From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Adopting an Object-Oriented Data Model in Inductive Logic
Programming

M. Milano and A. Omicini and F. Riguzzi
LIA - DEIS - Universita di Bologna
Viale Risorgimento, 2 40136 - Bologna, [taly
{mmilano,aomicini,friguzzi}@deis.unibo.it

Abstract

The increasing amount of information to he managed in
knowledge-based systems has promoted, on vne hand,
the exploitation of machine learning for the automated
acquisition of knowledge and. on the other hand, the
adoption of object-oriented representation models for
easing the maintenance. ln this context, adopting tech-
niques for structuring knowledge representation in ma-
chine learning seems particularly appcaling.

Inductive Logic Programming (ILP) is a promising ap-
proach for the automated discovery of rules in knowl-
edge based systems. We propose an object-oriented ex-
tension of ILP employing multi-theory logic programs
as the representation language. We define a new learn-
ing problem and propose the corresponding learning
algorithm. Qur approach enables 1LP to bhenefit of
object-oriented domain modelling in the leaming pro-
cess, such as allowing structured domains to be directly
mapped onto program constructs, or casing the man-
agement of large knowledge bases.

Introduction

As the application of knowledge-based systerns in real
world situations is becoming more and more common,
the amount of knowledge that must be acquired and
maintained is growing larger and larger. In order 1o
manage knowledge bases of considerable size repre-
senting real world domains, object-based representa-
tions such as frames (Minsky 1973), deseription logic
{(Woods & Schmolze 1991). semantic networks (3rach-
man 1979), inheritance networks (Touretzky. Horty, &
"Thomason 1988) have been proven 1o be effective tech-
niques. In these formalisms. each object in the domain
is directly represented by means of appropriate syntac-
tic structures, and objects sharing similar propertics are
grouped into classes. On their turn, classes are organ-
ised in a hierarchy and inheritance is exploited in order
to represent only once properties that are sharved by all
objects of a class.

Inductive Logic Programming (ILP) (Muggleton
1991) is a promising approach for the antomated dis-
covery of rules in knowledge based systeins {Morik ot

Copyright ©1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

al. 1993). Therefore. it seems appealing to adopt tech-
niques for strueturing knowledge representation in 1LP.
ILP is concerned with the problem of learning logic
prograius [rom a background knowledge and a set of
posilive and uegative examples. However, logic pro-
gramming does not. provide any support for structuring
domain representation.

lu this paper, we aim at investigating the upact of
an object-oriented data model on ILP. By cmploying a
multi-theory logie language (Bugliesi. Lannna, & Mello
1994: MeCabe 1992), the knowledge is structured as a
collection of separate logie theories organised in a hier-
archy. Each node in the hierarchy represents a class of
objects while cach leaf represents a singhe abject.

The contribution ol this paper is twofold: (i) the def-
inition of a learning problem in a multi-theory environ-
ment: (i) the description of the corresponding learning
algorithm.

The advamages of adupting a multi-theory logic lan-
gnage are twotold: from the knowledge representation
viewpoint and from the learning process viewpoint. As
regards the representation of the domain knowledge.
structured dotnains can be directly mapped onto pro-
gram constructs. The standard ILP approach does not
allow the notions of class and afirbute to he distin-
guished. since they are uniformly represented by means
of predirate symbols. An object-oriented data odel,
insteac], provides intrinsie support for the uotion of class
and ¢lass hierarchy, whereas object’s attributes are rep-
resented as predicates. Moreover, inheritance provides
an efficient and compact way of representing properties
shared by a set of ohjects.

As regards the learning process. cach class consti-
tutes a natural boundary for the learning process, and
provices it with a finer granularity level. Inheritance
mechanisms provide for new generalisation and special-
isation operators and can be exploited botl i the learn-
ing process. aud when using the learned program.

Preliminaries

In this section, we briefly recall some basie concepts of
ILP and multi-theory logic languages.

