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Abstract

The suc’ce.~ of Prolog motivat~ people to use full first-
order logic: instead of only Horn clauses as the b~is
of logic programming. One of the main work in this
extending is to seek proof procedure for new logic pro-
grannning. Positive disjunctive logic programming ex-
tends Horn clause progrvanming by allowing more than
one atoms re occur in the head o/’a program clause. In
this paper we propose a new proof procedure for dis-
junctive logic programming which is based on novel
program transformation. With this transformation,
the new proof procedure shares many important prop-
erties enjoyed by SLD-resohltion. The soundness and
completeness of the proof procedure with respect to
computing answers are given.

Key Words: Disjunctive Logic Programming, SLD-
resolution, Proof Procedure.

1. Introduction

The suc(.ess of Prolog motivates people to use full first-
order logic instead of only Horn clauses as the b&~is
of logic programming (Loveland 1987). Positive dis-
junct ire legit: i)rogramming is one of the efforts in this
consideration, it extends Horn clause progrmnming t~v
allowing more than tree atom to occur in the head of
a program clause. The declarative semazltics of such
programs is defined by the set of all logic consequences
of the program and negative information can be con-
chuled by GCWA (Minker 1982).

In the seeking of proof procedures for positive dis-
jure’tire logic programming, one would like to pre-
serve as many important properties enjoyed by SLD-
resolution as possible. SLD-resolution is goal oriented,
¯ allows a declarative azld procedural reading capability,
has a linear input format, uses a positive implication
fornmt, and needs no contrapositive occurrences of the
implications. Moreover, the process is intuitionistically
sound, which insures a certain constructive nature to
the infe.rem’e structure. These properties, in fact, have
become a standard in measuring the quality of proof

procedures for positive disjunctive logic progranlming.
Unfortunately, it is not easy to have such a proof pn)ce-
dure that satisfies all the above-mentioned properties.

In this paper we propose a new proof procedure for
disjunctive logic programming which is based on the
program transformation introduced in (Lu & Furbach
1998). In (Lu & Furbach 1998), a novel view on prot)o-
sitional disjunctive logic programming has been pro-
posed which says, from computational point of view, a
disjunctive logic program is equivalent to a tiorn pro-
gram together with a control program. In this paper
we extend the CH-transformation introduced in (Lu

Furbach 1998) to first order disjunctive k)gic pro-
gram. The new proof procedure then is based on the
extended CH-transformation. It works just like the
SLD-resolution except an extra checking. As a re-
sult it preserves many important prot)erti(,s enjoyed
by SLD-resolution. In contrast with existing l)roce-
dures in (Bmungartner, Furbach, & Stoizenburg 1997:
Lovcland 1987; 1991), it dispenses with the ances-
tt)r cancellation completely and dmr(,ft)r(~ speeds 
the inner-loop. In addition, its conceptual simplic-
ity makes it easy to he implemented. A possiblr im-
plementation woukl consist of the SLD-resolution to-
gether with a special-proi)ose theorem prover (for sub-
sumption test).

In the rest of the paper we are not going to present
the concepts concerning first order logic~ logic pro-
gramming and automatit: theorem proving. We refer
reader to see the standard books (Chang & Lee 1973;
Loveland 1978; Lloyd 1984; Lobo, Minker, & Rajasekar
1992) on these subjects. Some notions and results are
presente.d at the place where they are needed.

The rest of the paper is organized as follows, after
extending the CH-transformation to first order logic
progrmns in section 2, we introduce the new proof pro-
cedure in section 3. Section 4 discusses the soundness
and completeness of the procedure. We conclude the
paper in section 5 with some comments on existing
work. Cop)right ©1999. American Association for Artificial Intelligence.
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2. CH-Transformation

This section extends the CH-transformation of propo-
sitional disjunctive programs introduced in (Lu & Fur-
bach 1998) and its properties to first order case.

