
DISPO: Distributed Multi-threaded Execution of Prolog Programs
 A . S. Mohamed, A. Galal, I. Khalil, K. Sobh, M. Selim

Department of Computer Science
The American University in Cairo

P.O. Box 2511, Cairo - Egypt
Email: sameh@aucegypt.edu

Abstract
DISPO is a Distributed Prolog Virtual Machine for
interpreting and executing Prolog programs through
distribution and multi-threading. It is a distributed
version of a standard Prolog interpreter designed for
exploiting OR-parallelism and pipe-lined AND
parallelism. Some distinctive features of DISPO is
that it speeds up the execution of Prolog programs
and generates all possible solutions for a query, i.e. it
works as an all-solutions Prolog virtual machine.
The effectiveness of its distribution technique and
load balancing equations resulted in a 70% average
speedup in the execution time of a number of Prolog
benchmark programs. These results are presented
graphically with a detailed analysis of system
performance.

1. Introduction:
The language constructs of Prolog lend themselves to
parallelism, since a set of rules that can be used to solve a
given query can be seen as a logical ORing, while the
literals in the bodies of each of these rules can be seen as a
logical ANDing. This has come to be known as inherent
AND/OR parallelism (Shizgal 1990). There are many
implementations of parallel prolog such as PARLOG,
3DPAM and PADMAVATI Prolog, exploiting OR-
parallelism or Restricted OR-parallelism, with several
forms of AND parallelism as PURE AND-parallelism, and
pipe-lined AND-parallelism (Kacsuk and Wise 1992),
(Karlsson 1992). These systems have been developed on
either multiprocessor machines with shared memory or on
a large number of transputers such as the OPERA machine
that is developed on a super node containing 256
processors (Kacsuk and Wise 1992). All these systems
have introduced new language constructs to Prolog to
allow for the explicit distribution of tasks and their
scheduling.
 DISPO is the first distributed implementation of Prolog
that provides the user with two types of total transparency:
actual (distribution on several servers), and virtual (multi-
threading on the same server) OR-parallelism. The system
is implemented on a UNIX platform with a number of
servers connected through an ethernet LAN, each using a
multithreaded inference engine and duplicates the
knowledge base. The goal is to achieve efficiency
regarding speed through the distribution of ORs on remote
servers using a load balancing technique that decides on

the fastest servers, as well as the multithreading
algorithms used by each server to receive more than one
task at the same time and execute them concurrently.

2.Knowledge Base Granularity Calculation
The Knowledge base is made up of a list of rules and
facts. Each rule/fact is identified by a serial key. Each rule
is made up of a head followed by a list of sub-goals. It is
worth noting that in Prolog, the scope of the variables is
within the same rule. The complexities of Prolog
knowledge bases vary from one application to another. It
is not always the case that a large program has to have a
high complexity and a small program has to have a low
complexity. Programs could get complex by applying a
small set of rules on a small set of data recursively.
 In order to obtain an efficient distribution, an accurate
estimate of the execution time of each sub-goal has to be
calculated. DISPO’s granularity calculation method takes
into account both the inference time for a goal and the
unification time (which for one goal may seem negligible).
The importance of taking the unification time into account
becomes very clear in the execution of programs that has
large number of parameters in the literals of its set of rules
and facts.
 In traditional methods for calculating granularity, the
unification time for “foo(z,b)” fact is unity (1). The
deficiency of this calculation becomes apparent when
facts with say hundred of parameters are estimate to take
the same time as facts with only one parameter which is
true when it comes to inference time. On the other hand
the real weight during the proof process is not only the
inference time but the unification time which is calculated
first and then the inference time is added to it. This would
make a great difference when balancing a knowledge base
with facts of different sizes because then the unification
time makes a difference. The unification time for
“foo(z,b)” fact in DISPO’s new granularity calculation
method is 2. The predicate
“bar(a,b,c,d,e,f,g,h,I,j,k,l,m,n,o,p)” is to have 8 times as
much load on the processor as the “foo(z,b)” although
they are the same number of facts (bodies/Ors). On the
other hand, using the regular method of finding
granularity, the two predicates would have been estimated
to have the same load in the execution time which is not
true.
 In the case of a rule, the same method is used for each
sub-goal of the rule’s body.

