
A Method of Automatic Training Sequence Generation for Recursive
Neural Networks in the Area of Sensing Directional Motion

Dudley Girard
Computer Science Deptartment

University of South Carolina
girard@cs.sc.edu

Abstract
In the modeling of vision systems of biological organisms, one of
the important features is the ability to sense motion (Borg-
Graham et al. 1992, Huntsberger 1995, Klauber 1997, Missler
and Kamangar 1995, Rosenberg and Ariel 1991). Motion is
sensed by animals through neurons that receive input over some
area of the field of view (Newman et al. 1982 and Rosenberg
and Ariel 1991). For such a neuron to function properly implies
the ability to "remember" how things were in the past and
combine that information with how things are in the present. In
attempting to come up with a computationally efficient model of
a motion neuron a Jordan-Elman network has been utilized. The
Jordan-Elman network allows for a one time step remembrance
of the state space, making it suitable for motion sensing (Jordan
1986 and Elman 1990). To train the network an automatic
method of building a training sequence was developed based off
earlier work done mostly through hand coding to allow for easy
construction of motion sensing networks of differing features. A
network with a 3x3 input field and a network with a 5x5 input
field were trained using the automatic method of training
sequence generation. These two networks were tested against a
network with a 3x3 input field trained using the training set
constructed partially by hand. Results favored the latter
network, but the former networks showed future promise. It is
hoped with the right modifications to the creation of their
training sequence they will become better than their hand built
ancestor.

Introduction
Sensing motion is an important feature of a biological
organism’s vision system. Within the turtle it is known
that there are neurons that respond to motion in any
direction, neurons that respond to motion along an axis,
and neurons that respond to motion only in a certain
direction (Rosenberg and Ariel 1991). Neurons that
respond to motion along a certain direction tend to have
an area of preference. For the rattlesnake this has been
shown to be +/- 20 degrees off the preferred direction and
for the turtle it is +/- 60 degrees (Hartline et al. 1978 and
Rosenberg and Ariel 1991). Also for motion sensing
neurons the input field of view varies from neuron to
neuron within the animal and between different animals

(Hartline et al. 1976 and Rosenberg and Ariel 1991).
These are the features that the Jordan-Elman networks
discussed in this paper are attempting to mimic within a
local area of the viewing space.
 Training for the two newer networks was accomplished
through an automatically generated nondeterministic
finite automaton (NFA) whose transitions were assigned
weights based on whether motion occurred or not. The
underlying design for these NFAs were based on an earlier
NFA that was developed by hand. In building the
training set from an NFA the program would record its
path as it randomly wandered through the NFA. Further
details on the construction of the NFAs and the training
set will be discussed later.

Overview
In training the neural network to recognize motion it
becomes necessary to quantize motion into a form the
neural network can be trained on. For these networks
motion came to be described as a series of states, with an
output value for the neural network being a value assigned
to the transition between the states. Each state
represented an NxN snapshot of motion. Building the
entire NFA was deemed unfeasible, as just 9 inputs with
255 distinct values per input gives 4.56 x 1021 states, not
counting all the transitions between the states. Thus it

becomes necessary to rely on the neural network's ability
to generalize on input not seen during training, and use
some subset of all the available states and transitions. The
first subset was created by hand and consisted of an NFA
with 141 states. An automatic method was then developed

Fig. 1. Global breakdown of the NFA used to create the
training set, note that each subgroup is an NFA as well.

 Copyright 1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

that would construct varying NFAs based around the NFA
built by hand.
Design of the NFA
The NFA can be broken down into four main groups:
motion, reduced motion, random noise, and non-motion.
Each group is in turn broken down into sub-groups, each
of which for the most part is an independent NFA. Due to
space restrictions only the basis of design for the 3x3
training set will be shown in-depth with general
differences of the 5x5 being explained in brief.
 All four of the main groups can be accessed by and
eventually lead back to the global start state as can be seen
in Figure 1. This global start state consists solely of zeros.
Any transitions to this state from any other state is