Definition 1 (CH-transformation) Let P be a dis-
junctive program. For each clause C 6 P of the form

al V ... Van ~-- bl,...,bm

the CH-transformation of C, denoted by CH(C), is 
set of clauses defined by:

{c}: .= 1,
CH( C ! Cch n > 1,

where Cch is the set of the following clauses:

Ax(Vc) V... V A,(Vc)
al ~’- bl,. . . , bfa, A, (Vc)

a, ~ bs,... ,bm,An(Vc)

and A1, ..., An are new predicates not occurring in
P, which are referred as control predicates, Vc is the
tuple of all variables appearing in C. The atoms formed
by control predicates are called control atoms and the
clause

A (Vc) v A2(Vc) V ... v a.(vc) (X)

is called a control clause. The CH-transformation of
P, denoted by CH(P), is defined by

C~(P) = [.] CH(C).
cGP

By the definition, a clause in CH(P) is either a Horn
clause or of the form (1) (control clause). Therefore
CH(P) can be written as follows:

CH(P) = PH + 

where Pc’ is the program consisting of all control
clauses in CH(P) and PH is the Horn program con-
sisting of all Horn clauses in CH(P). Pc is called the
control program. The following facts are trivial.

¯ The control clauses in Pc consist of only control
atoms. No control atom occurs more than once in

Pc.
¯ Each Horn clause in P/t contains at most one control

atom. No control atom occurs twice in PH.

¯ Each control atom occurs exactly twice in CH(P):
once in Pc and once in PH- It forms a one-to-one
mapping.

The following theorem and its corollary are very im-
portant for developing a proof procedure for disjunc-
tive programs in the next section. Its proof can be
found in (Lu 1998).

Theorem 2 Let P be a disjunctive program and
CH(P) = PH + Pc be the CH-transformation of 
Then for any formula ~ which contains no control
atoms, we have P ~ a iff CH(P) ~ 

Corollary 3 (Model Preservation) Let P be a dis-
junctive program and CH(P) = PH + Pc is the CH-
transformation of P. Then M is a model of P iff there
is a model Mc of Pc such that M U Mc is a model of
CH(P).

3. CH-Prolog

In this section we provide the proof procedure CH-
Prolog for disjunctive logic programs. The prefix "CH"
on the one hand hints that the procedure is based on
the CH-transformation and on the other indicates that
CH-Prolog is a Prolog with a "CHecking".

Prolog deals with Horn programs. The basic proof
procedure for Prolog is the SLD-resolution which uses
SLD derivation as an inference mechanism. An SLD-
tree for a Horn program P and a goal G is a tree in
which each branch is a SLD derivation of P U {G}. A
branch corresponding to a successful deri,~tion (end-
ing with goal [3) is called a success branch, a branch
corresponding to an infinite derivation is called an in-
finite branch and a branch corresponding to a failed
derivation is called a failure branch.

It has been proved that SLD-resolution is sound and
complete wrt. Horn programs. Roughly speaking, P u
{G} is unsatisfiable iff there is a success branch in an
SLD-tree for P with goal G.

Given a disjunctive program P, let CH(P) = PH 

Pc’ be the CH-transformation of P. Recall that PH
is a Horn program and Pc is a set of disjunctive facts
consisting of only control atoms (formed by new predi-
cates not appearing in P). Each clause in PH contains
at most one control atom and control atoms never oc-
cur in the head of any Horn clause in the Horn program
PH. Then the new proof procedure is motivated by the
following obser,ation. Given a goal ~ Q, assume that
P U {-~Q} is unsatisfiable. Then either

¯ PHU{-,Q} is unsatisfiable, in this case, by complete-
ness and soundness of SLD-resolution, there must be
a successful branch in the SLD-tree of PH and goal
or- Q: or

¯ there must be a failure branch ending with a subgoal
consisting of only control atoms. Let +- C1,..., +--
C, be all the leaf nodes such that Ci (1 < i <
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n) is a conjunction of only control atoms, then
{V(-~CI) A... AV(-~Cn)} Pc: must be unsatisfiable,
that is, 3(Ca V ... V Cn) is a logic consequence 
Pc.. Note that Ct V ... V Cn is a disjunctive nor-
mal formula (DNF) and Pc can be understood as
a conjunctive normal formula (CNF), filrthermore,
they both contain no negative literals, therefore, af-
ter converting C1V... vCn into a conjunctive normal
formula, its unsatisfiability can be checked by sub-
sumption.

