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Abstract

New automatic theorem proving (ATP) techniques for
application in control syst~nR and artificial intelligence
is proposed. We consider new logical languages in de-
scrip~ive and constructive semantics. These languages
censist of 1-st c~der fc~muins with type quantifie~s.
We de’he logical calculi of classical and intuitionistic
types as well as strategies of automated reasoning. In.
formation on results of these logicsJ tools usage in some
control problem is given.
Keywords- Automatic theorem proving, Descriptive
and constructive losfcs, Intelligent control

Introduction
In the field of intelligent control it is helpful to use fuzzy
logic regulators and other rule-based control systems
as well as neural networks, Petri nets, discrete event
dynamic models and genetic algorithms. For e~Ample~
fuzzy logics and neural networks have gained recogni-
tion in control community with great violence and have
advanced at present dramatically (White & Sofge 1992;
Sinha & Gupta 1996).

As far as the intelligence level is concerned, amongst
the above-mentioned approaches to intelligent control
the knowledge-based (KB) systems hold the greatest
promise for supporting high-level reasoning, although
other systems can also be very beneficial as supplemen-
tary to the KB systems, when they offer promise as
a faster tool in real-time response. The coming years
will witness strengthening the trend to integrate the
both levels of intelligence into a single control system.
By now, even if the word intelligence is interpreted in a
very restrictive sense, it appears that current intelligent
control systems have a long way to ~o before they can
qualify this name in full measure (Astr6m & McAvoy
1992). This paper is concerned with the problem of in-
creasing the intelligence level of automatic and human-
machine control systems.

A subject we elaborate upon here in the progress
of (Vassilyev 1990; 1996; Vassilyev & Zherlov 1995;
Vassilyev 1997) is a new automatic theorem proving
(ATP) technique for constructive searching for a de-
sirable control in automatic control systems. This ap-
plication has been developed here in the progress of
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development and application of some original descrip-
tive and constructive logics in the field of automated
and semi-automated sol, ware (Butyrin & et ai. 1997;
Matrosov, Sumenkov, & Vassilyev 1991) and hardware
(Patrushev & Vassilyev 1989) engineering. It should 
noted that amongst the reasoning methods of KB sys-
tems ATP techniques appear as rather powerful tools
particui&rly in mathematical and programming envi-
ronment. However, we cannot say that ATP holds
much favour in real-time applications. On the one hand
the expressive power of propositional or some logically
equivalent languages, rather regular for automatic con-
trol community, is not sufficient to create intelligent
control systems which can qualify this name to great ad-
vantage. On the other hand we need not only to express
problems in higher level languages, but also effectively
reason within them. However, the theorem proving in
predicate logics is more complex. The logical instru-
ment ha9 to preserve the global heuristical structure of
firstf-order knowledge and to be of higher compatibility
with heuristics. It seems that any progress along this
line is very important. Many attempts can be found
in literature. (see, e.g., in (Gabbay, Hogger, & Robin-
son 1994) surveys by L. Wos and R. Veroff, pp. 1-40,
Ch. Walter, pp. 127-228, D.M. Gabbay, pp. 350-500).

We discuss new logical languages of positively con-
structed formulas (PCFs) in descriptive and construc-
tive semantics as well as new universal methods of ATP
with application in telescope guidance problem.

Transition to the more expressive languages and more
powerful ATP technique allows us to expand the class
of solvable control problems and to improve, in par-
ticuiar, the quality characteristics of control systems.
The well known resolution based ATP deals with nor-
real form where the clauses are disjunctions of atoms or
their negations. Our languages of PCFs as compared
with the clause language of resolutional type have es-
sentially higher level with large structural elements in
size, and the corresponding calculi have inference rules
which deal with the large-sized items. This leads to es-
sential reducing a search space and usually to shorten-
ing the derivation sequences. Very important property
of the deductive system is a better compatibility with
heuristics.
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In partic-lar, we propose descriptive logical calculus
J. Its language is complete w.r.t, expressiveness of the
language of the classical predicate calculus. The cal-
culus contains only one axiom and one inference rule
and has been equipped by complete strategy of ATP.
Our ATP technique has the main merits of the reso-
lution method, and, e.g., it is well machine-oriented.
Moreover, the technique preserves the global structure
of first-definable knowledge (e.g., does not eliminate
the quantifiers), does not generate redundant variety of
terms due to scolemization absence, has high compact-
hesS of knowledge representation; it is also easy appli-
cable for human being.

