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Abstract

We apply our on-line learning neural network approach to
control of non-linear systems; first to joint level trajectory
control of an industrial welding robot, and then to one front leg
of a hexapod walking robot. The first application demonstrates
the ability of neuro-control to model complex non-linear
components of a plant, thereby yielding impressive
improvements in accuracy compared to the original robot’s
controller. The second application illustrates the strength of an
on-line learning approach in coping with disturbances to a
plant’s characteristics. In order to set this work in context we
briefly review our on-line learning neuro-control method, used
for both sets of experiments. It has a strict theoretical basis
including guarantees of the whole system’s stability.

Introduction

The overall aim of the work described here is to illustrate
the capabilities of an on-line learning neural network
approach to improving the performance of controllers
operating in complex non-linear domains. To achieve this
aim one must be able to design systems that can improve
their performance by modelling crucial components of a
given plant directly using the data normally available as
part of the control process; e.g. control effort, desired and
actual set-points, their derivatives and so on.

Off-line techniques suffer from some limitations. If only
simulation is used for training, then a sufficiently complex
model is required, which could probably have been used to
build an acceptable traditional controller. Alternatively, if
real plant data are used, then the learned transfer function
is limited to that information which has been acquired
during the data gathering phase. An on-line approach,
wherein the processes of data gathering and training occur
simultaneously with control of the real plant, can
overcome these problems. However, such an approach is
not without difficulties. If the controller characteristics are
changing due to on-line adaptation as the real plant is
exercised, then it becomes imperative to provide
guarantees of learning algorithm convergence and
stability  of the whole system.

The new work presented in this paper is concerned with
the application of these techniques to one 3-jointed front

leg of a hexapod walking robot. However, to set the
context, we must first review our previous work on the
Yaskawa robot and the neuro-control laws we use.

Related Work

Over the years much research effort has been put into the
design of neural network applications for manipulator
control. Albus [1] used the Cerebellum Model Articulation
Controller (CMAC) to control manipulators as early as
1975. Miller et al [11] and Kraft et al [7] extended Albus'
results and developed neural network learning algorithms
in 1987 and 1992 respectively. Kawato et al [6] added
MLP networks to original manipulator PD control systems
as feedforward compensators in 1988. Iiguni et al [3]
combined manipulator linear optimal control techniques
with Multi-Layer Perceptron (MLP) neural networks,
which were used to compensate for the non-linear
uncertainty in 1991. Others have concentrated on linking
neural network based approaches to control with learning
convergence and stability guarantees. Examples are
Narendra  [12, 13] in 1991 and 1992, Sanner & Slotine
[14] in 1991, Suykens, Van de Wall & De Moor [15] in
1995, and Lewis & Parthasarathy [8, 9] in 1996 and 1999.

The Yaskawa Robot Application

Since 1994 IAS Laboratory researchers have been working
on on-line learning neuro-control and its applications. The
team first concentrated on establishing the necessary
stability theory. After this, implementations were
demonstrated for improving trajectory tracking accuracy
on a simulated Puma 560 robot manipulator and on a real
educational Mentor robot [4, 5]. More recently we have
extended the experimental work to cover a real Yaskawa
Motaman robot [2], extracted from daily use as a
manufacturing welding robot in a local company.

One could consider the three major axes (base, shoulder,
elbow) of a manipulator as a coupled system of links and
revolute joints, driven by electric motors. The Yaskawa is
fitted with a shaft encoder and tachometer on each of these
joints so as to provide position and velocity feedback.
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A general equation of motion for a rigid manipulator is
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where q is the n x 1 vector of joint displacements, τ is the n x
1 vector of applied joint torques, H q( )  is the n x n

symmetric positive definite manipulator inertia matrix,
C( , �) �q q q is the n x 1 vector of centripetal and Coriolis

torques, g q( )  is the n x 1 vector of gravitational torques,

and F q q( , �)  are the unstructured uncertainties of the

dynamics including friction and other disturbances.