assigned a weight of zero.
 A more detailed look of the motion group can be seen
in Figure 2. As this NFA is designed to impart the neural
network with the preference to fire on upward motion,
only transitions between states expressing motion in an
upward direction are assigned a weight of 1, all other
transitions are assigned a weight of 0. All motion states
were created automatically by moving a line of varying
width across the input field of view and linking successive
states together. For the 5X5 network’s NFA the 45 degree
diagonal subgroups were replaced with 30 degree diagonal
subgroups. The 5X5 network’s NFA also had states in
which motion over two time steps were connected via a
transition to better aid the neural network in tracking a
faster moving object.
 The reduced motion group consisted of three subgroups,
each of which looked like the subgroup shown in Figure 2
for the Up/Down motion. The difference is that instead of
all intensities being set to 1, for each subgroup a different
intensity value was assigned. Intensities of 0.5, 0.1, and
0.05 were used for both the 3x3 and the 5x5 networks. In
addition the weights for motion in an upward direction
were modified to values of 0.99, 0.1, and 0.0 respectively.
Only up/down motion was dealt with, it was thought
unnecessary to create similar NFAs for the diagonal or
left-right motion as it was hoped the neural network would
output a value of zero no matter the intensity of an object

with such motion. These states were created by moving a
line of varying width and intensity values across the input
field of view in an upward, then downward direction.
Successive states were linked together, and transition
values assigned base on line direction and intensity.
 The random noise group was built so that the neural
network would be unresponsive to static noise. Each
subgroup of the random noise group had its own
individual start state that was basically an all-zero state.
From each individual start state four random states within
that subgroup were chosen to be reachable from that
subgroup's start state. Each state within the same
subgroup could reach some randomly selected four other
states within that subgroup. In addition all states within

that subgroup, except the start state, could reach the global
start state. All transitions within a group of random states
had a weight of zero and were unidirectional. All states
within a subgroup, except the start state for that group,
consisted of randomly determined input values that fell
between the range of 0.0 and 1.0.
 The non-motion group was built so that the network
would be unresponsive to an unmoving object in the field
of view of the neuron. This was accomplished by
generating duplicate states of the same input pattern. A
set of four states was created and linked together as shown
in Figure 3. A state was created by setting the value of
each cell in the state between 0 and 1 randomly. Any
value less than 0.5 was then set to a near zero value (<
0.001). A non-motion start state would be created that the

global start state would connect to (in Figure 3 this is the
second state from the left). The non-motion start state
would be a state where all input values were zero and
would connect to multiple sets of non-motion state sets.
Usually there would be four non-motion state sets for the
non-motion start state to connect to. Each state in a non-

Fig. 2. From left to right are the NFA’s for the motion subgroups: Up/Down, Up-Left/Down-Right, and
Left/Right. Not pictured is the Up-Right/Down-Left subgroup. All connections are bi-directional. The
state with all black boxes is the global start state, the state with all white boxes is the motion nexus state.
The nexus state connects all the motion subgroups together.

Fig. 3. Part of a Non-Motion subgroup. Of interest is
the way the non-motion states are linked together.

motion state set would be able to reach the global start
state, except for the non-motion start state.

Control Features
There are various control features that may be used to
modify what sort of motion the NFA constructed will
favor. At the moment these features are line rotation,
movement rate, number of random subgroups, number of
non-motion subgroups, and threshold cutoffs for the non-
motion subgroup. The rate of rotation for the line can
determine how invariant the network is concerning the
preferred direction of motion. Movement rate, or moving
the line more than once in a time step, is important for
input fields of 5x5 or larger where objects have the
potential for such motion across the input field. The
number of random subgroups can determine how
unresponsive a network will be to static noise. The
number of non-motion subgroups affects how well the
network will ignore stationary objects. The thresholds for
cut off in the network can affect how sensitive the network
is to the intensity difference between a moving object and
its background.

Generating the Training Sequence
In generating a training sequence, the global start state
was always the first state in the sequence. From there the
rest of the states in the training sequence were generated
by randomly following the transitions through the NFA.
Additional modifications were done during the generation
of the training sequence to give the neural network a
broader input pattern set. This included variable
background noise, slight variance of the intensity of the
states in the motion group, allowing for delays between
changes in states, and the number of state snap shots used.
Last to be discussed is a response decay factor that could
be used in tracking the direction of the motion on a global
level.
 To give the effect of background noise, values of states
that were zero or close to zero (< 0.01) would be randomly
reset to a value very close to zero (<0.009). In addition to
varying the background noise when states from the motion
group were used in the training sequence, their 1.0
intensity values were replaced with values between 0.5
and 1.0. No modified values between any two cells in
such a state were more than 0.2 apart in intensity. To
keep such mappings consistent with the apparent motion
being generated, the intensity values would first be
mapped to a 10x10 torus. Then, by looking through a
NxN window of the torus and masking out any near zero
values, the input states would be modified. The NxN
window would be moved over the torus in the correct
apparent direction each time step. A new torus was
generated each time the NFA returned to the global start

