
in two steps: at the first step it transforms a positive literal of a
clause B into a literal that both sides share a common non-
trivial subterm. At the second step it replaces them with a
fresh variable. Notice that these subterms should be both at
positions that are suffixes of inductive positions. The reason
is that the ground instances of these subterm occurrences
"create" in general, the context of the normal forms of the
ground instances of the whole term. To create common
subterms CGT uses the clause A whose a test set instance of i t
has been reduced to B. There are two reasons of considering
such a clause A . The first reason is that A is "similar" to B, in a
sense that some subterms of A may remain invariant during a
simplification process; The second reason is that further
application of the generate rule to A often creates the same
divergence pattern. The following definition captures this
discussion.

 Let A ≡ P[x] ∨ (l[x] = r[x]) and B ≡ Q[s] ∨ Q’[s] ∨
(a[s]p= b) be two clauses such that x is an induction variable
in A. Let s be a maximal (w.r.t. the size complexity) non trivial
term in B at position p such that p is a suffix of a position in
IP(R), and there is a substitution ηθ such that lηθ ≡ d[s] and
Pηθ subsumes Q[s] ∨ Q’[s]. Let t be a term in TS(R). Assume
that B is derived from P[x/t] ∨ (l[x/t] = r[x/t]) using the
generate and the simplification rules (case simplify or
simplify) such that B is not a tautology.

Definition 4 (Generalized Transform): Let A and B be two
clauses as above. Assume

1. b ≡ rη.
2. (lηθ = rηθ) <

c
 (l[x/t] = r[x/t]).

3. d[s]q≠ a[s]p
4. Q[g] ∨ Q’[g] ∨ (a[g]=d[g]) is inductively valid for any

ground term in TS(R).

If a[W]p ≡ α[(δ[W])] and lηθ[W] ≡ α[(γ[W])], for some

context α[] with Var(α[]) ∩ Var(δ[W]) = ∅, Var(α[]) ∩
Var(Q[W]) = ∅, Var(α[]) ∩ Var(Q’[W]) = ∅, and Var(α[]) ∩
Var(γ[W]) = ∅, then let D be the clause Q[W] ∨ Q’[W] ∨
δ[W] = γ[W], otherwise let D be the clause Q[W] ∨ Q’[W] ∨
(a[W]p = lηθ[W]q). D is said to be a generalized transform
of B. Variable W is said to be the generalized variable in B.

 CGT-rule : (E ∪ {B}, H) –ι (E ∪ {D}, H) if D is a
generalized transform of C.

As we have pointed out above CGT-rules produces a
generalized clause in two steps: At the first step the condition
1 with ηθ create a clause D’ that contains at least an equation
(i.e. the equation d[s]=a[s]) in which both sides share the same
non-trivial subterm s. Condition 2 implies that a[s] cannot be
rewritten to d[s]. Condition 3 implies that both members of
equation d[s]=a[s] are distinct. Therefore, the generalized
clause cannot be reduced to a tautology. Condition 4 filter out
conjectures through a representative set of ground terms to
guard against over-generalization. Notice that our motivation
is to produce a generalized that is as general as possible. So if
D’ is a clause of the form P ∨ α[s] = α[t], with Var(α[]) ∩
Var(t) = ∅, Var(α[]) ∩ Var(s) = ∅ , and Var(α[]) ∩ Var(P) = ∅,
P ∨ (α[s] = α[t]) can be simplied to P ∨ (s = t), since P ∨ (α[s]
= α[t]) is inductively valid if P ∨ (s = t) is so.

