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Abstract

A number of attempts have been made recefrdughly
since 1990) to implement connection admissigontrol
(CAC) in ATM networks by means ofieural networks.
These attempts use various methods and have met with
varying levels of successThey all try to solve somerery
serious networking problems relatedtte inadequacies of
conventional algorithmic computing. Giveahat there has
been little or noadoption of neural network solutions for
CAC within the commercial world tadate, there are serious
questions as to whether or not research sciemtistsolving

the problems which commercial R&&re experiencing. This
paper discusses these issues and their relevance to current
commercial development.

Introduction

Manufacturers of telecommunications equipment are
investing heavily inthe research andevelopment of
ATM switching elements. This due to a perceived need
of the major network operators in tearly 2£' Century.

At the time of writing there are signs thatustry has yet

to fully understand thbenefits of a dynamic CAC scheme
based onintelligent computing methodsand that the
currently best perceived methodse proprietaryones
based ontraditional algorithmic techniques. Teome
extent existing CAC algorithms require a certain amount
of manual intervention in setting up thennection's
tolerance to the celloss ratio (CLR). Giventhat the
current level of traffic overexisting ATM networks is
relatively light, manufacturerdhiave been able to tolerate
link occupancy of lesshan 80% through conventional
statistical multiplexing. As traffic increases tpeoblem
may be solved irthe interim by providing morduffer
space atthe ingress ancgress queues dhe network
elements. As the next millennium progresses, the size of
ATM networks will increase dramaticallgnd sizes in
excess 0f5,000 nodesare expected. Traffic levels will
obviously behigher andnanufacturers will be looking for
competitive advantage ithhe way they offer improvedink
occupancy to network operators. #tis time they will
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morethan likely be receptive tdhe notion of intelligent
control methods for CAC.

The ATM Forum

Interoperability of network equipment manufactured by
diverse vendors is a prime requirement of network
operators. To achieve vendor paritge ATM Forum
(Onvural, 1995)was convened to ensutleat atimely set

of international standardgas achievedThe ATM Forum
sets de factostandards which are then taken up and
modified slightly by suchbodies asthe International
Telecommunications Union - Telecommunications
division (ITU-T) and the International Standards
Organisation (ISO). To facilitate congestion management,
a number of parameters have been definednipurpose

of source characterisatioand quality of service (QoS).
This paperfocusesupon statistical multiplexing which is
most applicable to a category of service known as variable
bit rate (VBR). VBR caters for botlreal time(voice and
video) and non-real-time (data)raffic. The traffic
parameters applicable ¥BR servicesare peakcell rate
(PCR), sustainable cell ra{&CR) and maximumburst
size (MBS). PCR may bihought of as maximum bit rate
while SCR may be thought of as mean bit MBS is the
greatest number of cells whiaghay besent during the
SCR measurement period in single batch. QoS
parameters are six in numbéut only three may be
negotiated at the time a connection is made:lasdiratio
(CLR); cell delayvariation (CDV);and peak to peak cell
transfer delay (ptopCTD). All are relevant to CAC, but the
latter two are usually omitted by researchers in favour of
CLR. This preference is perhagsuzzling, especially as
ATM is expected to carry both real-tirend non-real-
time traffic. It can only be surmisetat thepreference for
CLR is due to a desire to perfabe transfer of non-real-
time traffic first. This coincidentally follows a trend
among network manufacturers to provide networks which
cater fortransfer of computer data. It is eas@ard more
cost effective to concentrate on one challenge at a time.



Defining the CAC Challenge

The function of CAC is to estimate the statistical

simply came too earhand witout proper knowledge of
the way in which the ATM Forumwould shape the
international standards and influence their adoption.

bandwidth of each signal as it requests a connection to a Table 1 illustrates a number of tharly solutions and

link. The CAC function then attempts tdit the signal
bandwidth into the availabldink bandwidth. If this
available bandwidth is lesthan the estimated signal
bandwidth, the connection rejected.The mostefficient
use of available bandwidth occurs a&ise statistical
bandwidth approaches the mean bit ré&€R) of the
source.

