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Abstract
The purpose of the project described in this paper was to
perform sensitivity analysis on the 224 bands collected by
the Advanced Very High Resolution Imaging Spectrometer
(AVIRIS) sensor.  The sensitivity analysis was conducted
utilizing artificial neural network technology.  A baseline
was established by performing partial training of a neural
network using the equivalent six non-thermal TM bands as
input.  The remaining AVIRIS data was divided into nine
groups of contiguous bands.  The first, last and middle
bands of each group were added to the baseline inputs and
used to partially train a separate neural network using
parameters identical to the baseline network. While several
of the groups demonstrated a small (or even negative)
impact on pixel classification, the presence of other groups
improved the performance of the neural network.  The
results obtained support the viability of the neural network
approach in ascertaining the sensitivity of band groups
within the AVIRIS data.

Introduction
The advent of the hyper-spectral sensor has enabled the
collection of data associated with spectral bands that have
never before been analyzed with respect to ground cover
classification.  This new technology raises questions
concerning the contribution of these new bands with
respect to the classification of ground cover.  Traditionally,
the data available from the LandSat or the Spot series of
satellites have bandwidths that are not sufficiently narrow
to provide highly discrete information concerning the scene
contents.  Hyper-spectral data offers the potential to utilize
narrow band passes that could potentially reveal much
greater separability of landcover classes.  The commercial
potential for this capability is considerable.  The forest
industry represents a large market that would benefit
greatly from processed data that could accurately separate
species of trees. 
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This paper is organized as follows.  First, the task to
be accomplished is described.  This is followed by a
discussion of the approach used in accomplishing the task
along with details of the design, data representation and
testing methods used.  Finally, the results obtained and
conclusions drawn from the results are presented.

Task
The purpose of the project is to perform basic sensitivity
analysis on the 224 bands comprising an AVIRIS remote
sensor image.  Sensitivity is defined to be the ability of a
band to make a significant positive contribution to the
correct classification of a pixel in an AVIRIS image.  Due
to the large number of bands included in the data and the
contiguous nature of the bands sampled, the decision was
made to divide the bands into nine groups and perform the
analysis based on these groups instead of individual bands.

Approach
The approach used employs neural networks to determine
the sensitivity of selected groups of AVIRIS bands relative
to the classification of pixels in a sample AVIRIS image.
The neural network paradigm was chosen because of its
ability to discover patterns inherent in data and to use those
patterns to generalize essential features of the data.

The AVIRIS Remote Sensor
The Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) is a 224 band multispectral scanner.  It is flown
on board a NASA ER-2s.  The system was developed by
JPL and was designed as one of the prototypes to the High
Resolution Imaging Spectrometer (HIRIS) proposed for
orbit on the future Earth Observing System (EOS).

The sensor instrument consists of 4 spectrometers that
output 224 spectral bands.  The data from the sensor is
generally distributed in image frames of 512 lines (rows),
614 samples (columns) and 224 bands.  The frequency of
the 224 bands covers the spectrum from 390 to 2498
nanometers.  Each band has a range of 9.6 to 10
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nanometers.  The data is distributed in the form of 16 bit
integer values.

Additional information concerning AVIRIS can be
found in the work of Macenka and Chrisp (1987), Porter
and Enmark(1987), and Vane, Chrisp, Enmark, Macenka
and Solomon(1984)

The data set acquired for the project is an area around
Moffett Field near San Francisco, California.  The flight
occurred on February 17, 1993.  This area contains
vegetation, wetland and urban features.

The Backpropagation Network Paradigm
While there are many neural network paradigms,
backpropagation is probably the most widely used model
for pattern recognition and classification applications.  The
reader is assumed to be familiar with this paradigm.  If not,
a detailed discussion of backpropagation neural networks
can be found in in many texts including Knight (1990) and
Wasserman (1989).

Network Design and Data Representation
A public domain backpropagation neural network package
called NETS Version 3.0 (Baffes, Shelton and Phillips
1991) developed by the Software Technology Branch of
the Lyndon B. Johnson Space Center was chosen to create
the necessary neural networks for the project.  This
software was selected for its portability and ease of use.

After some experimentation, the following network
configuration was chosen.

Input layer 9 neurons
Hidden layers 1 with 35 neurons
Output layer 60 neurons

Of the nine input layer neurons, six are used for the
average of each of the non-thermal TM bands.  The
remaining three neurons are used for the first, middle and
last band of each of the groups to be tested.  For the
baseline network, these three inputs were set to zero.

The number of neurons in the hidden layer was chosen
because it seemed to provide the best convergence of the
several variations that were tested.

Each pixel of the AVIRIS image was classified into
one of sixty training classes.  These training classes serve
as the expected output of the neural network.

One of the challenges with the hyper-spectral data is
associating a classified data value with the spectral
signature generated by the 224 bands.  Many available
classification routines allow a limited number of input
bands to be used in the classification.  The pixels in the test
image were classified using the average of the AVIRIS
bands corresponding to the non-thermal TM bands.  The
six non-thermal TM bands spectrum and their

corresponding AVIRIS bands are shown in Table 1.  Band
six is 10,400 to 12,500 nanometers which is outside the
AVIRIS range.