state. Lastly, states would be allowed to randomly stay in
the same state for a random number of steps. This was to
aid the neural network in ignoring stationary objects and
moving objects coming to a stop. The overall size of the
training sequence could be set to any number, the larger
the number the better overall view the neural network
would get of the state space. When the training pattern
generator reached a given number of states it would
continue until it reached the global start state at which
point it would stop.
 To aid in following motion direction on a global level, a
response decay factor for the motion was incorporated into
the training process by updating the transition weights on
the fly. This means a moving object will leave a trail as it
moves past a group of motion sensing neurons. Such a
decay occurs when a state transitions from a preferred
motion state to a state that generates a zero output. The
rate of decay is exponential, such that within four time
steps the output weight is back to zero. The rate of decay
is reset whenever there is a transition to a state with a
higher transition value than that of the decayed value or
once the decayed value has gone below 0.2. For the
former the higher transition value is used, if it is the latter
then the decayed weight is set to zero.

A Jordan-Elman Network
A Jordan-Elman network is a recurrent network developed
by Jordan that was modified to have short term memory
(STM) by Elman with the addition of a context layer
(Jordan 1986 and Elman 1990). The input layer of such a
network is fully connected to the first hidden layer. Each
hidden layer is in turn fully connected to the next hidden
layer, with the last hidden layer being fully connected to
the output layer. In addition each hidden layer has a
context layer associated with it. Each node in a hidden
layer has a 1-to-1 connection to its corresponding node in
the context layer associated with that node's hidden layer.
Each context layer is fully connected to the hidden layer to
which it is associated and in addition each node in a
context layer is connected to itself. The output layer may
or may not have a context layer. The context layer acts to
save the activation values of the hidden layer for one time
step, and these values are used as additional input values
to the hidden layer on the subsequent time step. This
allows the network the ability to implement any arbitrary
finite state automata (Minsky 1967).
 Both the 3x3 network that was trained on the hand built
NFA and the one that used the automatically built NFA
consisted of 9 input states, 18 hidden states with their
context layer counterparts, and one output state. The 5x5
network consisted of 25 input units, 30 hidden units with
their context unit counterparts, and one output unit. Each
network was trained on its training sequence for 200 to

300 iterations, at which point the mean squared error
reached around 0.003. The 3x3 network using the hand
built NFA used a 60,000 state training sequence, while the
other two networks used only a 40,000 state training
sequence. This was due mainly to storage limitations on
the hard disk being used at the time.

Setting the Networks up for Testing
All the networks were trained to respond to upward
motion only. To generate networks that would respond to
motion in other directions the input field being sent to the
network was merely rotated. This was done to save time
on the number of Jordan-Elman networks that would

require training. This meant that for the network to notice
downward motion the image field was rotated 180 degrees

so that if an object was moving down, it would appear to
the network as if it were moving up. In this manner a
total of 8 distinct direction sensitive (DS) neurons were
created. For each direction 700 DS neurons were placed

randomly throughout the image, for a total of 5600
neurons. It was possible for two different DS neurons to
occupy the same point in the image.

 To extend the range of the 3x3 and 5x5 networks 3
different filters were used that would give the networks
input from a larger viewing area of the image. These
three filters basically do an averaging over an area of the
image. The smallest filter took 2x2 sets of pixels and
averaged them to one value, while the largest took 4x4
sets of pixels and averaged them to one value. The
image's field of view was split into 3 sections: a middle
ring, an outer ring, and the main area in the center. A
random mixture of all three filter types were placed in the
center of the image space, while only the smallest filter
size was placed within the inside outer ring. Base input
field networks were placed on the outer most ring.

Fig. 5. Frames 13 and 14 from a 32 frame motion
sequence.

Fig. 6. Output for the 3x3 network based on the hand built
NFA. Position in the figure represents the direction
sensitivity for the neuron group.

Fig. 7. Output for the 5x5 and 3x3 networks that were trained using the
automatically generated NFA. The 5x5 network is the one on the left.

Fig. 4. Shows the layout for the small and
medium filters for a 3x3 input field.