LOGIC PROGRAMMING 273

Frorlmégtﬁyé g6 IREARFARMMEIRS Conference. Copyright d %‘@é‘AA(A‘I‘ f]\lv\’/\'/\l/v é?;\a“ﬂ{g)(ﬂlll \ghti'f’éééf(leél“ ory of theory

We first give a definition of the 1LP problem. adapted
from (B("lf.,rl(ldllo L Gunetti 1996):

Given:
a set 't of positive examples
a set I'" of negative examples
a consistent logic progran B {buckyroand knowlody)
Find:
a lonu |)l()"lrllll P (target program) such that
+ EY.BUP ot (romplile ngss)
- E L= BULP K e (consistency)

We say that P covers example ¢ if PUB =«

The problem of finding a solution to the [LP problem
can be seen as a problens ol search in the space of logic
clauses. 'This space is (partially) ordered by means of
the following generality relation.

Decfinition 1. (f-subswmption) Clause (' 0-subsunes
D if there exist. a substitution 0 such that (‘0 C D.
We write ("< D. O

We exploit a hottom-up (i.c.. from specific to general)
operator sunilar to relative least goneral g mmhsahnn
(rlyg) (Plotkin 1970) aund a learning algorithm simi-
lar to the system GOLEM (Muggleton & Feag 1990).
GOLEM learns theories bottom-up by using rlgg. i.c.,
an extension of the least general gencralisation (lgg)
taking into account the background knowledge.

Definition 2. (least gine val gencralisalion) We sy
that clause €' is the least general generalisation
(lyg) of vlauses €'y aud (9 0 C <7, €<y i,
for every clause I such that B < and 15 < (.
it holds that =< (" 3

GOLEM generates a single elanse by ranclomly picking
conples of exanples, by computing their rlgg, and by
chiousing the one with the greatest coverage of other
positive examples. This clause 1s then generalised by
rancomly choosing new uncovered positive examples
and by computing the rlgg of the clause and ecach of the
examiples. Among the resulting clauses, the one that
covers more examples is chosen and geueralised again
until either the coverage of the clause can not be fur-
ther extended. or any further gencralisation would cover
some uegative examples. Then, a post-processing phase
follows, where irrelevant literals are discarded. In case
there is not a single clawse that covers all the positive
examples, the procedure is iterated until no uncovered
positive example remains,

Multi-theory logic languages

Multi-theory logie languages (Bugliesi. Lanna, A
Mello 1994) extend the standard logic programmniing
paradigm by partitioning a logic program into a mul-
vplicity of logic theories, 1o this paper. we exploit a
siluple multi-theory first-order logie language (Owmicini
1996), called £;,.4. Tor doniain representation. .\ pro-
gram ol L, is a collection ol lugic theories conneeted
by parent relations denoted as C'hild [|< Parent. where

274 MILANO

Tild. Tach theory of £,,4, denoted Dy a ground terni,
is a collection of labelled clauses. A labelled clause is a
relation of the form

Theory: Head .— Body

representing a clause Head :— Bady of the theory de-
nated by the ground term Theory, where Head is an
atomic fortnula and Body s o goal formula. An atomie
Jormula of Liyg has the form p(f). where p is an n-ary
predicate symbol, and 7 an n-tuple of terms. A goal
Jormula is either an atomic formula. a provabilivy for-
mula. a hierarchical formula, or a conjunction of goal
formwlac. X provability formula has the form o /9.
where o is a term denoting a theory, and g is a goal for-
mula. Roughly speaking. o /- g is true when 4 can be
derived from theory o. A hicrarchical formula has the
form o K o' where o and o' are terms denoting theories.
o kK o' is true when theory of is an ancestor of theory of
o (K is equivalent to the transitive closure of ||<).

A Lina program P can be seen as a pair (Tp. IsAp),
where 1p is a collection of labelled clauses. and /sAp
is a set of parent relations. Is:p detines a tree whose
root is theory By, . denoted by the constant ool in any
Ling progrant, which is the only one with no parent
theory. Leaves of the tree are called instances. i.e., the-
orics with no descendant theories. [sAp assoriates a
conlert to every theory of P14, ..., 1, € Hp (where
Hp denotes the Herbrand Universe of P) such that
L |l € lsdAp. 1 < i< nand ty [KBey € {sAp. then
the whole information about the object denoted by £,
is given by its context {¢, 1) denoted by el . or
by £, itsell, whenever no misunderstanding can arise.
A rontext s a logie theory obtained as the nnion of the
clauses of 1ts component theories.