With this observation a rmw calculus is introduced by
simulating SLD-tr~ building for PH and ~ Q. To
introduce the proof procedure formally, we need some
notions.

Definition 4 (Restricted SLD-tree) Let P be a
disjunctive program and CH(P) = PH + Pc be the CH-
transformation of P. Let G be a goal. Assume R to be
a computation rule that only selexts non control atoms.
A r’estricted SLD-tree for P U {G} is the SLD-tree for
PH and goal G via R. A restricted success brunch in a
restrqcted SLD-tree is the branch ending either with an
empty clause [] or with a goal consisting of only control
atoms.

By the above observation, only the ending subgoals
of the restricted successfid branches need to be kept for
checking. Therefore in a CH-Prolog deduction, each
line t.ypically has the form

G#CI#... #C.,

where G is the current selected goal in an SLD-tree
and Ci’s are conjunction of (:ontrol atoms in the end-
ing subgoal of the restricted successful branches. No
variables are shared among G, C1,..., C,.

As in nIl-Proiog, a CH-Prolog derivation is com-
posed of blocks, each block basically simulates a branch
in SLD-tr,’(’.

Definition 5 (SLDCH-derivation) Let P be a dis-
junctive program and CH(P) = PH + Pcr. Let G 
a goal. Assume R to be a computation rule that only
selects non control atoms. An SLDCH-derivation is a
sequence Lo, Ll .... , Ln . ¯., where

1. Lo is the given goal G and

2. If Li = Gi#CI#...#Ck and Gi contains a non
control atom, then Li+ l --- G i-r l #CI #... ~Ck G i+ l
is derived from Gi and a variant of some clause
Ci+t E Ptt using a most general unifier 0 via R.

3. If Li -- Gi#Ct#... #Ck and Gi consists of only
control atoms, then

Checking: if there exists a substitution 0 such that
(C1Y...YCtcVCk+l)0 is a logic consequence o/Pc,
where. Gi =e- Ck+l, then Li+l = 1"7. Otheraoise

Restart: Li+l = G#CI#... #C~#Ck+I.
A block is a subsequence that begins with a restart
(start) line and ends before the next restart line (i/
any). An SLDCH-derivation is called an SLDCH-
re, ration if it contains a empty clause D.

Although an SLDCH-derivation is defined in a simi-
lar way as near-Horn Prolog, the differences are appar-
ent. In an nH-Prolog deri~,-ation a typical line has the
following form:

G#a[D],

where G is a subgoal, a is an atom called active head,
[D] denotes a list of deferred heads. When a program
clmlse C of the form

al V ...Vain e- bl ..... bn

is called because one of the atoms in the head, say a,,
unifies with the calling goal in G, the calling head goal
is replaced by the body bl,...,bn (suitably instanti-
ated) as for Prolog, but also the remaining head atoms
{al .... , a~- i , ai+ l .... , am } are entered leftmost in the
deferred head list. Variables may be shared among the
G, the active head and tim deferred head list, and thus
instantiation of a variable in one portion of line may af-
fect other elements in the line. In addition, nH-Prolog
needs cmacellation operation: that is, if the calling goal
unifies with an active head, the calling goal is cancelled.

CH-Prolog differs from the near-Horn Prolog mainly
in the following two aspects:

1. no variable is stlared among G and Ci’s in a line

G#Cl #... #C,,,

2. ancestor cancellation is completely avoided.

Roughly speaking, except the checking rule, SLDCH-
derivation works exactly same as SLD-derivation.
Therefore in CH-Prolog, high inner-loop speed can be
expected.

Example 6 (SLDCH-refutation) This example is
taken,h’om (Lovehnd 1991), there it is used to demon-
strate that the Naive nH-Prolog is not complete, that is,
q is a logic consequence but it does not exists a Naive
nH-Prolog refutation for P t.J {-~q}.