Example : Let A ≡ perm?(L, is(L)) = true. So P[x] ∨ (l[x] ≡
perm?(L, is(L)), r[x] ≡ true, and P[x] is empty. Let B ≡ ¬∈(c,
ins(c, is(l))) = true ∨ perm?(l, del(c, ins(c, is(l)))) = true. Then s
≡ is(l)), b ≡ true and Q[s] ≡ ¬∈(c, ins(c, is(l))) = true. Clearly
B is derived from A by using the substitution {L/y.l} and
rewriting. Then b ≡ r ≡ true, and substitution η is the
identity. Let θ be the substitution {L/l}. Then (perm?(l,is(l)))
= true) <c (perm?(l,del(c,ins(c,is(l)))) = true). Let s ≡ is(l).
Notice that is(l) is the maximal common subterm. Consider
now the clause D’ ≡ ¬∈(c,ins(c,is(l))) = true ∨ perm?(l,
del(c,ins(c,is(l)))) = perm?(l,is(l))). Then the clause D’ ≡
¬∈(c,ins(c,W)) = true ∨ perm?(l, del(c,ins(c,W))) =
perm?(l,W). Since α[] ≡ perm?(l,) we then have: Var(perm?(l,
)) ∩ Var(∨ perm?(l,del(c,ins(c,W)))) = ∅, Var(perm?(l,)) ∩
Var(¬∈(c,ins(c,W)) = true) = ∅, Var(perm?(l,)) ∩ Var(W).
Therefore D’ ≡ ¬∈(c,ins(c,W)) = true ∨ del(c,ins(c,W))) = W is
a generalized transform of B and W is a generalized variable.

 We list here a representative sample of theorems that can all
be proved from the definitions alone, using the CGT-rule. For
comparaison, the automated proof systems Nqthm, RRL,
INKA, LP, SPIKE, CLAM-Oyster, etc.. failed to produce a
proof for all of them when given just the above definitions. Of
course, with the addition of some lemmas all provers are able
to prove this. All conjectures proposed by the CGT-rule are
sufficiently simple to be proved automatically without
introducing fresh failure. The definitions of the functions
involved into the theorems bellow are classical and therefore
ommited.

Example 1: Theorem to be proved: EQ(y,0) = false ∧
div(x,y) = true ⇒ div(x*k,y)= true. The test instance

substitution {k/s(z)} reduces to EQ(y,0) = false ∧ div(x,y) =

true ⇒ div(x+x*z,y) = true. The CGT-rule then speculates the

lemma EQ(y,0) = false ∧ div(x,y) = true ⇒ div(x+W,y) =
div(W,y). This lemma allows the proof of the equation,

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

EQ(y,0) = false ∧ div(x,y) = true⇒ div(x*k,y) = true to go
through without divergence.

Example 2: Theorem to be proved: ∈(min(L),L) = true. The
test instance substitution {L/x.y.l} reduces to min(y.l) < x =
true ⇒ ∈(min(y.l),x.y.l) = true. The CGT-rule then speculates

the lemma W < x = true ⇒ ∈(W,x.y.l) = ∈(W,y.l). This lemma

allows the proof of the equation, ∈(min(L),L) = true to go
through without divergence.

Example 3: Theorem to be proved: sorted(is(L)) = true.
The test instance substitution {L/y.l} reduces to
sorted(ins(y, is(l)) = true The CGT-rule then speculates the
lemma sorted(ins(y,W)) = sorted(W). This lemma allows the
proof of the equation, sorted(is(L)) = true, to go through
without divergence.

Example 4: Theorem to be proved: perm?(L,is(L)) = true .
The test instance substitution {L/y.l} reduces to
∈(y,ins(y,is(l))) = true ⇒ perm?(L,del(x,ins(x,is(l)))) = true

The CGT-rule then speculates the lemma ∈(y,ins(y,W)) = true

⇒ del(x,ins(x,W)) = W.

Example 5: Theorem to be proved: ∈(x,ins(x,is(l)) = true.
The test instance substitution {L/y.l} reduces to
∈(x,ins(x,ins(y,is(l)))) = true. The CGT-rule then speculates

the lemma, ∈(x,ins(x, ins(y, W)) = ∈(x, ins(x, W)). This lemma
(with exemple 4) allows the proof of the equation, Perm?(L,
is(L)) = true, to go through without divergence.

Examples 3 to 5 form the first completely automatic proof
of the correctness of insertion sort.