The entaihiuent relation, e, determines the truth
vithue of a formula wort. a context. Since o context is
actually anordinary first-order logic theory, context en-
tailinent exactly matches classical LP entailinent. Qb-
viously. we have 1o add the following definitions for
provability and lierarchical formulae, where o and o
are theory identifiers:

g o fFy o Eary

i ,:r-‘_,- { K ,' “r Iﬁ.!r' '= ! H‘< [’
The definition of the entallment relation for Ly (de-
noted with [Ea7) is obviously based on .. Given a
program P and a formula g of L,

P ':.\I) iff wlh ":«Il i
where @y, represents the empty context (i.e.. the empty
logic theory) where each forumla of £,y is by defaunlt
evaluated. A proofl procedure exists that is sound with
respect 1o Ear. For a formal deseription of multi-theory
et ailiment and the proof procedure see (Omicini 1996).

Object-Oriented Modelling and ILP
Iu this section. we first formally define the learning
problem in o multi-theory togie framework. then pro-
vide a learning algorithm for this framework.

Pﬁ&#m@ﬁ&wmaﬂh International FLAIRS Conference. Copyright @‘l%%‘WA’M"(W%‘&‘SWW(|’P§Hf§’r4§e¢veb‘

In the following, we define the learning problem in a
multi-theory environment. Let /3 and P be consistent.
Ling programs. £t and E~ are instance propertics rep-
resented by L;,q facts. such that Yo:e € FY U E™, 0
denotes an instance theory. The problem can then be
formulated as follows.

Given:
a set I't of positive examples
a set £~ of negative examples
a background knowledge 13 = (Ty, IsAy)
Find:
a program P = (Tp. lsAp) such that
VYo:et € ITF, (7'[; UTp. I.s.-\u) I:_\l 7 /L- ot
Vo= e = (TpUTp dsAp) Ear o -7

lu the problewn definition we consider. the set Is:lp daes
not chauge since we cannot learit new purenl relations,

. the elass hierarchy is fixed. An interesting exten-
sion of our franework considers also the learuiug ol par-
ent relations and of new theaories.

Learning Algorithm

We desceribe an algoritlun for learning with an object
oriented data model. The algorithm adopts an overall
bottom-up strategy which first learns in instances and
thien generalises the results on classes along the hierar-
chy by wmeans of two aperators: the relative least gen-
eral T-generalisation (r-rlgy) and the least general r-ge-
neralisation (r-lgg) operators, that extend the notions
of relative least general generalisation (1lgg) and least
gencral generalisation (ly_q) defined by Plotkin {Plotkin
1970) to the case of multi theory logic progras.

The formnal definition of r-lyg of (wo clauses anel of
fwo atotns is given in the Appendix. Intuitively, the
7-lgy extends the lgg by takiug inmo account hierarchi-
cal information in the background: thus, two terts he-
longing to diflerent classes are generalised by their least
upper bound. The r-rlgg operator is obtained from the
notion of 7-lgg i the same way as gy is obtained from
the notion of lgg.

We assume that the instances from which we want
1o learn are complete on exaiples. Thus, every in-
stance for which a predicate is relevant coulains exam-
ples about that predicate. Also. il no example for a
predicate is available i an instance, then that predi-
cate has not to be learned in the iustance and in the
classes above it.

The algorithm starts recursively from the rool of

the hierarchy down to the instances, by calling Loarn-
Class{p/n.root:H, E7). Clauses in a elass (" are learned
after the learning in cach descendent of ¢ has been
completed. For the sake of simplicity we consider the
learning of a single predicate p/n. Multiple predicate

learning can be perforined by iterating the learning of

a single predicate.
The learning process on instances in perforined by the
procedure Learninstanee in Figure L. This algorithimn is

1 heory an “Theory Laes

the positive and negative examples for p/n
in Theory

=9
whlle .',"htm v is nar empty do

pick randomly m couples of positive « xamples

compute Vheir 7-rlyy

wevaluate them on positive vxamples

selects the T-rlgg *°
that covers most positive examples

repoat

Gen = {r-1lggic, “+“"|‘+€lu.....y

and ToplggiCoie T =) is consistent)
et € bee thie elanse i|| ticn
that covers Imost positive sxamples
until ¢/on s anply
wlhi 1o H
retnove from l.“,l wry
covered Ly o
endwhile
"¢ <! o) o=
return OB

the positive examples

Figure | Learning in Instances

similar to GOLEN (Muggleton & Feng 1990): it dif-
fers because no post-provessing geueralisation phase is
perforued.