On-Line Learning for Neural Networks

Although the static performance of the PID controllers
commonly used in such situations is good, the dynamic
performance leaves much to be desired. By exploiting the
neural network universal approximation feature we can
assume that the left hand side of the above equation can be
approximated by a neural network, i.e.
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where G is the non-linear mapping matrix of an RBF or
CMAC neural network, W is its weight vector, which is
initially unknown, and ξ is its approximation error, which
should be as small as possible by careful design.

The main objective of on-line learning is to force the
manipulator to follow the desired trajectory, i.e. qd. In order to
simplify the final control structure, we will use the desired
joint values as the neural network inputs, however the actual
joint values are used to train the neural network on-line.

During on-line learning, the neural network is used as a part
of the manipulator controller. Its output forms part of the
control signals which are used to drive manipulator joints.
The joint values in turn are used to train the neural network.
Therefore the on-line learning algorithm must guarantee that
these two coupled systems (neural network & manipulator)
work in a converging fashion. Our main theoretical research
result is presented in the following theorem. The structure
combines a simple two-term linear controller with the neuro-
controller. The control law guarantees the asymptotic stability
of the whole system (neural network and manipulator).

Theorem: Consider equation 1 with the neuro-control law

and the on-line learning algorithm

where q is actual position and qd is desired position,  Γ is a
constant positive definite matrix and is called the learning
rate. If Kp and Kv are positive definite matrices and
sufficiently large, and c is a small enough positive constant,
then the closed-loop manipulator system is asymptotically
stable and
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Proof: The proof is rather complicated. We only present the
outline here. Those interested in further details are referred to
[5].

It is well known in the robotics field that,

i) the inertia matrix, H, is positive definite,

ii) for one choice of C, �H C C=
1

2
( + )T

,

iii) H and g  have bounded norms,

iv)  H and g  only contain trigonometric function of q

hence their partial derivatives with respect to q also
have bounded norms.

By extending the work of Wen and Bayard [16] it can be
proved that the following control law results in exponential
stability if Kp and Kv are sufficiently large.

dqdqHdqdqdqC
dqdqFdqgvp=

����

�

�

)(),(

),()(q~K+q~K

++

++τ                           (5)

The Lyapunov method [10] is used to prove this result. The
Lyapunov function is

The control law of Equation 3 is the control law of Equation 5

with an additional term - ( , , )d d d
TG q q q W� ��

~
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terms in the first time derivative of the Lyapunov function.
These additional terms are cancelled by the on-line learning
algorithms if we use a new Lyapunov function, i.e.
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Therefore the whole system is asymptotically stable. The
control diagram is shown in Figure 1. The neural network
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acts as a feedforward controller. The desired joint values
(displacements, velocities, accelerations) are its inputs. In the
feedback loop, there is a PD controller. A linear combination
of joint displacement errors and velocity errors is used to train
the neural network, as shown in figure 1.
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Figure 1: Robot manipulator neuro-control architecture

Remark:  Although the theorem guarantees that the whole
system will be asymptotically stable, the transient
performance and the conditions which Kp, Kv and c must
satisfy all depend on the initial Lyapunov function value.
Unlike conventional adaptive control where the number of
adjustable unknown parameters is small, the number of
adjustable neural network weights is very large, so the initial
Lyapunov function value will be very large. In order to reduce
this initial value and improve on-line learning convergence
velocity, it is often desirable to train the neural network off-
line before it is used for on-line control.

Neuro-Control of the Yaskawa Manipulator

Three neuro-controllers are used, one for each of the three
major axes. In the experimental approach adopted for the
Yaskawa robot a CMAC (Cerebellum Model Articulation
Controller) neural network [1] is effectively “strapped
around” each existing joint controller rather than
replacing it, as shown in figure 2. They are implemented
via a PC-resident Texas Instruments DSP board, based
around the 40MHz 320C40 processor, which executes the
code for all three neural networks.

Each neural network utilises the same demand and
feedback information available to the existing controller,
and the output signals from the existing and neuro-
controllers are combined by simple analogue voltage
addition just before the power stages of the motor drive
circuit. Each neural network therefore simply adds its
control effort to that of the existing controller in order to
help reduce errors.