QoShasdifferent meaning$or different types of traffic.
At the time a connection is made a contrhas to be
negotiated which takes into account the nature of the
joining signal. A non-real-time signal will be carrying
data which has littlemmediacy attached to it such as a
computer file or a still visual image. It ismportant to
send all of the data with no errdsat thedelay applied to
the data in transit is immaterial. Cell loss ratio is therefore

their diverse systenmputs. It haseen agreed by Necker,
Renger and Kroner (1994) and Youssef, Habib and
Saadawi (1995)hat it isdifficult to measure smalkevels

of cell lossrate in real time givethat anacceptable CLR
may be as low as 18. While Necker, Rengeaind Kroner
(1994) tried to improve upon a conventional method, the
Convolution Method, by means of an NXbussef, Habib
and Saadawi (1995) tried something newhey defined
the cell count method as a means g&burce
characterisation. There was, timeir minds,good reason

for this. They identifiedthat theconventional parameters
of PCR, SCR and MBS were inadequate becausenbey
"incapable of representing the burstinessl correlations

of multimedia traffic". Subsequently arentire traffic
control strategy was proposed on the basis of the cell count

important to non-real-time signals. Real-time data such as method of source characterisati¢farraf, et al,1995).

telephone or video traffic have different nee@ibe eye

This is unfortunatebecausethe ATM Forum members

and ear are capable of detecting delays as short as 20ms. lappear to be adamant in theipecification of source

is therefore importanthat the signaproviding audio or
video output suffersninimum delay. Lostdata islikely to

be detected only momentarily by the user who will notice a
slight interruption of sound or vision. Real-time signals
have more need dbw delayand constantlelayvariation
and less need of high cell losgio. An ideal multiplexing
scheme is achieved when there is 108 occupancy
and the QoS of each connection is maintained.

Selecting Input / Output Parameters for NN
Solutions

More traditional algorithmic CAC solutions tend to use
the inputsproposed byhe ATM Forum while aiming to
meet a maximumCLR. The output isless important
becausethat has notbeen specified byhe international
bodies.Earlier NN solutions tended to useputs which

characterisation parameters asamepromising research
is very likely to beignored. Thefate of the Hybrid
Histogram method is likely to bihe same. Thischeme
(Khalil and Ali, 1995) addresses theroblem of
adequately representimideo traffic. Such traffichas few

if any bursts of silence which is in complete contrast to the
model ofdata trafficthat isexpected to have many silent
periods. Although ATM is expected to cawideo traffic
with similar ease tothe way in which it carries data
traffic, the ATM Forum parameters aadso expected to
serve forall traffic types. A moreecent approach (Cheng
and Chang,1997) preprocessdbe standard parameters,
PCR, SCRand MBS using thewell known equivalent
capacity  algorithm (Guerin, Ahmadi and
Naghshineh,1991) implemented fmzzy logic (Cheng
and Chang]1996a)beforeusing its output, thavailable
bandwidth, withsystemstatistics to provide an accept /
reject decision. The equivalent capacity algorithm

appealed to the researchers. These include: outlet circuit®Stimates the available bandwidth of tink by means of

occupancy,number of connected calls p&pe, traffic
volume fluctuationper type, meanvolume of traffic per
type (Ogino and Wakaharal994); average cell rate,
coefficient of cell interarrival times (Aussem 1994);
allocated bandwidth, free transmission capacity,
connection rejectiomate, cell lossratio, cell delay, cell
delay variation (Neves, Leitaoand Almeida 1994);
number oftype 1 links, number oftype 2 links, link
bandwidth (Hiramatsu 1994). While illustrating the
thought andconsideration given to solving the CAC
problem, the methods using these inputs warkkely to
contribute greatly to future commercial solutiofihey

a summation process which relies upon knowing: the
probability of each source being actitiee peak bit rate of
the connection; average duration swiurce activity; and
the size of buffer available to each source.

Neural Network Training

One of the most challengingspects of developing NN
based systems is the derivation of learning data. Intuitively
it may besaid that théestdatacomes fronthe system to

be controlledand the NNmay be used tats fullest



potential by means of on-line learning. All proponents of
on-line learning admit that there idessthansatisfactory
convergence timdanherent in this method. Hiramatsu
(1994) has attempted tovercomethe problem of long
convergence experienced inhis earlier attempt
(Hiramatsu, 1990) by using live simulation to speed up the
learning process.

A sudden change of network conditiomsly cause a
long convergencedelay while newdata is learned (Ogino
and Wakahara1994). Use of small distributed neural
networks may also speed uparning time (Aussem,
1994). Table 1 illustrates the lardéferenceshatabound
in the literature concerning training data. Will be
difficult to convince a traditional network element

possible tatrain theuniversal logic element to provide a
prescribed output in response to a giveput pattern.
This isachieved by using pre-determinddta to train the
NN with the back propagatioralgorithm described by
Rumelhart, Hintorand Williams (1986). The number of
neurons in the hiddelayer is a compromise between the
need to train the NN as quickly as posséng theneed to
cope with comparatively complex input/outgattterns. In
the case ofthis applicationseven neurons ithe hidden
layer was deemed to béhe optimum number. A
particularly lucid explanation of théack propagation
neural networknay be found ir(Chester, 1993). Both the
bandwidth estimatoand the congestion controller are
implemented infuzzy logic (Cheng & Chang, 1996a).

designer to try intelligent methods unless researchers canResults of simulationshowthat a link utilisation obetter

provide enough detail to allowhird party simulation.
Table 2 summarises the traffiecnodels employed,
comparisons madend experimental results/conclusions
of these works.

