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Abstract
This paper describes SSCPA, an uncooperative multiple
calculus competition parallelism ATP system, that
multitasks on a single CPU. SSCPA runs multiple sequential
ATP systems in parallel, using performance data from the
ATP systems to select those that are best suited to the
problem.

 Introduction

Automated Theorem Proving (ATP) is concerned with the
use and development of systems which automate sound
reasoning: the derivation of conclusions that follow
inevitably from facts. This capability lies at the heart of
many important computational tasks. One type of ATP
system is fully automatic 1st order ATP systems, such as
Bliksem (De Nivelle 1998), Gandalf (Tammet 1997),
OtterÊ(McCune 1994), SETHEO (Letz et al. 1992), and
SPASS (Weidenbach, 1997). Such systems are capable of
solving non-trivial problems, e.g., EQP solved the Robbins
problem (McCune 1997). However, in practice, the search
complexity of most interesting problems is enormous, and
many problems cannot currently be solved within realistic
resource limits. Therefore a key concern of ATP research is
the development of more powerful systems, capable of
solving more difficult problems within the same resource
limits.

One approach to developing more powerful ATP
systems is the use of parallelism, where multiple tasks
work together towards solving a problem. The parallelism
may be true parallelism on multiple CPUs, or multitasking
on a single CPU. Suttner and Schumann (1994) provide an
overview of parallel ATP, classifying parallel ATP systems
on two axes. The first axis considers whether the problem
is partitioned between tasks (partitioning parallelism), or
whether the same problem is given to each task to attempt
in a different way, with all systems being stopped when
any one finds a solution (competition parallelism).
Competition parallelism is divided into two types,
dependant on whether a single or multiple proof calculi are
used. The second axis in the classification scheme
considers whether or not the tasks cooperate by sharing
data. Example parallel ATP systems are METEOR
(Astrachan 1994) - uncooperative partitioning parallelism,
ROO (Lusk and McCune 1992) - cooperative partitioning
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parallelism, p-SETHEO (Wolf and Letz 1998) -
uncooperative single calculus competition parallelism, and
CPTHEO (Fuchs and Wolf 1998) - cooperative multiple
calculus competition parallelism.

This paper describes the Smart Selective Competition
Parallelism ATP system SSCPA1, an uncooperative
multiple calculus competition parallelism ATP system, that
multitasks on a single CPU. SSCPA runs multiple
sequential ATP systems in parallel. This approach is
motivated by the observation that no individual ATP
system performs well on all problems. SSCPA uses
performance data from the ATP systems to select those that
are best suited to the problem, to run in parallel. The
following sections describe the underlying concepts,
current implementation, and computed results for SSCPA.

Underlying Concepts

ATP system performance data, e.g., the results of the
CADE ATP system competitions (Sutcliffe and Suttner
1997, Suttner and Sutcliffe 1998, Sutcliffe and Suttner
1998c), shows that no single sequential ATP system
performs well on all problems. There is convincing
evidence that the specialisation of ATP systems is due to
the deduction techniques used in relation to the syntactic
characteristics of the problems. This is well demonstrated
with respect to the variety of deduction techniques used by
Gandalf and Otter (Suttner and Sutcliffe 1998). This
observation provides the motivation for SSCPA's design.
SSCPA uses the syntactic characteristics of the given
problem to classify it into one of 18 predefined problem
classes. SSCPA then uses performance data from the
available sequential ATP systems to determine which of
the systems perform well for that problem class. The
recommended systems are then run in parallel, in one of
several user selectable modes.

The use of feature vectors to select search strategies to
run in parallel has been used previously in ATP, e.g.,
p-SETHEO parallelizes selected search strategies for
SETHEO, and (Fuchs 1997) describes an application to the
DISCOUNT system. The idea has also been used in
general AI search (Cook and Varnell 1998). SSCPA
appears to be the first ATP system that selects multiple
ATP systems, with potentially very different calculi, to run

                                    
1 SSCPA is pronounced as "skipper", but with an Australian accent.
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in parallel. Further, the features used by SSCPA seem to be
stronger than those used by the systems mentioned

For SSCPA to succeed, it is necessary to identify
appropriate problem classes, to perform careful evaluation
of the ATP systems within the classes, and to provide
appropriate forms of competition parallelism.