The control arrangement for one joint is as defined by
equations 3 and 4 above, and depicted in figure 1. Each
composite joint controller receives new position, velocity

and acceleration demands every 2ms. The existing two
term linear controller operates on only the position and
velocity error signals to derive control actions. The neural
network takes position, velocity and acceleration demands
as inputs and is trained on-line using a combination of
velocity and position errors. Each CMAC has 32,768
adjustable weights. For a particular input set, 120 weights are
selected for each output. Between each 2 millisecond
sampling period and the next, the 320C40 must therefore
complete one pass of the learning algorithm and a forward
pass of the neural network for each CMAC. Over repeated
trials, performance improves; though the bulk of this is
obtained in the first five trials of a given trajectory.
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Figure 2: The Experiment Yaskawa Setting

Figure 3 shows an example desired trajectory which the robot
should follow. The minimum (minq ) and maximum ( maxq )

joint values are -256 and 30720 counts of the joint position
encoder for joint 1, -7168 and 8192 for joint 2, -5379 and
6144 for joint 3. 360 encoder counts roughly equal 1 degree.
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Figure 3: The Desired Trajectories (The solid line is for the Base
Joint, the dashed line is for the Lower Arm Joint, and the dotted
line is for the Upper Arm Joint)

Figure 4 shows the joint 1 trajectory tracking errors. Line (a)
shows the errors without the neural network. The worst case
error is 60 counts. Line (b) shows the errors of the neuro-
controller in the first trial. The worst case is reduced to 46.
Lines (c) and (d) show the errors in the third and fifth trials.
Now the worst case errors are further reduced to 17 and 9
respectively. The tracking errors are finally reduced by more
than six times. A similar improvement is also achieved to



joint 2 and joint 3. Their tracking errors are shown in figure 5
and figure 6 respectively.
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Figure 4: The Trajectory Following Errors of Joint 1. (a) Using
the original controller; (b) Using the neuro-controller in the first
trial; (c) Using the neuro-controller in the third trial; (d) Using
the neuro-controller in the fifth trial
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Figure 5: The Trajectory Following Errors of Joint 2. (a) Using the
original controller, (b) Using the neuro-controller in the first trial, (c)
Using the neuro-controller in the third trial, (d) Using the neuro-
controller in the fifth trial
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Figure 6: The Trajectory Following Errors of Joint 3. (a) Using
the original controller; (b) Using the neuro-controller in the first
trial; (c) Using the neuro-controller in the third trial; (d) Using
the neuro-controller in the fifth trial

Neuro-Control of a Hexapod Leg Joint

We describe our initial results from the first phase of an
investigation into on-line adaptive neuro-control of a
hexapod walking robot’s leg trajectories. In the intended
application area of rugged terrain walking, very accurate
trajectories and foot placement are required - even in the
presence of disturbances. Our first experiments are
concerned with the neuro-controller’s performance in the
face of intermittent end-effector force disturbances.

Below we identify a simplified neuro-control structure
(relative to the Yaskawa experiments described above)
which implements control of the coxa joint of one of the
hexapod’s front legs; in future work this will be extended
to control of the other two joints of each leg, and then to
all six legs. A Radial Basis Function (RBF) neural
network is used as the controller [14].

In the Yaskawa robot experiments, the neural network
contributed directly to control current supplied to each
joint’s motor. In the case here each motor is packaged as a
servo-system, with on-board linear position control. A
desired position is identified by Pulse-Position-Modulation
(PPM). To generate a trajectory, desired positions are
produced in sequence for each of the three servo-motors of
a leg by the on-board computer (described below). In these
experiments the RBF network is placed between this
computer output and the servo-motor input, as detailed in
the control diagram of figure 7.
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Figure 7: Leg joint neuro-control architecture

An error signal is derived from the position potentiometer
already contained in the servo as part of the existing
position control loop. This feedback signal is read into the
on-board computer via an A/D converter and then used to
derive an integer position error signal which is in turn
used to train the neural network between one control
action and the next. This generates a modified trajectory
demand signal which should reduce trajectory tracking
errors over time and adapt to control disturbances. In the
Yaskawa experiments velocity feedback was used in
addition to position (see equation 4). This will be required
here also when the experimental platform is extended. For



the initial results presented here, however, only one
desired trajectory, a curved forward movement of the leg,
is considered and so velocity variations can be ignored.