The language L of PCFs

The language L of PCFs is a first order language.
The formulas of the language are represented as a
tree-structures where branching nodes correspond se-
mantically to disjunctive and conjunctive connectives
with finite arity. Each node of the tree has a type-
quantifier (TQ in the sense of N.Bourbaki). The TQs
KX : A consist of quantifier sign K E {V, 3}, a vec-
tor of variables X, which could be empty one, and a
type-condition A (TC). We will restrict the range 
the first-order formulas A by so-called conjuncts. The
conjunct is a finite set of atoms or F ("fabity"), and
besides for any conjunct A the relation A C F is hold;
the empty conjunct is denoted by T ("truth"). Any
conjunct A E Con, where Con is a set of all conjuncts.
The semantic of each branching depends on the quan-
tifier sign in the node it origins from (see the semantics
below).

The tree-structure has additional restrictions: in the
leaves of the tree-structure only the existential TQs
are used; the root node contains TQ VT ; there is the
interchange of the existential and universal TQs along
each path of the tree (it can be reached by inserting
additional TQ-nodes where X and A are empty).

Each subformula (subtree) 3X: A q/ which follows
the root immediately is referred to as basic subformula,
and its root node :IX: A as base. In each base :IX: T,
the set X is not empty. The tree-structures we defined
are referred to as PCFs.

A semantics of PCF ~ is defined by a common se-
mantics of a corresponding formula in the classical 1-st
order predicate calculus (~’)*:

1. irA E Con, A f[ {F,T}, then A& = &{a: a E
A},F& = Fa/se, T~ ----True;

2. (3x: =.:Ix1 ... (VX: 
wl --, m)’), where :’X,

= : c, = c,
Remark 1 In particular calculi with PCFs which will
be defined below it is more convenient to consider PCFs
as beginning with existential TQs (language L’), and
also language L", in which formulas the root node may
be either existential or universal TQ. In these cases the
given above definition of descriptive semantics is not
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ch~uged, but some constructive semantics will be used
too (see below Theorem 5).

The universal method of ATP

We call any immediate successors VY: B of a base
:~X: A as question to 3X: A. A question VY: B to a
base :IX: A has an anseJer 0 iff 0 is a mapping (sub-
stitution) Y -+ TermA and BO C_ A, where TermA
consists of all terms from A if A ~ T and TermA = X
otherwise.

Let PCF ~r have the structure jr = VT {~, 3X:
A ~}, where ¯ is a list of other PCFs as subfor-
mulas (subtrees) of Jr, and ¯ contains a subformula
VY: B {:IZi: Ci ~}¢ffil--~ Then the result w~ of appli-
cation of the inference rule w to the question VY: B
with the answer 0:Y -+ TermA is the formula w~" =
VT {~, {:IX U Zi: A U CiO ̄  U ~iO}ifi-,-,i } After ap-
propriate renaming some of bound variables inside of
each subformula the expression w~" will satisfy all the
requirements for PCFs. Such renaming we will imply
always during application of w as well as the following
simplifying substitutions:
1. :IX: F ~/3F, i.e., :IX: F ¯ is replaced with 3F,
2. VT {~, BF}/VT @ if ¯ p 0.

Theorem 1 For any PCF jr ~. (jr)* +~ (wlr)*.

Any finite sequence of PCFs ~’, w~’, w2~r, ..., whY,
where w*5r = td(o)’-l~), 1 : w, tdn ~" --- -- VT 3F,is
called an inference of ~ in the calculus J = (VT 3F, w).
The calculus J has one inference rule w and one axiom
being contradiction. According to Theorem 1 the cal-
culus J is correct: if I- ~’, then ~- -,(~)*.

J

Theorem 2 The calculus J is complete, i.e., for any
PCF ~ if }- -,(:F)*, then ~- ~.

Thus, the language of PCFs as compared with the
clause language of resolutional type has essentially
higher level with large structural elements in size, and
the corresponding descriptive calculus have inference
rule which deal with the large-sized items. The lan-
guage preserves the global structure of first-definable
knowledge (e.g., does not eliminate quantifiers), does
not generate redundant variety of terms due to scolem-
ization absence. In comparison with the language used
in the resolution methods, compactness of representa-
tion of the knowledge can be illustrated by the following
example. The formula VT{~X~ : Ax,..., 3Xn : An},
where each A~,i = 1,n, contains m atoms, after trans-
forming into a set of disjuncts will give mn disjtmcts.