Learning in a class is performed by the procedure
LearnClass in Figure 2, 1f the theory on whiclh Lewrn-
Class is called is an instance, then Learnlnstance is
called. Otherwise. the procedure is called recursively
on each son of the class, The theories returned by each
son are stored i a list H .., and negative examples in
all the instanees of the sons are collee ted ina sl 13 U

i cach theory in 1 <., vontains a delinition for the
target predicate. we try Lo fearn a definition for this
predicate in the elass, Otherwise, the recnrsive process
stops and the theories i ., are asserted in their
FesPeCtive son.

In order 10 learn a definition for the target predicate
i a class, we start with an empty set of clauses I and
we jteratively add a clause that generalises those in its
sons. ‘To this purpose. in cach iteration of the loop. a
tuple of clauses is obtained by picking one clause from
each theory in H 24, and the 7-1lgg of the clanses in the
tuple is considered. The resulting vlause is then tested
on all the negative exaples 7, : il it is consistent,
it 15 added to 11 and all the clauses in the tuple are
removed from the corresponding theories in H zopo. If
it is nhot consistent, the clauses in the tuples are left in
H<one and a new iteration is started. In case one of the
theories Ha in 11z, becomes cmpty. the elause that
is included in the waple from /5 is the most specilic
clanse L1

The lrarning process on classes continues recursively,

' 1 is such that. for any cause €. m-rlggl¢'. L) = ('

LOGIC PROGRAMMING 275

From ProceRTRAR 11151 el i FARg) fLAIRS Conference. Co
if T'heory s annstanes then
Learalnstancevpfo . Fhewey 1 E™, i

clse (Tl wry s net an st

Hpps .= W ilist Gl theores boaened un sansg

£

cnme = W st Of neomve exatuples monstances)
for each son S of Thewry do
LearnClassipfn, S . H. E7)

Add (”_:j 10 Hunns

l"'.:nn: = l"“_nlll v {,:_ "
endfor
H=4

if wo set Ha i flcpgg 15 cmipty do
while cvery . € Hewy 1s il cmpay do
pick o n-tupte I oof clauses from o,
compute the 7orlyy ¢
test (F oo 17,
if L consistew then
rensose bl the clanses of 77 rony Mo, ,,
arld ¢ v I
cudwhile
endif
angert all the clauses cenuane-bain 110,
i the respeect e sons i
endif
return f1E7

oud procedure

L i

Figure 20 Learning in Classes

level by level as far as root is reached.

Examples

The following exawple should give an intuition ol the
bhehaviour of the algorithm. Consider a multi-theary
background knowledge 3. whose class hicrarchy s de-
picted in Fignre 3. The set T cautains the Tollowing
fits:
buck : Likes{ehappy).
kitty : Likes(uwiskas). killy
Jufy o like s{wiskas).

Consider the following examples:

buck @ ik sidoggy).
like s{kitkul).
July - Like s{gourinet).

E¥ = {toby:cals(chappy) . toby: e ats(dogygy).
buek:cats(chappy) buck:calsidoyyu).
kitty:cals{uwiskas) kitly:calsikitkal),
July:cats(ieiskas). fufy:cals(yowrimmct) |

= = {toby:cats(kithal), buck cats(gourmdt)
kitty:eals(gourmet), fufy:cats{kitkaty) }

The procedure LearnClass 1s vecursively called starting

from the iool class down to the instanees. The instanees

ol dog are firsi considered. The m-rlgy of the positive

exatples in the instance foby is compuated. obtainiog

the clause:

vals{(X) - N K doy_foed

Since this clause does not cover any negative exauple
i toby. it is returned to the call of LeurnClass o doy.

276 MILANO

yright © 1999, AAAI (www.aaai.omgl{kll rights reserved.

