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Abstract
First-Order Induction of Decision Lists (FOIDL) is a
new ILP method developed as a result of the failure of
existing ILP methods when applied to the learning of
past tense of English verbs. Using intentional
knowledge representation, output completeness, and
first-order decision lists, it can learn highly accurate
rules for the past tense problem but with some
drawbacks. In this paper, we present an extension to
FOIDL that learns rules faster using a learning
algorithm similar to version space learning.

    1.Introduction
Inductive Logic programming (ILP) is one of the newest
sub-fields in AI. It combines inductive methods with the
power of first-order representations, concentrating in
particular on the representation of theories as logic
programs (Russell and Norving 1995). Over the last five
years, it has become a major part of the research agenda in
machine learning. ILP is a highly technical field, relying
on some fairly advanced material from the study of
computational logic.
    ILP is a research area formed at the intersection of
Machine Learning and Logic Programming. ILP systems
develop predicate descriptions from examples and
background knowledge. The examples, background
knowledge and final descriptions are all described as logic
programs. The theory of ILP is based on proof theory and
model theory for the first order predicate calculus. ILP
systems have been applied to various problem domains.
Many applications benefit from the relational descriptions
generated by the ILP systems. The ability of ILP systems
to accommodate background knowledge is also
fundamental. Some relationships learned in particular
applications have been considered discoveries within those
domains. Due to the expressiveness of first-order logic,
ILP methods can learn relational and recursive concepts
that cannot be represented in the attribute/value
representations assumed by most machine-learning
algorithms (e.g. Version Space).
  The problem of learning the past tense of English verbs
has been widely studied as an interesting problem in
language acquisition. Previous research has applied both
connectionist and symbolic methods to this problem.
However, these efforts used specially-designed feature-
based encoding that impose a fixed limit on the length of

words and fail to capture the generativity and position-
independence of the underlying transformation.  An
example of the connectionist approach is Rumerlhart and
McClelland’s computational model of past tense learning,
which was the first to use the classic perceptron algorithm
and a special phonemic encoding of words (Mooney and
Califf 1995, 1996). Their general goal was to show that
connectionist models could account for interesting
language-learning behavior that was previously thought to
require explicit rules. This model was heavily criticized
by opponents of the connectionist approach to language
acquisition for the relatively poor results achieved and the
heavily-engineered representations and training
techniques employed. The best and most efficient method
of tackling this learning problem has been the use of ILP.
  The current, most well-known, and successful ILP
systems are GOLEM and FOIL (Muggleton and Feng
1990)(Quinlan 1990). These systems make assumptions
that restrict their application and introduce significant
limitations. A new ILP method called FOIDL (First-Order
Induction of Decision Lists) overcomes these restrictions
by incorporating new properties such as intentional
knowledge representation, output completeness and first-
order decision lists (Mooney and Califf 1997) . FOIDL is
related to FOIL and follows a top-down greedy
specialization, guided by an information gain heuristic.
The development of FOIDL was motivated by a failure
observed when applying existing ILP methods to a
particular problem, that of learning the past tense of
English verbs. By overcoming FOIL’s limitations, FOIDL
is able to learn highly accurate rules for the past-tense
problem using much fewer examples in it’s training set,
compared to that, which was required by previous
methods.
  FOIDL has some drawbacks including the problem of
local minimum, slow speed and  consumption of large
amount of memory (Mooney and Califf 1996).

2.Critique of FOIDL
In many cases, the FOIDL algorithm is able to learn
accurate, compact, first-order decision lists for past tense.
Those are, in fact, Prolog like programs that are ordered
sets of clauses each ending in a cut (the !).   Hence the
most specific rules are placed first and then the next
general.  In order to check a given verb for it’s past tense,
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one must check the produced rules in sequence, stopping at
the first match of the representation of the verb in its
present tense. FOIDL chooses those rules according to a
specific ‘gain’ that it generates.  It scans the literals