The application of logical calculus J, with descrip-
tive semantics, or some modification of it in solving
problems with constructive semantics (action p]a,n~ng,
computer program synthesis, automatic control, etc.)
needs an additional investigation. In this case it is of
purpose to make previously some conversion of J into
the so-called tasks calculus.



The calculus J’ of descriptive tasks
A Y-task is an expression ~" =~ ~F (to prove that
~: is inconsistent). In this case it is more convenient
to consider that in normal form PCFs have existential
TQ as a root (language L’) due to a modification 
the inference rule w (see below rule RY). Then the
Y-calculus is a calculus with one axiom:

and one inference rule:
n tasks 3X u U~ : A u A~O~{~ u ~O~} ~ ~P,

RJ’ : i=l,n
task 3X : A{~} =~ BF

for some answer O : Y -~ TermA, BO C_ A, where VIe :
B{3ZI: AI{~x}, ...,3Zn: A,{~n}} 6 ¯ and for any
i E 1,n Oi=OU{z|lu~,.. , , i z’ --¯ ,zh,/~h,}, {zx,..., k,} -
Zi, ul are new variables, Ui = {u|,..., u~ }. The solv-
ing the task presented in lower part of figure RJ’ is
reduced to n tasks from upper part of RJ’.

The Theorems 1, 2 can be adopted in more general
case to tasks calculus J’. Let us add some notions.

We call as a POF-strategy a rule u, which deter-
mines for every Y-task, being not an example of AxJ’,
a set of u-acceptable answers. Let admit that the PCF-
strategy excludes repeating answer usage.

If u is a PCF-strategy, then calculus (J’, v) is defined
so as new condition is added to the rule RJ’, namely
that the answer BO C_ A is ~-acceptable.

We call as the strict POP-strategy u a PCF-strategy
that defines for each Y-task a one-element set of v-
acceptable answers. The strict PCF-strategy ~ defines
for each Y-task BX: A {~} =~ BF a single search
tree Tv(BX: A {~} =~ BF), that is infinite for some
tasks. The answer BO C_ A of task BX: A {~} =~
BF which is not used is omitted by strict strategy u
if there exists in the tree Tv(BX: A {~} =~ 3F) 
infinite branch, in which this question is not used. The
strict strategy is v-nonomitting if for all Y-task qX:
A {~} =# BF there does not exist a task and an An,wer
for this task, which is omitted by the strategy v. Let fi
be a representation of formula -,(St)* in the language
L’, ~r E L’ (this representation can be done with simple
inversion of quantifiers and addition of TQ BT and TQ
3F as a new root and as all the new leave nodes, reap.).

Theorem 3 X~ u is a strict nonomitting strategy, then
the calculus (J’,u) is complete, i.e., for any POPs ~Yl
and ~r2 (~rl, 5r2 E L’) the folloudng statement is hold:

(J’,~)
The strict nonomitting strategy is some well orga-

nized inference search (i.e., a sequence of answers to
some questions), which ensures_~ in principle, the de-
ductibility of a task ~r {~’~,~’~} =~. ~ in the case
~1 ~ ~’~. Emphasizing such notion lets us to speak
about omifdng strategies. Some omitting strategies al-
low to search for other, e.g., intuitionistic inferences
within calculus J’ and even within J (see below Theo-
rem 6 and Corollary 1).

The calculus J~ of constructive tasks
To define a constructive (intultionistic) analog J~ of cal-
culus J’ one must take into account the following:

¯ simple r_educing the task 5r =~ ~ to the task
~T {~’,g} ~. BF, which is admissible in classical
case, is not allowed intultionistically;

¯ when translating a formula of predicate calculus into
some PCF some intuitionistic mmnces are lost for-
ever. So, two intultionistically nonequivalent propo-
sitional formulas (A ~ B) -~ O and (A&-,B) V O
are represented in L equally as VT {~O, BA VB BF}.
Therefore, the L is intuitionistically more poor.