. ——
Jooed artinl
i
H ..5\5-._
ey _foand eetl_feroel Iz Hietit
dogey chappy kitkal wiskay gowrmet deog cal jeim lom

huck 1obv kit pufy

Figure 3: Class hierarchy

I'he 7-rlyy of the positive exauples in the instanee buck
produces the clanse:

cal s{ X)) = N K doy_food Like s{N)

T'his elause is consistent with negative examples on buek
and it is also returned o LearnClass o iy,

M the instances of doy have heen conaidered and the
clauses generated in each instanee have heen colleeted
i Hoane. The rrlyg of the learned clanses is copputed,
vivlding:

¢ (llh'[.\-) — \ r'.': (II'J_II__I.IMMI

This clanse is tested onoall the pegative exaunples
Jog instanees buck and toby and Tound 1o e consistent,
Therefore, 1Cis returned by LoarnClass to the reeursive
call on et

Then the el instances are considered. In hoth the
cul instanees kefly aud Jufu, the Tollowine cliuse:

calbs(NY = N el _fod dikesi N

is the m-rlyg of the positive examples and i~ consistent.,
Theretore, it is retuened by Learnlnstance wo the call of
LearnClass on cal.

ln the ral class, the 7-rlgy ol the clanses generated
in kibty and fufy (that are actually eqnal) is the clause
itself which is consistent on adl the negative examples
i the cat instances, Thus, 1 s returned wo Lo Class
ab ol

Mthe sons of pet Lave heen vonsidered aned clanses
avuerated in thein for the cats predicate have been eal-
lected 1 H <. The generalisation of these elauses
praduces

cals{N) - X k2 Sued

which is then tested on negative exanples inope b oin-
stances. This clanse vovers all the negative examples.
Asa consequence, an cipty set ol clanses is retarned Lo
the anunal and then to the root class (e, the learning
process stops) and the clanses learned for cat aned dog
are asserted in the respective class, Therefore, the final
theory will contain the claoses:

cal ocalds(X) = X koeat_food 1ikes(\)
dog @ cats{X) i~ X k doy_food
exprossiug the general kuowledge that dogs are usually

less ~picky”™ that cats.
Now, cansider the following examples:

arks
e e R ot

buck :barks_at(kilty). burl. barks_al (Jufy) }

{toby: barks_at(dick) }
Starting from the root, the recursive calls for the algo-
rithm reach the instances. The instance loby is con-
sidered and the 7-rlgg of the positive examples loby :
barks_at(kitty), toby : barks_at(fufy) is computed. ob-
taining the clause:

R, = barks_at(X) :— X K cal
Then the 7-rlgg of this clause and one of the other pos-
itive examples for toby toby : barks_at(tom) or toby :
barks_at(buck) is computed, producing
barks_.at(X) :— X K animal

which, however. is inconsistent on the negative example
toby : barks_at(john). Therefore, clause It is added to
the current theory H. Then, a uew iteration of the
covering loop is started: the 7-rlgyg of the remaining
examples toby: barks_at(tom), toby: barks_at(buck) is:

barks_at(X) :— hates(X), X K animal

This clause is consistent and is also added to H.

In the instance buck, there are only two positive ex-
amples and their T-rlgg is also clause Ry.

Now. all the instances of dog have been considered,
and the set 7{ z,,;s contains all the theories geuerated in
the instances. Couples of clauses are now picked from
H :4ns and their 7-rlgg is computed.

The first couple of clauses is
{(barks_at(X) :— X K cat), (burks «f(X) :— X K cat))
Their 7-rlgg is obviously the clause itself amd is tested
on the only negative example: since it is consistent, it
is added to the H set for dog and the clause is remnoved
from the two sets in Hgype. A new iteration is started
and the following couple is cousidered

(L, (barksat(X) :(— X K animal. hates(X)))
Their 7-rlgg. barks_at(X) :(— X K animal, hates(X), is
then found to be cousistent and added to /7. At this
point, no clause is left in Hgens, thus the procedure
ends by returning the theory H.

The class pet is now considered. The only subclass
that returns a theory containing clauses for barks_at is
dog, therefore the learning process terminates by assert-
ing the theory learned for barks_at in the class dog.