A Possible ATM CAC Controller

More recent research (Chergnd Chang,1997) has
produced a possible ATM CAC controller whieliows
adherence to the ATM Forum source characterisation
parameters while using a neural network &ohieve
improvedlink utilisation with good QoSperformance. It
may besaid that this is a send generation NN solution
as it sets out to improve uposarlier attempts at
intelligent CAC such aghat proposed in (Hiramatsu,
1990), (Chengand Chang,1996a) and (Cheng and
Chang, 1996b). Figure 1 (Chengnd Chang,1997)
illustrates theproposed architecture. A call set up request
causesthe bandwidth estimator, using the equivalent
capacityalgorithm, to calculate the bandwidth required by
the connection. The networksourcemanagercalculates
the available bandwidth on tHenk accountingfor all
channels on the link. Asystem statistics calculator
producesthe cell loss probability frommonitoring the
state of thebuffer queue whileghe congestion controller
computes a value fadhe congestion status. Congestion on
the virtual channel may be controlled by means of varying
the coding rate of avideo source or varying the
transmission rate of all other source types.

A call accept/reject decision is made thg NNCAC
controller according to the available bandwidth, ted
loss probabilityand thecongestion status. The NMed in
the controller is a threlayer feed forward devicehich is

than90% may be achievedrhis occursthroughuse of a
pre-installation off-lindearningstagefollowed byon-line
learning toreduceerror through changes in theetwork
traffic patterns. The extrigvel of sophistication provided
by the cell loss probability and congestion status
parameters also contribute to the increased performance.

Conclusions

It is only recently that CAC solutions havebeen
converging on commercial requirements. Vendor parity is
a tremendously important issdfer telecommunications
equipment manufacturers as deviation frogiobally
acceptedstandardsmay seriously affect sales. Fohis
reason a large amount ekry goodresearch will be
ignored as itdoesnot fit well with the ATM Forum
recommendations. A solution is nowri@ach which helps
to improve link utilisation while allowing conventional
switch designers to  adhere to the ATM Forum
parameters. The ideal statistical multiplex of 100% link
occupancywith guaranteed)oS maynot be achievable in
practice, but ithas been shown byCheng and Chang
(1997) that an occupancy in excess d0% may be
reached. This is a significant resdidir future network
designers. While the generationtodining data remains
somewhat a mystery(and therefore difficult for
commercial switch designers to embrdle technology),
the (Cheng and Chan997) papeiand others provide
excellent descriptions of thé&aining processand the
traffic used forthe simulations. Futureork in this area
will do well to considerthe problems as perceived by
commercial switch designeesnd provide solutions which
address those problems invay which may be relatively

trained to undertake pattern recognition. There are three easily implemented.

neurons in the inpuseven inthe hiddenayerandone in
the output layer. The NKay bethought of as a universal
logic element with eighpossibleinput combinations. It is
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(%)

Approach/Authors NNJsed Training Inputs Outputs
Cell Transfer State | BPN 1000 data patterns, | Outlet circuit Accept/reject
Monitoring. (Ogino | 10-10-1 100ms learning cycle| occupancy, No. of threshold (-1
& Wakahara 1994) on line learning connected calls per accept, +1 reject).
type, traffic volume
fluctuation per type,
mean volume of traffic
per type
Queuing System Random, 3| Learning- distributed | Average cell rate, Network
Modelling by element on-line. coefficient of variation | occupancy, averag
Random Neural of cell interarrival end to end cell
Network. (Aussem times delay
1994)
Quality of x-10-y 3500 traffic patterns | Allocated BW, free Comparison
Operation. (Neves, over 2500 epochs transmission capacity,| between QOO with
Leitao & Almeida connection rejection | and without new
1994) rate, CLR, cell delay, | connection
CbVv
The Virtual Output | BPN On-line from node No. type 1 VCs No. CLR
Buffer Method. 3-10-1 status, CLR, virtual | type 2 VCs link
(Hiramatsu 1994) BW bandwidth
Bitrate Management Recurrent | Off-line using Peak bit rate, mean bit Required bit rate
Using a Recurrent backprop with mean | rate
Neural Network. square error provided
(Necker, Renger & by convolution
Kroner 1994) method
Equivalent Capacity| BPN Data set collected Peak cell rate, mean | Buffer overflow
Refined by Neural | 4-x-1 from simulations cell rate, burstiness, | probability.
Networks. (Ali et al bandwidth
1994)
The Count Process.| BPN 1 cell count per frame | Effective
(Youssef, Habib & | 20-40-1 time per frequency bandwidth
Saadawi 1995) band
Hybrid Histogram/ | BPN Trained with many Link state vector, CLR| Approx. CLR, or
Neural Network. X-y-1 samples accept/reject.
(Khalil & Ali 1995)
Dynamic Bandwidth| BPN 200 data elements, | Bit rate at time n Bit rate at time n+
Allocation. (Moh et | 1-5-1 60000 cycles
al 1995)
Quality of Service | BPN Unsupervised, 400 No. of users, cell delayy  Probability of cell
Prediction. 2-15-1 samples delay exceeding
(Sarajedini & Chau required cell delay
1996)
An ATM Traffic BPN Data manually Available BW, Accept/reject
Controller. (Cheng | 3-7-1 derived congestion status, cell