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Example 1:
 bar(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P):-foo(A,L),
foo(B,O), foo(P,J).

Granularity=16(head) + 8 (1st pred.) + 8 (2nd pred.) +
8(3rd pred.)=40

Her we assume that we have four predicates of “foo()” and
four predicates of “bar()” stored in the knowledge base.
Since the ORs (bodies) form our basic unit of division and
distribution, the significance of this calculation method is
shown when calculating the granularity of the top level
OR, in the next example.
Example 2:

top(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P):-
 foo(A,L), foo(B,O), foo(P,J).

top(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P):-
 bar(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P),
 bar(P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A),
 bar(A,P,B,O,C,N,D,M,E,L,F,K,G,J,H,I).

Granularity of body 1 (OR 1)=
16(head) + 8 (1st predicate) + 8 (2nd pred.) + 8

(3rd pred.)=40
Granularity of body 2 (OR 2)=

16(head) + 64 (1st predicate) + 64 (2nd pred.) +
64 (3rd pred.)=208

3. Multi-threaded Inference Engine
The main element of inference is a resolver. Resolver try
to substitute rules into other subgoals in attempting to
reduce the resolvent to an empty set which denotes the
existence of a solution.

M ain Q u ery

S u b-Q uery 1 S u b -Q uery 2

S u b-Q uery 1 .1 S ub -Q u ery 1 .2 S u b -Q u ery 2 .1 S u b -Q uery 2 .2

F igu re 1 : Q u ery b reakdow n du r ing in fe ren ce

The inference process uses unification for proving goals.
Proving the goals is done by successive reduction of goals
till a final result is reached (see figure 1). The inference
process starts by having a goal G and a program P. The
process of reduction is done by reducing each goal to all
its possible bodies and then recursively applying the same
process on the bodies. During this process, the most
general unifier (MGU- the result of unification) is
substituted within the rules every time the unification is
checked.
Example 3:
Assume there is a program P:

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]):-append(Xs,Ys,Zs).
Consider solving the query append([a,b],[c,d],Ls).
The query is first checked and is found to unify with the
second rule with an
MGU={X=a,Xs=[b],Ys=[c,d],Ls=[a|Zs]}
The MGU is substituted in the rule being resolved. Then
the query being proved is reduced and the loop continues
till there are no more rules left. Then the result is returned
as the set of substitutions made. The trace of this program
will look as follows:

append([a,b],[c,d],Ls) Ls=[a|Zs]
append([b],[c,d],Zs) Zs=[b|Zs1]
append([],[c,d],Zs1) Zs1=[c,d]

After that, the substitutions are propagated backwards and
returned as the result. In DISPO, this example would
create three threads for the three iterations of the
recursion. Threads are natural environment for executing
recursive functions since they have by definition identical
execution images of the code, and they are created on the
same machine with less network overhead to execute more
tasks.
 The next example illustrates the first level resolving
process with reduction by using a dynamically expanding
tree of resolvers that are recursively created.
Example 4:
Illustrates the execution of the query father (X,Y)
on the following knowledge base:

father(ahmed,mohamed).
father(aly,mohamed).
father(X,Y):-male(Y), son(Y,X).
son(ahmed,tarek).
male(ahmed).
male(mustafa).

Resolvent 1 : father(X,Y)
Resolvent 2: male(Y) son(X,Y)
Resolver 1 gets reduced to three different resolvers each
for a unifying body in the Knowledge Base:
1.2: father (ahmed,mohamed)
1.3: father(aly,mohamed)
1.4: male(Y), son(Y,X)

 Resolver 1.2 and 1.3 are reduced to NULL which means
that a solution has been found and the two solutions
father(ahmed,mohamed) and father(aly,mohamed) are part
of the solution. The next level of reduction of the third
resolvent (1.4) is resolvent 2.
 The first sub-goal in resolvent 2 is then matched with the
knowledge base and two predicates are found that match it
male (ahmed) and male(mustafa). Leading to respective
MGUs {Y=ahmed} and {Y=mustafa}.Thus the MGUs get
substituted in the rest of the subgoals in the resolvent and
the next level reduction looks as follows:
Resolvent 2.1 then unifies with son(ahmed,tarek) and gets
reduced to NULL which means that another solution has
been found son(ahmed,tarek).