TM
Band

Nanometer
Range

AVIRIS
Bands

1 450 - 520 6 - 13
2 520 - 600 14 - 21
3 630 - 690 25 - 33
4 760 - 900 41 - 54
5 1550 - 1750 125 - 145
7 2080 - 2350 181 - 208

Table1:  TM and AVIRIS band correspondence

The AVIRIS bands that correspond to these ranges
were averaged to create a six band image file.  This file
was run through a “isodata” classification program to
generate an image file with sixty classes.  This file was
then merged with the original AVIRIS data to create a file
that had the 224 spectral bands for each location (pixel)
associated with one of the sixty training classes.

Next, each training class was associated with an output
neuron value.  The sixty output neurons represent a 1-of-n
classifier scheme.  In generating the training pairs, the
integer group number classification is converted into a
binary representation in which a pixel in group n produces
an expected output where the nth element is set to one and
all other elements are set to zero.

It should be noted that the selection of an appropriate
network configuration is generally a heuristic endeavor
guided mostly by experience coupled with
experimentation.  However, the determination of an
optimal network configuration was not an objective of the
project.  Also, since the network configuration and training
parameters were held constant for all the test groups they
should have no impact on the sensitivity analysis.

Results
In all, there were ten neural networks generated for the
project.  One network was created for the baseline data
consisting of the averages of the six non-thermal TM
bands.  This network served as the baseline against which
the other networks were compared.

Another neural net was created for each of the groups
shown in Table 2.  These networks contained the first,
middle and last spectral band values for the group in
addition to the TM band averages of the baseline network.
A training set and a test set of 200 randomly selected
input/output pairs were created.  The same random number
sequence was used for all training sets so that all ten
training sets would contain the same pixels in the same
order.  The same method was used for the test sets except
that a different random number sequence was used.



Therefore, all the training sets were identical except for the
three test group inputs. Likewise, all the test sets were
identical (but different from the training sets) except for the
three test group inputs.

Group
Name

Range
(nanometers)

Blue 400 - 498
Green 508 - 597
Red 607 - 696
Near IR 706 - 994
Unknown #1 1004 - 1541
Mid IR 1551 - 1749
Unknown #2 1759 - 2073
Far IR 2082 - 2350
Unknown #3 2360 - 2498

Table 2. Test group wavelength ranges

Each neural net was trained using the same network
configuration and training parameters.  The training time
was limited to 500 cycles (one cycle presents all of the
pairs in a training set to the neural net).  The 500 cycle
limit provided baseline classification performance in the

70% range.  This allowed some margin for improvement in
the test groups.

Figure 1 shows the minimum RMS (root mean
squared) error obtained for each network.  After training,
the performance of each neural network was tested by
determining how well it was able to classify pixels
appearing in the sample image.  Each network was tested
using both its training set (Training IOP), that it had seen
often, and a test set that it had never seen (Test IOP). The
results of the performance tests are presented in Figure 2.

Conclusions
The paragraphs that follow discuss the results relative to
each of the band groups tested.  Since the results obtained
represent the entire test population, it was not possible to
draw any statistical conclusions concerning the significance
of the differences between the test groups.

The results obtained for the nine groups fell into one
of three categories.   Some of the groups provided better
performance and faster convergence (lower RMS for the
same training period).  Other groups demonstrated worse
performance and slower convergence.  The last category
contained those groups that had mixed results.  Exact
values obtained for both classification performance and
convergence toward low RMS are shown in Table 3.

Figure 1.  Minimum RMS values obtained for each group
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Figure 2. Performance data for training and test sets

The BLUE and FAR IR groups performed better than
the baseline in classifying both the training set and the test
set.  They also provided better convergence than the
baseline.  On the basis of the tests performed, these groups
represent a significant contribution to the classification
capability of the AVIRIS data.

The GREEN, NEAR IR, UNKNOWN #1 and MID IR
groups performed worse than the baseline in both
performance tests and the convergence rate.  It is possible
that the poorer performance is the result of introducing
extraneous "noise" into the training set.  The use of these
groups may actually hinder the classification capability of
the AVIRIS data.

CATEGORY GROUP Training % Test  % RMS

BASELINE Baseline 73.5 41 0.053967

GOOD Blue 80 41.5 0.051723
Far IR 74 43.5 0.051812

POOR Green 66 36.5 0.055743
Near IR 70.5 36.5 0.054001
Unknown #1 62.5 37 0.056221
Mid IR 71 36.5 0.054124

MIXED Red 71 37 0.053551
Unknown #2 74 34.5 0.054049
Unknown #3 74 34.5 0.051672

Table 3:  Test group performance data



The RED, UNKNOWN #2 and UNKNOWN #3
groups performed worse on the classification tests but
produced a slightly better convergence rate.  These
conflicting results make it impossible to draw viable
conclusions concerning these groups.

While there is obviously more work to be done,
preliminary results indicate that a substantial number of
the AVIRIS bands may contribute to the accurate
classification of ground cover types in AVIRIS images.

As a final note, the results obtained serve to support
the viability of the application of neural network
technology to make maximum use of the information
inherent in the AVIRIS data.  Also, there are several
applications of neural network technology to the AVIRIS
data that show promise but were not within the scope of
this project.  Among these are the investigation the
sensitivity of individual AVIRIS bands, the possibility of
utilizing other neural network paradigms (such as ART) in
generating the original classification groups for the pixels
and the maximization of neural network classification
accuracy.  There appears to be great potential in the
continued investigation of the synergy between these two
technologies.
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