& Chang 1997)

loss probability

Table 1. Neural Networks, Training & Inputs/outputs.
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Approach/Authors | Traffic Compared With Results
Cell Transfer State| Image- AR Model No comparison. Long convergence time. Threshold
Monitoring. (Ogino & Ikeda 1991), changes often required to suit new
(Ogino & Voice- MMPP, data- traffic situations.
Wakahara 1994) | constant bit rate
Queuing System | MMPP Simulation Network occupancy kept below
Modelling by Five 4x4 switches, 2 80%. Converges within 15 learning
Random NN. I/Ps per switch cycles.
(Aussem 1994)
Quality of MMPP BW Allocation by QOO gave a fairer BW allocation
Operation. (Neves, Ave. cell rate, peak over time.
Leitao & Almeida cell rate & equivalent
1994) capacity.
The Virtual Output| MMPP Adaptive CAC ACAC gave some cell loss and over
Buffer Method. Type 1- PBR= 150Mb/s admission, VOB gave no cell loss or
(Hiramatsu 1994) | Type 2- PBR= 1.5 Mb/s| over admission.
Bitrate MMPP Convolution method The NN method gives best response
Management Using 10Mb/s data, 2Mb/s stil time to fluctuations in traffic
a Recurrent NN. | picture, 64 kb/s voice patterns but can only provide 80%
(Necker, Renger & utilisation of link bandwidth.
Kroner 1994)
Equivalent MMPP Flow approximation. For type 1 traffic, flow
Capacity Refined | Type 1- 5 sources @ approximation gives a good
by NNs. (Alietal | 40Mb/s correlation to the ideal link usage
1994) Type 2- 50 sources @ under heavy load conditions. The
4Mb/s NN method gave better performangce
for all other instances.
The Count Process. 28 video channels by | Stationary state mode] NN method has close correlation to
(Youssef, Habib & | autoregressive Markov the ideal bandwidth usage.
Saadawi 1995) model
Hybrid Histogram/ | Histogram Algorithmic histogram| The NN method got best utilisatior]
Neural Network. representation of VBR | method. Effective BW | with 19 calls in a 140Mb/s link. The
(Khalil & Ali video traffic method. opposition could only make 10 calls
1995). fit the BW.
Dynamic MMPP Allocation by mean Constant buffer length & variable
Bandwidth BW & Ideal allocation | sources: NN scheme closest to ideal.
Allocation. (Moh characteristic for link | Constant number of sources &
et al 1995) utilisation, cell loss & | variable buffer length: NN scheme
cell delay closest to ideal but Ave gives lowest
delay of all with high Nos. of
sources.
Quality of Service | MMPP Other NN methods in | Gives 3D control surface.

Prediction.(Sarajed
ini & Chau 1996)

general

An ATM Traffic
Controller. (Cheng
& Chang 1997)

Type 1: Delay sensitive
video/voice.

Type 2: delay
insensitive data.

Adaptive CAC
(Hiramatsu 1990),
FCAC, NFCAC
(Cheng & Chang
1996a & 1996b)

NFCAC gives better utilisation but
can not match others with CLP of
type 1 traffic. NN scheme well

behind FCAC & Adaptive for CLP

of type 2 traffic.

Table 2. Traffic models, Comparisons made & results.
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Call set up Rp, Rm Bandwidth| Ce [Neestg\ll,l?‘rclé
request Tp estimator manage
Ca
A N pl
Call accept/reject < Z C’\éﬂggﬁr N
. < Coding rate
Coding * 7
rate control manager P
1Yy
Transmission Transmissiof
rate control < rate <
manager
Where: ‘b
Ro = peak bit rate Congestion
Rm = mean bit rate con(’[]roller
Tp = peak bit rate 7
duration
Ce = equivalent capacity
Ca = available bandwidth System statistics
p = cell loss probability calculator
y = congestion status .

Svstem statistics

Figure 1. A Possible ATM CAC Controller (Cheng and Chang, 1997)
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