Resolvent 2.2 on the other hand fails to reduce and stops.
In DISPO, this example would create two threads for both
levels of resolvers above. The first one terminate execution
unsuccessfully.

4.Distribution Equations and Technique
4.1. Exploiting The Fastest Server Technique
(ETFS)
The DISPO machine uses a distribution technique which
we nick named ETFS that stands for “Exploiting The
Fastest Server”. The following is the algorithm for the
ETFS technique:
1. The loads of the available servers are calculated using a
load equation that depends on time stamping for network
overhead and instruction time (see section 4.2 next).
2. The tasks’ granularities are calculated and obtained from
the knowledge base (as described in section 2 above).
3. Calculation of the sequential time for execution on the
local server using the following formula:

Sequential_time =åå (f(g
i
)* Instruction_time*

number_of_inst).
- where 0 < i <= N, N = # of ORs,
- Instruction_time= time taken to execute one instruction
on the local server.
- number_of_inst = number of code instructions executed
by our inferencing algorithm.
- f(g

i
) = complexity of the algorithm for the calculated OR

granularity .
4. The lightest task (smallest granularity) is scheduled on
the fastest remote server, if the execution time exceeds the
sequential execution time calculated, then all tasks are
scheduled on the local server, otherwise we move on to
schedule tasks on other servers.
5. Then the heaviest task (with the largest granularity) is
scheduled on the fastest server. The time to execute this
task is calculated as:

Longest_time = (f(OR) * Instruction_time*
number_of_inst)+Network_Overhead

6. If the calculated time is found to be less than the
sequential time then we move to the scheduling of the rest
of the tasks (step 7). Otherwise all tasks will be scheduled
on the local machine and executed in a multi-threaded
mode.
7. The scheduling occurs so that we try to have the rest of
the tasks take nearly the same amount of time on the other
servers as will the heaviest task on the fastest server. The
algorithm proceeds as follows:
a. Using the Longest_time (LT) calculated in step 5, we
calculate the required granularity (G) needed for an
unassigned server using the equation:

G=f
-1
((LT-Net_overhead-A_T)/

(number_of_inst * Inst_time))
where A_T is the time taken to execute other previously
scheduled tasks on this specific server.

b. A search is performed within the given list of OR tasks
to find a task with a granularity approximately equal to the
one required. If no such grain is found we proceed.
c. Steps a and b are repeated for the rest of the unassigned
servers.
8. If some of the tasks are not yet scheduled on a server,
we go to step 9, otherwise scheduling is complete and we
proceed to sending the tasks for execution.
9. We look for the assigned server with the smallest
assigned time and schedule on it the first task in the
unscheduled task list, comparing it to the longestest_time
and the sequential execution time making sure that it does
not execute both, if it does, then the task is scheduled on
the local server, having its assigned time updated, then the
longest time is compared to the servers’ longest assigned
time where it replaces the latter if it is greater than it.
Then steps 5 through 7 are repeated with priority to
scheduling tasks on unassigned servers until all tasks have
been scheduled on a server.
4.2.Load Balancing Equations:
The equations used to calculate the loads of the servers
have several parameters:
Instruction Time = time taken to execute a single
instruction by the Prolog virtual machine (I).
Network Overhead = time spent over the network to
communicate tasks and receive results(NOH).
Granularity = number of predicates need to be
inferenced to reach a solution for the head with weights
assigned to predicates according to their type AND/OR
(g).
F(g) = Complexity Function.
Longest_Exe_Time = Longest execution time of a set of
tasks on a server (L_T).
Assigned_Time = Current time spent by a processor to
process its tasks (A_T).
Number_Of_Inst = The number of instructions in the
algorithm of the inference (NO_IN).
i = The order of a task in the task list..