available in its training set, and finds the best literal (the
one with largest information gain) that differentiates
between this set of positive examples and the conflicting
verbs (the negative examples). The rule with the highest
gain is the most general rule, while the ones with the least
gain are the most specific. Even though FOIDL requires
significantly less representation engineering than all
previous work in the area, yet due to the big amount of
irregular verbs, the algorithm can encounter local-minima
in which it is unable to find any literals that provide
positive gain while still covering the required minimum
number of examples that a clause must cover. This was
originally handled by terminating search and memorizing
any remaining uncovered examples as specific exceptions
at the top of the decision list, e.g. past([a,r,i,s,e],[a,r,o,s,e]).
However, this can result in premature termination that
prevents the algorithm from finding low-frequency
regularities.
  Despite its advantages, the use of intentional background
knowledge in ILP incurs a significant performance cost,
since examples must be continually reproved when testing
alternative literals during specialization. FOIDL follows
the Current-best-hypothesis search algorithm, similar to
that described in (Russell and Norving 1995). This
algorithm and many of its variants have been used in many
machine learning systems, starting with Patrick Winston’s
“arch-learning” program. With a large number of instances
and a large space, difficulties arise. Checking all the
previous instances over again for conflicts on each
modification is very expensive. It is also difficult to find
good search heuristics, as repeated backtracking can
consume a lot of time since the hypothesis space can be
doubly exponentially large in its simplest case. Checking
previous instances, accounts for most of the training time
in FOIDL, and this is vivid when the conflicts are
displayed during a FOIDL run. We have decided to give
FOIDL some speed by changing it from a Current-best

hypotheses algorithm to a least commitment algorithm still
making use of the information content and gain heuristic.

  3 .  Enhancing FOIDL
In this paper we introduce a method by which FOIDL
was enhanced to  run quicker and consume less memory
space. First, we allow FOIDL to discover low frequency
regularities. Second, we prevent it from reexamining old
examples that are  conflicting with the ones currently
being evaluated during a FOIDL run.  This reproving is
the main reason for the large time delay and memory
consumption in FOIDL. These two are our goals for
enhancing FOIDL.
  Experimentation with FOIDL has shown that the number
of clauses and literals grows rapidly as we increase our
training sample (see Figure 1). This can be explained by
FOIDL’s failure to find low-frequency regularities. It ends
up adding exceptions such as past([a,r,i,s,e],[a,r,o,s,e]) at
the top of the list, and this is vivid from the rapid ascent of
the curve in the above figure. It would be advantageous to
learn such regularities rather than add rules as if FOIDL
were a database.
  Could this problem be solved simply by reducing the
number of examples covered? It would generate less of
such rules, but will these fewer rules be as effective?
Verification of FOIDL has shown that the more examples
the better the accuracy of classifying new and unseen
verbs (see Figure 2 ). Thus, we need to use a large training
set to increase accuracy and at the same time solve the
problem of the unbearably slow generation of FOIDL
rules. Backtracking arises because FOIDL’s current-best-
hypothesis approach has to choose a particular hypothesis
as its best guess, based on a gain heuristic, generating a
new rule that is placed before previously generated rules,
and might classify examples covered by these old rules,
thus changing their classification.

  We have decided to use Version-Space learning as an
alternative to FOIDL’s learning. Version-space is a least-
commitment search that tackles the above mentioned
problems by avoiding backtracking and keeping only
those hypotheses that are consistent with all the data so
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far. Each new instance will either have no effect or will get
rid of some of the hypotheses.