Results
Each network was run on a sequence of images that were
taken with a thermal camera that slightly tracked a car
moving in a down-left direction along a road. This means
along with the down-left motion of the car there was
apparent motion in the background in an up-right
direction. Frames 13 and 14 from this sequence are
shown in Figure 5. The outputs generated by the neural
networks during this two frame sequence are shown in
Figures 6 and 7. Each of the output figures have their
images arranged based on the direction of motion
sensitivity for the neurons. Thus the output for the down
sensitive neurons is shown in the bottom middle image of
each figure.
 As can be seen the data for the 3x3 network that used
the hand built NFA showed the best results, followed by
the 5x5 network, and last was the 3x3 network that used
the NFA built using the automatic method. Quality of the
network’s ability is shown in how well it picked up the
car’s motion and in ignoring the rest of the background.
In this case the car’s lower bumper had a local downward
motion that was picked up well by the 5x5 network and
the manual version of the 3x3. Also of note was the trail
of motion left by the moving bumper in the manual
version of the 3x3 that could be used to determine the true
direction of the car. As for ignoring background noise,
both of the automatically trained networks showed
problems here, though some of it was due to the apparent
motion.

Conclusions
While it is easy to see that the 3x3 network that was
trained on the hand built NFA did better than both the
networks that were trained on the automatically generated
NFAs, it does not mean the automatic method is useless.
The 5x5 did manage to come close to the hand built 3x3
network in performance. Through improvements in the
building of the automatic NFA it is felt that such networks
could come to equal the hand built 3x3 if only due to the
fact that the NFAs will be identical in nature.
 The lesser ability of the automatically trained networks
can be attributed to three key areas of work: the non-
motion subgroups, diagonal motion, and incorrect
transitions. Of concern in the creation of the non-motion
subgroups is ensuring that they don’t contradict with
states from the motion or reduced motion subgroups.
Diagonal motion is a concern as well. If not done
properly then the network may be too invariant in what
sort of motion it will respond to. Finally, transitions need
to be better policed to ensure there are no contradictions in
the NFA, especially where the states dealing with the
preferred motion are concerned. Making sure any

transitions from a state to itself has an appropriate weight
of zero for output value is one way to correct for this.
 Lastly, two problems that don’t necessarily deal with
the creation of the NFAs directly, but do affect the
performance of the networks are the compilation of the
training sequences and the number of states that make up
the training sequence. Of particular interest is how many
states are needed to properly represent an NFA with X
amount of states, and what sort of cross section of states
from the NFA give the best results.
 These changes would hopefully allow for easy and
quick construction of variable training sequences for
Jordan-Elman and/or other neural networks with similar
properties. Such training sequences would allow for easy
to develop motion neurons that could be customized for
the problem at hand.

References
Borg-Graham, Lyle J. and Grzywacz, Norberto M. 1992.
A Model of the Directional Selectivity Circuit in Retina:
Transformations by Neurons Singly and in Concert.
Neural Nets: Foundations to Applications 347-375.
Elman, J. 1990. Finding structure in time. Cognitive
Science 14, 179-211.
Hartline, Peter H., Kass, Leonard, Loop, Michael S. 1978.
Merging of Modalities in the Optic Tectum: Infrared and
Visual Integration in Rattlesnakes. Science 199:1225-
1229.
Hunstberger, Terry. 1995. Biologically Motivated Cross-
Modality Sensory Fusion System for Automatic Target
Recognition. Neural Networks 8:1215-1226.
Jordan, M. J. 1986. Attractor dynamics and parallelism in
a connectionist sequential machine. In Proc. Eighth Ann
Conf. Of Cognitive Science Society, 531-546.
Klauber, Laurence M. 1997. Rattlesnakes. Berkely,
Calif.: Univ. of California Press.
Minsky, M. 1967. Computation: Finite and Infinite
Machines. Englewood Cliffs, NJ: Prentice-Hall.
Missler, James M. and Kamangar, Farhad A. 1995. A
Neural Network for Pursuit Tracking Inspired by the Fly
Visual System. Neural Networks 8:463-480.
Newman, Eric A. and Hartline, Peter H. March 1982.
Snakes of two families can detect and localize sources of
infrared radiation. Infrared and visible-light information
are integrated in the brain to yield a unique wide-spectrum
picture of the world. Scientific American 246:116-127.
Rosenberg, Alexander F. and Ariel, Michael. May 1991.
Electrophysiological Evidence for a Direct Projection of
Direction-Sensitive Retinal Ganglion Cells to the Turtle’s
Accessory Optic System. Journal of Neurophysiology
65:1022-1033.
Reichert, Heinrich 1992. Introduction to Neurobiology.
New York: Oxford University.