Gaussian basis functions were used for the neural network,
evenly spaced at intervals of 10 units across an integer
desired position (qd) input range of 0 to 1000. Each basis
function had a variance of 169.

The on-board computer is based around the Motorola
68332 microcontroller, clocked at a rate of 20MHz. The
controller possesses an on-chip Time Processor Unit
(TPU) which allows for conversion between integer values
representing joint positions and a PPM signal to be sent to
a servo-motor input. The controller also possess a Queued
Serial Module (QSM) which provides for synchronous
(SPI) and asynchronous (RS232) communications. The
former is used for communication with some on-board
peripheral devices, whilst the latter is used for
transmitting the results of experiments to a host computer.
The board is equipped with A/D converters, which are
connected over the SPI line, for measuring the servo-
motor position feedback signals. Software has been
developed in the C language, using a PC-resident
Microtec Research “XRAY” cross-development suite.

The RBF network is trained initially with an identity
function so that, without on-line learning, it contributes no
extra control effort. There are three plots on each graph;
showing the desired position for the coxa joint, the servo-
motor position feedback signal, and finally the RBF neural
network output.

Figure 8: Initial off-load trajectory. Vertical axis:
position in the integer units of the trajectory planning
algorithm. Horizontal axis: time steps in units of
approximately 30 ms.

Figure 8 shows the initial off-load case on the first run
through the trajectory. It can be seen that all three signals
are quite similar under these conditions, meaning that the

servo-controller is performing quite well under these
circumstances and the RBF network is unnecessary.
A spring was attached to the leg end-effector after the first
run, which applied a variable tangential load disturbance
to the system. Figure 9 shows the situation at the fourth
cycle of the trajectory. One can clearly see that the RBF
neural network has learned to compensate for tracking
inaccuracies over the preceding three cycles, producing a
modified trajectory demand which is substantially
different from the original so as to give the required
position feedback signal.

Figure 9: Trajectory three cycles after load applied.
Vertical axis: position in the integer units of the
trajectory planning algorithm. Horizontal axis: time steps
in units of approximately 30 ms.

Figure 10: Recovered off-load trajectory. Vertical axis:
position in the integer units of the trajectory planning
algorithm. Horizontal axis: time steps in units of
approximately 30 ms.

After this the spring was removed. This produced a
significant initial trajectory overshoot. However by the
seventh cycle the situation was nearly recovered to the
original situation, as shown in figure 10.
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Discussion & Conclusions

For the work carried out on the Yaskawa manipulator it
was possible to achieve a  six- to ten-fold reduction in
joint level trajectory tracking errors on each of the
principal three axes of movement compared with using the
Yaskawa’s existing joint controllers on their own.
Recently these experimental results have been extended by
testing the composite controller in many more parts of the
manipulator’s operational envelope, enabling an empirical
analysis of its learning and generalisation performance
across many trajectories. The results of this work have
been encouraging, including recommendations for
enhancement of the controller implementation [2].

The work on the hexapod walking robot is at a much
earlier stage. There are a number of problems to
overcome. Perhaps most significant is the noise generated
by the potentiometer based feedback signal from the servo-
system, this can be seen clearly in all the diagrams above.
This requires either complete replacement, or perhaps
some filtering.

However, despite these difficulties, the two sets of
experimental results described in this paper indicate that
an adaptive on-line neuro-control approach is not only
capable of yielding accurate control performance when
applied to complex non-linear plant, it can also provide
useful adaptive responses to time varying dynamic load
conditions. Although there was not space to print them in
full here, these algorithms are based on thorough analyses
of system convergence and stability, that we have
summarised here and published fully elsewhere [4, 5].
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