3.1 Version Space (VS) Learning
As our verification has shown, FOIDL experiences large
increases in the number of clauses as the number of
training samples increases due to its inability to capture
low-frequency regularities. Besides looking for a solution
to this weakness, we also want to attack the major lack of
speed in FOIDL due to repeated reproving of conflicts. A
least-commitment search algorithm, if incorporated into
FOIDL would tackle these two problems at once. One
important property of this approach is that it is incremental
and never goes back to reexamine already proved
examples.
  The Version Space algorithm is usually used for a small
domain where the closed world assumption is feasible. In
the past tense case, Mooney’s experience with FOIL has
shown that intentional background knowledge is more
manageable than explicit negatives in a closed world. The
typical version space algorithm also assumes a training set
of positive and negative examples, with positive examples
being used to update the S set by generalizing it, and
negatives examples being used to update the G set by
specializing it (Russell and Norving 1995). Positive
examples are also used to remove non-matching Gi’s and
negative examples are used to remove non-matching Si’s.
Making use of Mooney’s experience that providing
positive and negative examples to completely describe a
closed world is a bad idea, we have decided to implement
a modified version space learning algorithm by using
intentional knowledge and positive examples only (see
section 3.3).
  Let us assume that the target decision list to be learnt is as
follows:

past([ g, r, a, b] ,[g, r, a, b, b, e, d] )!
past(A, B) :- split(B, A, [d]), split(A, D, [e])!
past(A, B) :- split(B, A, [e, d]).
  The point we must be aware of here is that these clauses
are ordered from top to bottom. When we ask Past(Q1,Q2)
for example, the first clause this pair matches will be the
rule to use, even though it might also match later clauses.
This ordering constraint is what causes conflicting groups
to appear, in which a verb already matching a clause near
the bottom, also incorrectly matches some other clause
placed higher in the list, causing incorrect classification. In
our implementation, this has been avoided by the use of
buckets, with the bucket size determining how general a
clause is (see later).

3.2 Applying Standard VS
If we had used positive and negative examples in a normal
version space training and without buckets, and used either
the intentional knowledge (such as split) of exception

examples (such as past(flog, flogged)), then a typical S
and G training would be as follows:

Initialization with a positive example:
G = T   (most general clause)
S =  past([jump], [jumped])
After Addition of Another Positive example:
G = T (no change)
S = past([jump], [jumped]) v
       past([employ], [employed])
After Generalizing S :
G = T
S = past(A, B) :- split(B, A, [e, d]).
After First Negative example:
G = T L¢ past([die], [died])
S = past(A, B) :- split(B, A, [e, d]) L¢A=[die]

As one can see, S has been generalized early, and thus if
the “ed” clause was of low frequency, a generalization
would be already introduced, and this is a big advantage
over FOIDL.  The disclosure of the clauses is generated in
an ordered manner just as in decision lists, and the first
clause from the left should match the topmost Prolog
clause generated by FOIDL. But, as more negative
examples similar to the past([face],[faceed]) typical error
are introduced, S and G become:

G = T L ¢(past(A,B):- split(B, A, [d]) L
       split(A, D, [e]))
S = past(A, B) :- split(B, A, [e, d]) L
       ¢(past(A,B):- split(B, A, [d]) L
        split(A, D, [e]))

  It can be noticed that we are heading to a major problem
now, since we are developing a rule that states there is no
past tense to a verb that ends in “e” generated by the
addition of a “d”, which is incorrect. Thus, negative
example learning is not useful, besides the possibility of
an infinitely large negative example set in the domain
which might overwhelm the learnt positive examples.

3.3 Adapted VS Learning
An alternative technique would be to reverse engineer the
Prolog clauses into the ordered clause of disjunction
required to be learnt and produced by our version space
algorithm. The equivalent of the previous set of Prolog
clauses in ordered First Order Predicate notation would be

past (A,B)  <=
( A=[g, r, a, b]  L B=[g, r, a, b, b, e, d] )v
( split(B, A, [d]) L split(A, D, [e])) v
( split(B, A, [e, d]))