Discussion

Some aspects of the algorithin are worth to be discussed
voncerning the generalisation process in instances and
in classes. When learning in an instance, only a
small subset of examples is typically available. Since
the number of negative examples may be small, we
choose to rely on a notion of least gencral geueral-
isation so as to avoid the risk of overgeneralisation.
For example. consider the instance toby in the ex-
ample, where we have only the (wo positive examn-
ples eats(chappy). eats(doygy) and no ncegative exain-
ple. We prefer to learu the most specifie clause

m.’ﬁifl%%g#%mference Copyright l@?’iﬂ% /Kﬂk‘? wv)waa;ﬁ c}%)d% r-fg‘; reserved.

rather than the most general clause
toby : cats(X) :— X K rool
whirh is not informative.

At a first glance, when learning in classes this prob-
e seemns not Lo occur because negative example from
all the instances are considered. However. consistency
an ucgative examiples is not suflicient to avoid over-
generalisation. In fact. in a partitioned domain. some
predicates may be relevant only for some parts of the hi-
crarchy. As an example. consider a hicravchy where the
class root has three subclasses: animal. plants and inan-
imatc_objects. Clearly the predicates cats is not rele-
vant for inanimate objects and plants and no negative
examples for cats are provided in their instances, Thus
negative wformation does not prevent us from overgen-
eralising and we could learn a definition for cals in the
root. To avoid this, we learn a definition of a predicate
in a class only when all its sons contain a definition for
that precdicate.

An alternative approach would consider a bias that
explicitly defines which instances/classes should be
taken into account when learning a certain predicate.
Thus. the user would be in charge of partitioning do-
nain knowledge in two set of classes: those for which
the predicate is relevant and those for which it is not.

Related Works

To the best of our kunowledge, te uxe of an object-
oriented data mocdel in learning has been investigated
only in the Held of deseription logics. Relevant works
{Kictz & Aorik 1994 Cohen & Hirsh 1994 Lamibrix
& Maleki 1996) have discussed the problem of learning
class definitions expressed in a particular description
togic formalistn, ‘The learning process that is consid-
ered in these works differs from ours: there. the learn-
ing task is to build a class hierarchy starting from the
descriptions of a nmmber of instances of those classes.
Instead. we learn definitions for class properties. in a
given class hierarclty of those classes.

The systeln KLUSTER (Kietz & Morik 1994) uses
a formalism that is a subset of the BACK description
logic. ‘T'he learning problem can be described in this
way: given a set of assertions in the ABox (the exam-
ples) and an empty TBox. lind a TBox (i.c.. a hierarchy
of concept definitions) such that the concept definitions
correctly deseribe the examples. Examples consist in
a number of assertions about coucept. memberships of
instances and about role relations berween instances.
The learned theory will contain intensional definitions
for the concepts and roles such that all the extensional
assertions (examples) are true.

Iu (Cohen & Hirsh 1994) the authors consider the
C-CiLassic deseription logic as the representation lan-
guage. They present the systern LOSLEARN that takes
as input a set of concept descriptions and computes the
frast common snbsumer of the deseriptions (LCS). that
is a least, general generalisation.

LOGIC PROGRAMMING 277

scription logic rontaining special construet for handling
part-of relations. The user is allowed to give o the
learning systene several kinds of information on con-
cepts that subsume (are subsamed by) the target con-
cepl, coneepts that are parts of the target conceept, and
concepts that are collections of parts that must oceur in
the target concept. T'he systeus learns the definition of
the target concept by iteratively reducing two version
spaces. one for the is-a relation and one for the part-of
relation.

Another work related to ours is (Page & Irisch 1992)
where the operator constrainl goncralisalion s pre-
sented that is able to generalise atoms by taking into
account hierarchical relations among Herbrand universe
constants. This operntor computes the least general
generalisation ol constrained aloms that are atoms of
the form (/€. where 11 is an atom and (7 s a st of
vonstraints on the terms of 1. Hierarchical relations
can be represented by means of clauses ol the [orin
Class(X) « Subelass(.X') where X is an instance.