Thus, by definition, the expressions ~r =~ {~, where
5r and ~ are PCFs, are the tasks of calculus J~ (con-
structive analog of the calculus J), and without loss of
generality one can consider that ~ e L’, ~ e L" and
if 0 is a V-formula, then it looks like VT ~’. These
constructive tasks may be understood as follows: ~r is
an agregation of descriptive knowledge and construc-
tive procedures specifications (e.g., computer programs
specifications), ~ is a goal specification (e.g., respec-
tively, a spedfication of a computation problem, etc.).

The calculus J~ is defined aa the calculus with one
axiom and three inference rules (n ~ 1,--~:

,) Axe : 3F{~} =~ .F;

i0 "knowledge usage":

n tasks ~X U Ui : A U A~ei{* U *iOi} =~ ~’,
i= 1,n

RIC. :
task 3X : A{#} =~ F

for some answer ~ : Y -~ TermA, BE) C_ A, where VY:
B{az~: Ax{~d,...,~z.: A.{~.}} e ~ and for al|~

.__ d i i i1,n 8, - eU{zl/ul,...,z~,/u~}, {z~,...,z~,} = Zi,
ul are new varm61es, 0"~ = {ul, ~ ̄¯ ...,11Akl}~

iiO "B-problem solving":

n tasks 3X U U~ : A U A~O~{¢’} => VT{~O~},

P~C. :
i = l,n

~k ~X : A{~} ~ ~: s{vz, : ~,{~,},..., ’
vz.:

for some answer 0 : Y --~ TermA,.Be. C_ A,~ where
for any i ¯ 1-~ O~ = ’ ’ ’O U {Zx/Ul,. ¯ ,̄ ZlkI/1M, ki},

{zl,...,4,} ---- Zi, u} are new variables, U, =
};{,4,...,,,,,,,

i~) "V-problem solving":

R,Q: ~x: A{~} ~ VT{~....,~.}"
Indeed, for n = 0 the rule Ra (7, is converted in

BF{~} =~ ~F
Co : ~x : A{~} =~ 3Y : S’

when BO C_ A due to BY: B -- qY: B VF, i.e., the
upper task in Ra Co is a partic,,l~r case of AxC.
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Theorem 4 The task ~ --~ ~ has a solution in Jc if
and only if (3:)* -+ (~)* is provable in~itionistically.

Theorem 5 If a task :F =~ ~ is decidable (in Jo), then
for each 3-variable and V-branching of the formula G
one can point a corresponding procedure representable
as a term composed from the procedures corresponding
to :l-variables and V-branchings of the formula ~.

Theorem 6 The calculus Jc can be represented as a
combination of calculus Y with some definite s~ratcgy u
restricting application of w, i.e., any inference of 5r =~
G in J¢ corresponds to some inference of Y =~ ~ in
( Y , u) and vice-versa.

Remark 2 The above mentioned justifies the sound-
ness of the original calculus J usage (without transi-
tion to the calculus of Y-tasks) if the goal formula ~ is
described in the class:

3T VX : A {:IY1 : B1,..., 3Yn : Bn, ) (1)

and ~r is an arbitrary PCF, being even not a Horn one,
i.e., by definition ~" has no branching in nodes with
universal TQs. In this case reducing the task ~" =~
in Jc to the task 3T {~’, ~] =~ 3F in Y means, in
turn, the possibility to replace the considered task by
the proving the formula VT 3T {~r, ~} in J (refutation
of formula (~r).&(g).), i.e., next statement is 

Corollary 1 Any task 5r =~ ~ in Jc, where ~ is of
the class (I~ may be replaced by proving the formula
VT 3T {5r, ~} in the calculus J.

On a problem of telescope guidance to
the center of a planet in nonfull phase

In (VassUyev & Cherkashin 1998) the problem of real-
time intelligent guidance of telescope to the center of
a planet in nonfull phase is considered as an applica-
tion example. Usually it is realized by the consequence
of measurements needed to locate telescope diaphragm
concentrically to the bright limb of the planet (Estey
1968; BUchenko, Matrosov, & VassUyev 1973). The log-
ical calculus allows us to extend the application area
of control systems as compared with other approaches
(Estey 1968; Bilchenko, Matrosov, & Vassilyev 1973).