The Equations using these parameters are:
Network Overhead (NOH)=(Client_Rcv_T-
Client_Snd_T) - (Server_Snd_T-Server_Rcv_T)
Magic Cookie(MC) = I + NOH.
Sequential_Execution_Time (SET) =å (F(G

i
)* I *

NO_IN).

G = f
-1
((LT-NOH-A_T)/ (NO_IN*I)).

NSAT=å(f(OR
i
)*I*NO_IN +NOH).

4.3.Example:
The following table represents a sample of the data used
by the scheduling algorithm. Using this data we provide a
numerical calculation of the speedup achieved by the
DISPO virtual machine, while the actual results and graph
illustrations are discussed in section 5.

Serv.
name

Serv.
type

inst
Time
(ms)

number
of
Instructi
ons

NOH
(ms)

MC Task
#

G

CS Local 0.489 100 0 0.5 1 19
CS1 Remote 0.155 100 3.59 3.6 2 18
CS7 Remote 0.155 100 5.25 5.3 3 15

4 13
5 12
6 11
7 10

8 7
Table 1: Represents a sample of the data used for
scheduling tasks and speed up calculations.

The following is a trace of our algorithm using the above
data:
1. Sequential Execution Time

SET = 0.489*100*(19+18+15+13+12+11+10+7)
= 5.13 msec.

2. Time of Task#8 ® CS1 = 3.69 msec (fastest remote
server), which is less than the sequential execution time,
therefore the algorithm continues with the scheduling.
3. Scheduling Task#n (n=1) ® CS (fastest server), SAT =
0.93 msec, LET = 0.93 msec.
4. The required grain for CS1 and CS7 fails as their
network overhead is greater than the longest execution
time (LET).
5. In this example steps 3-4 were repeated with tasks
(2,3,4,5) scheduled on CS, SAT=3.76 msec, LET=3.76
sec.
6. The required grain for CS1 G= (LET-A_T-
NETOH)/(I*NO_IN)=17, the closest grain is 11 (task 6)
which is scheduled on CS1 having its SAT=3.67 msec.
7. LET = 3.76 msec, a grain is calculated for CS7 but fails
as its network overhead exceeds the value of LET.
8. The algorithm schedules Task#7 ® CS, SAT=4.25
msec, LET= 4.25 msec.
9. The grain calculation for CS1 and CS7 fails with the
new value of LET, and as a result the algorithm schedules
Task#8® CS, SAT = 4.28 msec, LET = 4.28 msec.
10. At this point all tasks have been scheduled.

 5 . Results
5.1. Loading Times
The following table includes data concerning Prolog files
used as benchmarks (see (Kacsuk and Wise 1992) for
listing). These benchmarks represent various combinations
between breadth of the graph of the knowledge base
(high/low), depth of the graph of the knowledge base
(high/low) and dependencies between the ANDs of a rule
(existant/non-existant, heavy/light).

File Name # F # R #Rec
 Rules

Total
Literals

Time
 (ms)

reverse.pl 2 2 2 7 6.57
colors1.pl 6 1 0 15 15

queens.pl 3 5 3 20 14.7
or1.pl 9 8 0 25 10.5
or3.pl 11 10 0 31 13.1
map.pl 27 2 0 35 22
trial2.pl 7 12 2 34 11.9
colors.pl 6 4 0 42 19.9
usa_map.pl 30 1 0 136 37.8
family.pl 19 10 0 49 11
nlp2.pl 34 8 0 55 19.9
or2.pl 23 25 0 73 23.8
cousin.pl 33 20 0 97 19.3
deep_back.pl 44 40 0 124 39
Table 2: Represents the loading times, time/literal for
several benchmarks with varying degrees in the breadth,
depth and dependencies of the graph of the knowledge
base represented.
5.2. Execution Time
The following graphs represent the execution times
for one of the benchmarks. The variations in the
execution time results from the variation in the
degrees of breadth, depth and dependencies between
the literals of the knowledge base used. The graphs
compare the sequential execution (on local server)
with the multi-threaded execution (MT on local
server) and the distributed execution using the local
and remote servers (local + n servers), i.e 1 Ser =
local server plus one remote server.