P: q+--a,b G: e-q
a ¢c--c

ae-d
cVd
be- e
be-I
eVf
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then the CH-transformation of P is as follows.

CH(P) = PH + Pc 

where

PH: q~a,b Pc: CxVC2
a +-- c C3VC4
a6-d
c~ C1
d~-C2
b~e
b6-f
e~C3
f ~-C4

The following is an SLDCH-refutation of P U {G}.

start:
+--q
e- a,b
#- c,b

+- Cl,b
4-" C1:~

*- C1, C:~

restart:
q#C1, C3#C1, C4

6- a, b#Cl , C3#C,: 6"4
d, b#Cl , C3#C1, C4
C2, b#C1, C3#C1, C4

6- C2, e#C,, C.~#C1, C4
~- C2: C3#Ct, C3#C,, C~

restart:
+-- q#Cj , C:~
*-- a, b#Cl , C:~
e- c, b#Ct . C3

C1, b#Cl, Ca~-C,, $#C,. C3
C, , C~ #Cl , Cs

restart:
a#C~ , c3#cl, c~#c2, c3

+- a, b#Ca, C.a#C, , C4#C2, C3
+- d, b#Cl, C3#Cl , C4#C2, C3

,- C.~, b#Cl , C3#Cl , C4 #C._,, C,~
4"- C2,f#01,C8#Cl..C4#C2:C3

C.,., C4 #C~ , C~#C~ , C4 #C.2, Cs
[]

4. Soundness and Completeness
In this section we discuss soundness and complete-
hess of CH-Prolog. Since CH-Prolog is developed as
an interpreter for disjunctive programs, as argued in
(Bauxngaxtner, Furbach, & Stohenburg 1997), it 
more desirable to have soundness and completeness
with respect to answers. Therefore we first begin with
the definition of a correct answer and computed an-
swer.

Definition 7 (Answers, Correct Answer) Let P
be a disjunctive program. If +-- Q is a query, and
Oh,...,O,, are substitutions for the variables from Q,
then QOt v ... v QOm is an answer. An answer QOx v
...VQOm is a correct answer if P ~ V(Q01 v...VQOm).

Definition 8 (Computed Answer) Let P be a dis-
junctive program and CH(P) P~t + Pc. Let
~- Q be a goal and used as the top clause in an

SLDCH-refutation. Let the refutation contain m blocks
B1 ..... Bm and Bi (1 < i <_ m) end with the sub-
goal ~ C~. Assume that +-- Q is called in each Bi

(1 < i < rn) with renaming substitution Pi. Let 0~
(1 < i < rn) be the composition of substitutions com-
puted in Bi, and substitution a be a most general sub-
stitution such that Cxcr V ... V Cma is a logic conse-
quence of Pc.. Let ai (1 < i < m) be the substitution
obtained by restricting tr to the variables in piOi. Then
an SLDCH-computed answer is given as

QplOaOl v... v QPrnOm~ra.

Example 9 (Computed Answer) Let P be the fol-
lowing program:

P : P(a, y) ~ R(a, a : ~- P(x, y)

P(z, b) +- S(z, 

R(z, y) v S(z, y)
where G is a goal. The CH-transformation CH(P) 

PIt + Pc of P is as follows:

Ptt : P(a, y) ~- R(a, 
P(x, b) +-- S(z, 
R(x, y) Cl(x, y)
S(z,y) ~ C2(x, 

The following is an SLDOH-refutation of P U {G} :

(1) ¢- P(x,y)
(2) ,e- S(z, b) {y +- b}
(3) +- C.,(x, b)
(4) e- P(u,v)#C2(x,b) {restart}
(5) ~ R(a,v)#C2(x,b) {u +-- 
(6) +- Cl(a,v)#C2(z,b)
(7) [] {x ~ a,v ~ b}{cheeking}

This refutation has two blocks B1 and B2. B1 consists
of the first three lines, and B.2 consists of the lines (4),
(5), (6), in which line (4) is a restart line with 
+-- P(z, It)p, where p = {z ~ u, It +’- v} is a renaming
substitution. Line (7) is a checking. The substitution
computed in B1 is 01 = {y +-- b}, and the substitution
computed in B2 is 02 = {u 4-- a}. The substitution
computed in the checking step is tr = {x +-- a.. v ~ b}.
Therefore, the computed answer is

P(z, It)01 aa V P(x, It)pO.2tr2 = P(a, 

where trl = {x ~ a} and tr.2 = {v *-- b} are the substi-
tutions obtained bIt restricting tr to the variables in 01
and pO2, respectivelit.