  This can be even simplified further to be represented in
literals actually derived from intentional background
knowledge (the split predicate).
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past (A,B)  <=
( A=[g, r, a, b]  L B=[g, r, a, b, b, e, d] )v
( split(?B, ?A, ?C) L (= ?C (D)) L split(?A, ?D, ?E) L (=
?E (E))) v
( split(?B, ?A, ?C) L (= ?C (E D)))
     This in fact is our target clause to be learnt by the new
version space algorithm. The question now is whether to
impose an order or not. If we give each conjunction of
literals above a name then we have

past(A,B) <= C1 v C2 v C3 v C4 v C5

Just like Prolog statements generalize after each
cut operator (!) from top to bottom, the clause here
generalizes from left to right since they tend to cover more
examples. The generalization here is a keyword allowing
the possibility of setting G1 to the rightmost conjunction
(here C5) and S1 to the leftmost conjunction (here C1),
where G1 is one of the hypotheses in G and S1 is one
hypotheses in S. The training for all these positive
examples would be carried out by the following algorithm.
  Whenever a hypotheses in G is specialized and a
complete rule such as  (  split  (  ?B   ?A  ?C )    L   (= ?C
(ED) ) ) is generated and an identical one is also generated
by the generalization of S, then the two frontiers have met,
and the concatenation of S and G will be the learnt clause
equivalent to the desired Prolog clause. Thus S is
producing rules starting from C1 and G is producing rules
starting from C5, and both will meet when S and G
generate C3 for example.
  This technique is very well from the version space point
of view, but implementation wise, we still run into the
possible situation in which a verb may match two different
clauses and would have to be reproved. A solution to this
is not impose any order on the clauses while generating
them, and only assign an order later on depending on the
percentage of training examples covered. Assuming a large
training set, then the disregard of order while generation
(to gain speed) and then regenerating order depending on
how general the clause is can prove effective. This would
require us to store with every clause all the verbs that it
satisfies. This is the bucket concept, the details of which
are described below.

 3. 4   The Bucket Concept
When rules are generated in G to specialize it, or in S to
generalize it, we have the option to keep the instances that
are covered by these rules linked to each one of them.
This can help us know how many verbs are covered by that

rule after the generation of the rules comes to an end. This
group of instances is referred to as a “bucket”. The size of
the bucket can be used to enforce an order on the clauses
generated. Those with a larger bucket are more general
rules, since they actually cover more of the training
samples. As examples are seen n at a time, each one either
ends up in the bucket of an already existing clause or in a
newly created clause that is specific to it, called a “solo”
clause (since the bucket size is 1).
  In the tracing of the algorithm provided below, we see
G1 specializing by changing its single clause (with 3 verbs
in its bucket) to 2 clauses. The examples ([employ]
[employed]) and ([jump] [jumped]) are removed from the
original clause and are covered by the new specialized
rule: (Split (?B ?A ?C) ^ (= ?C [ED])) while the non
matching verb ([grab][grabbed]) is kept as it is in the old
bucket of the clause (Split (?B ?A ?C)).  Each of these
two buckets must be kept for future specialization of G
and in S for its future generalization. As more examples
are seen, they are distributed onto the clauses that they
match, and stored in the corresponding buckets.
    The idea is that solo clauses such as
(past[grab],[grabbed]) can be developed by the addition of
other positive examples such as ([stab],[stabbed]) to
generate rules describing low frequency regularities, such
as (Split (?B ?A ?C)^(= ?C (BED)).  
   As positive verbs are added to G, the clauses need to be
specialized into more specific rules. This is where the
stored reserved instances come into play.  We use them to
specialize and generate a new rule. The following table
shows a predicted typical trace along with the buckets of
each clause for one cycle of training. A training set
increment of 3 verbs per cycle was used in this example,
and show quick promising results for only two such
cycles.
  From this example, the Prolog rules obtained after vector
space learning (ordered by bucket size in ascending order)
would be

Past(A B) :-  split (B, A, [bed]) !
split (B, A, [d]) !
split (B, A, [ed])

   Thus we have arrived at an ordered decision list just like
FOIDL, but without the three drawbacks.  