In the majority of case, the conjectures proposed by CGT-
rule are optimal in a sense that are the simplest possible
equations to fix divergence and sufficiently simple to be
proved automatically without introducing a fresh divergence.
When multiple lemmas are proposed, then any one on its own
is sufficient to fix divergence. In some cases a false lemma may
be also conjectured. The totality of the conditional
generalized transforms, during the proof of a conjecture, form a
search space. One way of organizing it is by a proof tree: The
root node is conjecture C to be proved; every internal node
labeled by an equation, has as children all possible
generalized transforms of the clause C which is the result of an
application of the transition rules to C. This allows to reject
quickly all false conjectures.

Conclusion
This paper has described a simple rules which attempts to
propose generalizations which may be used to inductive
proofs in conditional theories. This support has the advantage
of overcoming the usual failures of inductive proofs. The
method seems to be very simple and powerful. The
applicability of the method is also illustrated with a large
number of examples.

References
Aubin, R. 1979. Mechanizing Structural Induction.
Theoretical Computer Science 9:329-362.
Bronsard F.; Reddy U.; and Hasker R. 1996. Induction Using
Term Orders. Journal of Automated Reasoning 16:3-37.
Boyer, R.S., and Moore, J.S. eds. 1979. A Computational
Logic. NY: Academic Press.
Bouhoula, A., Rusinowitch, M. 1995. Implicit Induction in
Conditional Theories. Journal of Automated Reasoning
14(2):189-235.
Bouhoula, A., Kounalis, E., and Rusinowitch, M. 1995.
Automated Mathematical Induction. Journal of Logic and
Computation 5(5):631-668.
Bundy A., Stevens A., van Hermelin F., Ireland A., and Smail
A. 1993. Rippling: A Heuristic for Guiding Inductive Proofs.
Artificial Intelligence 62:185-253.
Basin, D., and Walsh, T. 1992. Difference Unification.
Procedings of Thirteenth International Joint Conference on
Artificial Intelligence.
Dershowitz, N. 1982. Completion and its Applications.
Procedings of the séminaire d'Informatique Théorique,
Paris.
Dershowitz, N. 1987. Termination of Rewriting. Journal o f
Symbolic Computation, 3:69-116.
Dershowitz, N., and Jouannaud, J.P. 1991. Rewriting Systems,
Handbook of Theoretical Computer Science.
Jouanaud, J.P. and Kounalis, E. 1986. Automatic Proofs by
Induction in Theories Without Constructors. Procedings 1st
IEEE Symposium on Logic in Computer Science. 1990.
Information and Control 82.
Ireland, A., and Bundy, A. 1996. Using Failure to Guide
Inductive Proof. Journal of Automated Reasoning 16.
Ireland A., and Bundy A. 1996a. Extensions to a
Generalization Critic for Inductive Proof. Proceding of the
Thirteenth International Conference on Automated
Deduction.
Kounalis, E. 1992. How to Check for the Ground-reducibility
Property in Term Rewriting Systems. TCS 106(1):87-117.
Kounalis, E., and Rusinowitch, M. 1990. Mechanizing
Inductive Reasoning. Proceding of the Eigth AAAI :240-
245.
Kounalis, E., and Rusinowitch, M. 1995. Reasoning with
Conditional Axioms. Annals of Mathematics and Artificial
Intelligence 15:125-149.
Kapur, D., and Subramaniam, M. 1996. Lemma Discovery in
Automating Induction. Proceding of the Thirteenth
International Conference on Automated Deduction.
Padawitz, P. 1988. Computing in Horn Clauses Theories.
Berlin: Springer-Velrag.
Reddy, U. 1990. Term Rewriting Induction. Procedings of the
Tenth International Conference on Automated Deduction.
Walsh, T. 1994. A Divergence Critic. Procedings of the
Twelfth International Conference on Automated Deduction.
Zhang, H., Kapur, D., and Krishnamoorthy, M. S. 1988. A
Mechanizable induction principle for equational
specifications. Procedings of the Ninth International
Conference on Automated Deduction.

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