E xecution type

0

2

4

6

8

10

12

14

16

18

20

Seq MT 1Ser 2Ser 3Ser 4Ser 5Ser 6Ser

Graph. 1: Represents the execution time of the Colors.pl
file
In some graphs we observed that the multi-threaded
execution is slower than the sequential one and thus
parallelism on one machine hinders execution. This
occurred because of the nature of the graph in the
deep_back.pl and OR3.pl programs where the
graphs have a very high breadth, low depth and no
dependencies. Thus the time of forking the threads
is larger than the sequential execution time because
of the large number of threads needed and the small
depth of each task.
5.3. Performance Results
The following graph represents the average percentage of
speed up achieved in the total execution time with respect
to the number of servers used.

5.4. Execution Time Division
The following graphs represent the time distribution
between the major activities done during the sequential,
multi-threaded and distributed execution of our system. In
the next table we present the average running and job
execution time for all of the benchmarks used.

Execution Type

%
 P

er
ce

n
ta

ge

0

10

20

30

40

50

60

70

80

S
eq

.

1
S

er

2
S

er

3
S

er

4
S

er

5
S

er

6
S

er

% Sp eed-U p

Graph. 2: Represents the speed-up over all benchmarks
used vs. the number of servers.

Algorithm and/or Job Average Time
(msec)

Scheduling Algorithm Execution 0.0005
Thread Forking 0.027
Sequential Execution 0.68
Threaded Execution on LOCAL 0.96
Distributed Execution 0.93

Table 3: Represents the average times for thread forking,
Scheduling algorithm execution time, Sequential, Multi-
threaded, and Distributed Multi-threaded execution times.

1%

99%

Seq . E xe. T im e

D ist. A lg . E xe T im e

Graph. 3: Represents the percentage of execution time
consumed by the scheduling algorithm in the sequential
execution type.

1 %3 %

9 6 %

M T

D i s t . E x e . T i m e

T h r . F o r k T i m e

Graph. 4: Represents the percentage of time consumed in
thread forking and by the distribution algorithm from the
multi-threaded execution.

1%4%

95%

D ist Ex e

D is t . A lg . E xe . T im e

T hr. Fo rk T im e

Graph. 5: Represents the percentage of time consumed in
thread forking and by the distribution algorithm from the
distributed execution

6.Conclusion

From some results, we observe that the cases in which
threaded execution takes longer time than sequential or
distributed ones are due to the overhead of forking
threads. This indicates that our Distributed Prolog Engine
operating in the multi-threaded mode on all servers (local,
remote) operates with the utmost efficiency on very
complex KB as the colors, cousin, and deep_back
problems where these problems have either a large
breadth or depth or both regardless of the degree of
dependencies between the ANDs of the body. Dispo’s
inference engine when operating in the multi-threaded
mode on only the local server has its efficiency decreased
because of the thread forking overhead especially with
graphs of very large breadth at the top level, no
considerable depth and no dependencies as Deep_back,
and OR3 problems. When executing simple Prolog
knowledge bases with small breadth, depth and low/no
degree of dependency between the ANDs using multi-
threaded or distributed, multi-threaded DISPO virtual
machine’s execution time is increased due to overhead.
ETFS distribution algorithm and load balancing equations
have proved a 70% average accuracy with respect to the
actual execution time (sequential, threaded, distributed).
By distributing the interpretation of sufficiently large
Prolog programs a speedup of 71.5% was achieved using
UNIX based machines (SPARC) connected via an
ethernet LAN.

7.References
(Kacsuk and Wise 1992) Kacsuk P., and Wise M.
Implementation of Distributed Prolog. John Wiley &
Sons.
(Karlsson 1992) Karlsson R. A High Performance
OR-Parallel Prolog System. The Royal Institute of
Technology: Sweden.
(Shizgal 1990) Shizgal I. “The Amoeba-Prolog
System.” The Computer Journal 33 (2).