By representing lieravehical relations by mieans of a
first order theory. multiple inhieritunce is allowed: an
object may thus be classified along different hierarchies.
The generalisation of two constrained atoms will then
contain the conjunction of least upper bounds of the
terms wer.t all the hierarchies,

Conclusion and Future Work

The adoption of an oljject-oriented data model in I1LP
allows wo exploit the benelits of object-oriented knowl-
edge representatiou in learning. Complex and strue-
tured domaius can be modelled straightforwardly and
the resulting knowledge base can be more easily main-
taine.

We define an algorithm that learns deflinitions ol
properties in classes having dillerent levels of general-
ity, by starting rom instanees and then “climbing”™ the
class hicrarchy towards the root. Tt s worth noting
that by introducing a very simple modification to elas-
sical ILP algorithms. i.e.. the extension of rlgg operator,
we obtaiu a substantial improvement from a knowledge
representation viewpoint. We have nuplemented the al-
gorithm in S1ICStus Prolog (S1CS 1997). and tested 1t
on structured knowledge examples,

We are cnrrently extending the language with mul-
tiple inherivance by exploiting linearisation algorithims
transforming theory graphs into a siugle logic theory.
Futare research will face the problem of extending the
lierarchy by adding new classes.

References
Bergadano. F., and Gunetti, D, 1996, Inductive Logee
Programming. MIT Press.
Brachman. R, 19749, On the epistenological status of
semantics networks. Iu Findler, Noed., Associaline
Notworks: Represcntation and Use of Knowlodye by
Compute rs. Academic Press.

278 MILANO

From: PhiocEbaingbrinen TWERHkatdkHHbhal L arbiosniarsnca. dopyright © 19glikainl Mwwl abaiarg). Kirignd iddedlod. P. 1991, Mod-

ularity in Logic Programming. Journal of Logic Pro-
gnemaning 19-20:443--502.

Cohen, Wooand Hirsh, H. (994, Learning the CLAS-
s1¢ deseription logic: ‘Theoretical and experimental re-
sults. In Princaples of Knowledge Representation and
Reusoning: Proceedings of the Fowcth [nternational

Conforenee - KR94, 121 133,

De Raede, L.. and Bruynooghe. M. 1993, A theory
ol clausal discovery. In Bajesy, R., ed.. Proceedings of
the 1sth International Joint Conforenee on Artificial
Intelligenee, 1058 1063, MK.

Kietz. J.-U., and Morik. K. 1994, A polynowial
approach to the constructive induction of structural
knowledge. Machme Learmng 14:193 217,

Lambrix. Pooand Maleki. b, 1996, Learning composite
concepts in description logics: A first step. [n Rad,
Z. W.. and Michalewicz, M. eds., ISAIS96.

MeCabe, Foo 1992, Logic and Objects. Prentice Hall
huternatiounal, London.

Minsky. M. 1975, A framework for representing knowl-
eclge. In Winston, P, od., The Psychology of Computer
Viseon, McGraw Hill.

Morik, K.; Wrobel. 5.: Kietz, J.-U.: and Finde. W.
1993, Knowledge Acquisition and Machine Learning:
Theory, Mcthods and Applications. Academic Press.
Muggleton, 8., and Feng, (', 1990, Efficient induction
ol logie prograins. In Proceedings of the Ist Conforcnee
on Myoridhnie Learnimy Theory, 368 331, Olunsia,
Tokyu, Japan.

Muggleton, S, 1991 Inductive Logic Progrannuing.
New Generation Compuding Ri-1):2295--317.

Omicind. AL 1996, A general framework for multi-
theory logie Janguages, “Feelimical Beport DEIS-1L1A-
OUS-96. University of Bologua (Italy). LIA Series
no. 16,

Page. C.ooand Friseh. AL 19920 Generalization and
learnability: A study of constrained atoms. In Mug-
gleton, S.owde, Inductive Logic Progrionming. AP, 29
2.

Plotkin, G 1970, A note on inductive generalization.
ln Machine Intclligenee, volume 5. Edinburgh Univer-
sity Press. 193 163,

SICS, 1997, SICStus Prolog Uscr’s Manual. Swedish
Justitute of Computer Science, Kista, Sweden.
Touretzky. D.; Horty, J.: and Thomasou. R, [988. A
Clash of Intuitions: The current State of Noutnono-
tonic Multiple THS. In Procecdmgs of the 10t In-
Lormational Joind Conforcnee on Artificial Intedligenee,
176 IR2.