The following theorem shows that the SLDCH-
computed answers are correct answers.

Theorem 10 (Soundness) Let P be a disjunctive
program and let ~ Q, be a goal. If there is an SLDCH-
refutation with computed answer Q~ll V... V Q, Orn, then

P ~ v(qm v... v q,~,,,).
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Proof: See (Lu 1998).
Next we turn to the completeness of CH-prolog.

As uotcd iu (Baumgartner, Furbach, & Stolzenburg
1997), the mlswer completeuess theorem stated in the
following way has a very subtle difference from the re-
sult presented in (Lobe, Minker, & Rajas¯ "kar 1992).
Ttle approach of (Lobe, Minker, & Rajasekar 1992)
can not handle the case correctly if there are variable
interdependencies in disjunctive answers.

Theorem 11 (Answer-Completeness of SLDCH)
Let P be a disjunctive program, +-- Q be a query and
QOl v ... v QOt be a correct answer for P. Then
there exists an SLDCH-refutation with computed an-
swer Qal y. . . v Qa,, such that Qax y. . . v Qa,,~ entails

QOt v ... v QOi, i.e...

3~ vi ¯ {1,...,m} 3j ¯ 11 .....l} Q~ = Ooj .

P~vo~ See (Lu 1998).

5. Conclusions
In this paper we present a new proof procedure for dis-
junctive logic progrmnming. Compared with existiug
proof t)rocedures, the t)roposed CH-Proh)g shares more
important prol)erties enjoyed by Prolog. Its conceptual
simplicity makes it easy to be imph~nmnted.

Several proof i)rocedures for disjunctive logic pro-
gramming have I)een proposed in literature. In (Lobe,
Minker, & Rajasekar 1992), SLI-resolution is used
,as a (’ah:ulus fi)r positive disjunctive logic program-
ming, but it completely ignores the consideration on
the contrapositives. Being aware of this deficiency
of SLI, (Baumgartner, Furbach, & Stolzenburg 1997)
developed a l)roof procedure for positive disjunctive
logic programrning based on model elimination (Love-
hmd 1968). In (Baumgartner, Furb,’u’h. & Stolzen-
burg 1997), a family of restart variants of model
elimination and a mechanism for computing answers
were introduced. As indicated in (Loveland & Reed
1992), model elimination does have two main disad-
vm~tages, first, the operation of ancestor cancellation
implies a sacrifice in inner-loop speed. As the deptt~
of refutation increases, the number of ancestor goals
which must be checked for cancellation incre,’L~es pro-
portionally. Second, the use of contrapositives de-
stroys the procedural reading of clauses. Restart model
elimination may be s~n as addressing the second
disadvantage of model elimination by employing the
restart operation. Near-Horn Prolog (Loveland 1987;
1991) seems to be an attractive proof procedure for
positive disjunctive logic programming, it shares many
properties with SLD-resolution, except that the linear-
ity and the procedure reading properties are local only.
The degree of locality depends on the number of uses

of non-Horn clauses in the computation. However, ,as a
member of the ancestry family of procedures (Lovt’land
& Reed 1992), the disadvantage of ancestor cancella-
tion is not completely addressed, that is, azmestor can-
cellation operation still remains (in a limited form) 
near-Horn Prolog. The main difference between CH-
Prolog and Near-Horn Prolog is that while the for-
mer doing checking (subsumption) in the last step of 
derivation, the later does it (for ancestor cancellation)
in every step of a derivation. Therefore, CH-Prolog
share higher inner-loop speed than Near-Horn Prolog.

Mazly interesting topics remain to be done. Next we
arc going to present a real implementation and coin-
paring it with existing procedures.
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