In (Vassilyev & Cherkashin 1998) like in (Estey 1968;
Bilchenko, Matrosov, & Vassilyev 1973) we use informa-
tion on distances OHd (Fig. 1) from the telescope center
0 to the bright limb of the planet in the focal plane of
the telescope (the limb is represented by the arc AHB;
the symmetry axis CH is perpendicular to the diame-
ter AS). The aim of control: the center O has to track
the center C of the planet (Fig. 1). To be more spe-
cific, the aim is to find values of the step engines signals
(-1, 0, 1) coding the direction of error OC decrease.
The current information for control synthesis consists
of the distances Pi = OHi measured along the 8 scan
directions ai. So called informative bunch, which con-
sists of three neighbour scan directions intersecting the
limb, is determined. The number of any informative
bunch is equal to the number of its middle direction.
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Fig. 1: The planet image in focal plane zOz of telescope.

The variables rl = sgn (P~el- PN), r2 
sgn (PNel --PN) are formed, where ri E {-1,0,1}; op-
erations (B, e are operations of addition and subtrac-
tion modulo 8. The planet disk is divided on areas in
which the pair (rl, r~) has a corresponding fixed values.
Each area has its own prescribed direction of error OC
decrease. A recurrent identification of the area allows
us to organize multistep process of guiding the planet
center C by the center O. Thus, the control signals are
completely computed by identified area and number i of
the informative bunch for which the area is determined.
But under the condition

7r
< I- - __ (2)

there is a problem to find the informative bunch, i.e., it
is necessary to distinct directions intersecting the limb
and directions intersecting the terminator only. Here,
is a planet phase, A = const is minimal sensible phase.
The informative bunch always exists according to fol-
lowing condition:

arctgq>3~r/8, q=~/max~, q>l, (3)

where max ~ is the maximal error of some
rough guidance system used preliminary to locate the
center C to satisfy (3). We suppose that the error 
rough guidance is not more than R/4 (not more than
one forth of the radius R).

In particular, it is clear that if along some direction a~
values pi are less than ~R then ai does not intersect the
limb and intersects the terminator only. In this case,
the informative bunch can be chosen as some "central"
bunch among all pd >__ ~R (actually, a bunch with the
minimal number among them is chosen).

Thus, the set of logical rules of telescope control con-
sist of four parts:
i) determination of informative bunch;
i 0 determination of area where the center O is located;
ii 0 choosing direction to decrease the error OC;
iv) obtaining the control signals according to the direc-
tion chosen.



Fig. 2: The ezample of 9uidance: starting position of the
telescope center 0 in Fig. ~a corresponds to the point 1

Fig.

An example of telescope guidance process modeling
is illustrated in Fig. 2. In the positions 1,2,3,4 of the
point O the informative bunch 2 is used, and after that
in the position 5 the scan direction ao begins to inter-
sect the Limb, and the bunch 1 is used. Starting from
the point 6, the center O hits the insensibili~ area, i.e.,
a~er this point the center O moves between the oppo-
site areas where points 6,8,.. are located and the area
with points 7,9,... In this Ulustration we do not account
for simplicity the dynamics of the planet with respect
to the telescope base. Our intelligent control system
possesses time-driven reasoning, since the knowledge is
updated periodically and totally; the concrete values of
data obtained out of measurements and calculations do
not change the strategy of inference. That is why there
is no necessity to use special temporal connectives or
an extra variable for time as in (Gabbay & Reynolds
1995). If some improvements of the control is wanted
the usage of the temporal reasoning will be beneficial.

Conclusion

In the progress of (Vassilyev 1990; Vassilyev & Zherlov
1995; Vassilyev 1997) the language of positively con-
structed formulas (PCFL) and its calculi are developed.
The formula representation in the language has large
structural elements with type quantifiers, but it is com-
pact enough as compared with the clausal form used
in resolution method, and, in addition, do not require
scolemization and quantifiers e|imiuation during con-
version from the classical predicate calculus.

The Iogic~ calcuii on the basis of PCFL is described
in the paper, namely: descriptive calculus J, calcuius of
descriptive tasks J’ and calculus of constructive tasks
Je. Some relations between them are shown. The ordy
inference rule of J and its derivatives in J’ and Jc deal
with large sized items of the corresponding PCFL mod-
ification. This leads to essential reducing a search space
during inference search. The PCFL and its calculi have
good compatibility with heuristics.

The problem of intelligent guidance of telescope to
the center of a planet in nonfuil phase is considered
briefly as an application e~Ample. As compared with
(Bilchenko, Matroeov, & Vassllyev 1973) the developed

method of control operates normally under extended
set of admissible values of planet phase.
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