Woods, W and Schmolze, B 19910 The KE-ONE
Fawily, Computer & Mathematies wdh Applications,
Special Issue on Semantic Networks in Artificial Intel-
ligenee.,

Fronlﬁ@e%td%?Rﬁml:@fmﬁ@hﬁ&ﬁuﬁ%i@ltonference.

The notion of least gencral generalisation (Plotkin
1970) has to be extended in order to cope with the
variable types determined by the class hierarchy of a
program. For this purpose. in this section we will in-
troduce the notion of rT-subsumption. and define the
least general r-generalisalion (7-lgg) accordingly.

We first formally define the notion ol r-expansion of
a formula with respect to a program P which makes
parent relations explicit in a logic formula. Then. 7-
subsumption and least general r-generalisation cau be
obtained from the delinitions of #-subsumption and lgg,
respectively. by applying them to the T-expansion of
vlauses.

For the sake of commodity, we will denote clanses
as set of literals, which have obvionsly to be read as
disjunctions of literals.

Then. r-subsumption and least general T-generalisa-
tion can be defined by applyiung the definitions of 0-
subsumption and least gencral generalisation applied to
r-cxpansions. In particular, if we denote with 7p (f) the
r-expansion of a formula [with respect to a program
P = {Tp.Isdp): mp ([) is a clause obtained by properly
rewriting f as a sel of literals according to the following
rules,

Given a hierarchic formula # K o, where £ is a term
aud o is a ground tern such that o [K o' € Is:ip.

pllko)u={tkojUrp (I Kd)

given that

rp (I K root) =¥
by definition. Given iustead a hierarchic formula t < 1",
where ¢ is a term and ' is a non-ground term. its 7-
expansion is simply given by the formula itself. that

i

el k) = {1 K ()
Given an equality fonnula XY = o, where X is a variable
and o is a ground term such it o ||k o' € Is:dp. its
r-expansion is defined such that

(N =0) = {N =0}Urp (N k)

Given instead an equation X = (. where .Y is a variable
aud ¢ 1s a nou-ground term, its T-expansion e (N = 1)
is simply given by the forimula itself. vhat is

p (N =1) u={X = ¢}

Given a literal (=)p(t).....0,). where {),.. ..
ters, its r-expausion is defined as follows:

o ((2)plt ..) = {(=)p(Xy XU
Urp (.\-1 =H)U...Urp (X, =1,)

Given a demo formula 1 & p(th.....), where
Ly, ... 1, are terms, 1ts T-expansion is defiued as fol-
lows:

TP(’/_I"(""'-"”))::: {I/—]'(.\-[...... \',,)}U
UT'P(.\'I ::l|)U...UTp(_\',, :l”)

{, are

CopdigPl ityos, BvRL\AMNIAMSE of§). Al righiis hedbhadex pansion

15 given by the union (i.e.. disjunction) of the -
expansions of its literals:

e ({e1,. ... en}) = U Tp ;)
i=1

Definition 3. (7-subsumption) A clause (' r-
subsumes D if there exist a substitution € such
that 7p ((!) O-subsumes 7o (D). We write then
(' <;, D.]

Definition 4. (least goncrdd t-gencralisation) We
say that clause (" is a least go neral T-go ne ralisation
7-lyg) of clauses ') and Caif € =<4, 00 <5, (5

and, for every clause B such that £ =<0 ') and

£ =, Cal it bolds that 1<, ¢ O

Therefore, the algorithin for computing the fyg can he
used for computing the r-lyg, too.

In general, the least general r-generalisation of two
vlauses may not be unique. given the redundancy intro-
duced by the r-expansion. In lact. given two different
clivises ¢ andd (7 having the same r-expansion, if (" is
a feast general m-generalisation for clanses ¢ and (s,
then ¢ s a least general r-generalisation for the same
clanses, 1oo. As a resuli. least general r-generalisation
cdefines an equivalence class, rather than a single clause.
However, with au abuse of notation. we still speak of
the least general m-generalisation ol twa elanses as a
single clanse, nicaning the minimal clause with respect
tu xet inchision of the equivalence class.

LOGIC PROGRAMMING 279