S1 G1

(employ employed)
(grab grabbed)
(jump jumped)

Split (?B ?A ?C)
(employ employed)
(grab grabbed)
(jump jumped)

(employ employed)
(jump jumped)
Split (?B ?A ?C)
    ^   (= C [bed])
(grab grabbed)

Split (?B ?A ?C)^(=C [ed])
 (employ employed)
(jump jumped)
Split(?B ?A ?C)
 (grab grabbed)

More GeneralLess General

C1 is

example
No No No No

F

Y Y Y
 C2 is

Y
 C3 is  C4 is  C5 is

e es e es es
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(book booked)
 (employ employed)
 (jump jumped)

(die died)
 (lie lied)

(book booked)
 (employ employed)
 (jump jumped)

(book booked)
 (employ employed)
 (jump jumped)

(lie lied)
(die died)
(book booked)
(employ employed)
(jump jumped)
(split (?B  ?A ?C)
     ^ ( =C [bed]))
(grab grabbed)

Split (?B ?A ?C) ^ (= C [ed])
(employ employed)
(jump jumped)
(book booked)
Split (?B ?A ?C)
(grab  grabbed)
(die died)
(lie lied)

(book booked)
(employ employed)
(jump jumped)
split (?B  ?A ?C)
     ^ ( =C [d])

split (?B  ?A ?C)
      ^ ( =C [bed])

split (?B ?A ?C) ^ (= C [ed])

split (?B  ?A ?C)^ ( =C [d])

split (?B ?A ?C)

Split (?B ?A ?C)
     ^(= C [ed])

split (?B  ?A ?C)
        ^ ( =C [d])

split (?B  ?A ?C)
     ^ ( =C [bed])

Split (?B ?A ?C)
     ^(= C [ed])

split (?B  ?A ?C)
        ^ ( =C [d])

split (?B  ?A ?C)
     ^ ( =C [bed])

4. Conclusion
FOIDL was created mainly to tackle the problem of
learning to generate the past tense of English verbs. It
can also be used to learn phonetics Arabic verbs, and to
learn the integration and differentiation rules of calculus.
In other domains, where intentional background
knowledge is more of a graph with relations, rather than
just two simple rules as used in the past tense domain,
relational pathfinding can be used to avoid the local
minimum and plateau problems of FOIDL. In this paper
the ideas behind the enhancement of FOIDL for solving
the past tense problem and detailed explanation of our new
algorithm that runs faster and is capable of learning rules
for low frequency regularities were described. Traces for
this new algorithm has proved to be good and fast enough
compared to the original FOIDL. We are currently
working on modifying FOIDL to learn conjugation of
Arabic verbs.
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 Implemented Algorithm

(die died)
 (lie l)

(grab grabbed)

(employ employed)
 (jump jumped )
 (book booked)

(die died)
 (lie lied)

(grab grabbed)

(die died)
 (lie lied)
(die died)
 (lie lied)

(grab grabbed) (grab grabbed)

  1 )  Initialize S with the first positive example and
initialize G with the most general clause, e.g. Gi =
split (?B ?A ?C)  adding that positive example to
the bucket of this rule.

2) While examples still exist
a) For every n examples (where n is small compared to
the training set) do

* Add posex to all Si’s as a disjunction if no rule
covers it otherwise, add it to the bucket of the rule
that satisfies it
* Add posex to all Gi’s as a disjunction if no rule
covers it otherwise, add it to the bucket of the rule
that satisfies it

b) For each Gi, if there is one or more non-complete
intentional disjunctions in Gi, try to specialize Gi. This
intentional  rule is generalized by the examples in its
bucket into a new rule with a new bucket containing
matching examples, while the old rule is kept with the
remaining examples. The specialization should have a
reasonably large gain. e.g. before specialization.
Gi = (split (?B ?A ?C) {bucket = employed, grabbed,
jumped}) after specialization
Gi = (split (?B ?A ?C)^(=?C (ED) ) {bucket=employ,
jump}) v split(?B ?A ?C)   {bucket= grabbed}
c) For Each Si, if there are one or more non- intentional
disjunctions, try to generalize Si by replacing these
disjuncts with a complete intentional rule with a
reasonably small gain to capture less frequent
regularities. The matching instances for this new rule are
placed in the attached bucket. This way, already
generated rules in G are not generated in S. If there are
more than one generalizations, create a new S instance
for each.

3) After all training examples have been covered, keep
generalizing and specializing until an Si matches a Gj.  
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