Specialist Problem Classes
Specialist Problem Classes (SPCs) are syntactically
identifiable classes of problems for which certain ATP
techniques or systems have been observed to be especially
well suited. The choice of what syntactic characteristics are
used to form the classes is based on community input and
analysis of system performance data. For example,
everyone agrees that special techniques are deserved for
problems with equality, and the CASC-15 results (Sutcliffe
and Suttner 1998c) show that problems with true functions,
i.e., of arity greater than zero, should be treated differently
from those with only constants. The range of
characteristics that so far appear to be relevant are:

· Theoremhood: Theorems vs Non-theorems

· Order: Variables vs No variables (essentially 1st order vs
Propositional)

· Equality: No equality vs Some equality vs Pure equality

· Functions: True functions vs Constants only

· Form: CNF vs FOF

· Horness: Horn vs Non-Horn

· Unit equality: Unit equality vs Non-unit pure equality

Based on these characteristics 18 SPCs have been
defined, as indicated by the leaves of the tree in Figure 1.
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Figure 1: Specialist Problem Classes

ATP System Evaluation using the TPTP
The evaluation of ATP systems is done with respect to the
SPCs. This allows the specialist capabilities of ATP
systems to be identified, while overall capabilities can be
inferred from the separate SPC capabilities. For SSCPA,
the evaluation within SPCs provides the necessary
information for recommending ATP systems.

The TPTP (Thousands of Problems for Theorem
Provers) problem library is a library of test problems for
1st order ATP systems (Sutcliffe and Suttner 1998a). Since
its first release in 1993, many researchers have used the

TPTP as an appropriate and convenient basis for ATP
system evaluation. Although other test problems do exist
and are sometimes used, the TPTP is now the de facto
standard for evaluating 1st order ATP systems. Some
researchers, who have tested their ATP systems over the
entire TPTP, have made their performance data available.
The data has been collected (Sutcliffe and Suttner 1998b),
and is used for evaluating the systems.

The collected performance data is provided by the
individual system developers. This means that the systems
have been run on a range of hardware, and using a range of
CPU time limits on each solution attempt. This might
suggest that the data cannot be used to compare the
systems. However, analysis shows that differences in
hardware and CPU time limits do not significantly affect
which problems are solved by each ATP system. Figure 2
illustrates this point. Figure 2 plots the CPU times taken by
each of the systems used in SSCPA, for each solution
found, in increasing order of time taken. The relevant
feature of these plots is that each has a point at which the
time taken to find solutions starts to increase dramatically.
Evidently a linear increase in the computational resources
would not lead to the solution of significantly more
problems. Thus the collected performance data allows a
realistic evaluation of the systems, based on the problems
that each system has solved.

Figure 2: Proof number vs CPU time for ATP systems

To rate ATP systems, their collected TPTP performance
data is analysed. Firstly, problems that are known to be
designed specifically to be suited or ill-suited to any
particular ATP system, calculus, or control strategy, are
excluded. The remaining unbiased problems are divided
into their SPCs. Within each such SPC, systems that solve
the same problems are placed in equivalence classes, with
each class being represented by an arbitrarily chosen
member. A partial order between systems (and hence the
equivalence classes) is determined according to whether or
not a system solves a strict superset of the problems solved
by another system. If a strict superset is solved, the first
system is said to subsume the second system. The union of
problems solved by the non-subsumed systems define the
state-of-the-art - all the problems that are solved by any
system. Any problems that are solved by all non-subsumed
systems are considered to be easy, and any that are solved
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by just some of the non-subsumed systems are considered
difficult. (In the TPTP, the fraction of non-subsumed class
representatives that fail on a given problem, is the
difficulty rating for that problem.) The fraction of the
difficult unbiased problems that a given system solves, is
the rating for that system. Note that a system rating of 1
indicates that the systems in that system's equivalence class
subsume all other systems, and a system rating of 0
indicates that the system solves only easy problems.

Given an arbitrary problem it is then possible to
recommend systems that seem more likely to succeed.
Firstly, the SPC of the problem is established. Then, for
that SPC, the representatives of classes of non-subsumed
systems are recommended in order of system rating. Any
systems that have a rating of 0 are excluded. SSCPA uses
these system recommendations to decide which systems to
run in parallel. (Possible improvements to this
recommendation scheme are proposed in the conclusion.)

SSCPA Modes
There are several decisions that need to be made for a
competition parallelism ATP system:

· Which ATP systems should be used?

· How much of the CPU time limit should be allocated to
each system?

· What CPU priority should be given to each system?

· When should each system be started?

SSCPA defines three basic modes of operation. The
naive mode runs all available systems in parallel, giving
equal CPU allocations, equal CPU priorities, and starting
all systems at the same time. The smart selective mode
runs some of the recommended ATP systems in parallel,
giving unequal CPU allocations, not necessarily equal CPU
priorities, and not necessarily starting the systems at the
same time. Details of the smart selective mode are given
below. The naive selective mode runs the same ATP
systems as the smart selective mode, giving equal CPU
allocations, equal CPU priorities, and starting all systems at
the same time.

The number of recommended ATP systems used in
SSCPA's smart selective mode is determined by the CPU
time limit and a minimal time allocation. The CPU time
limit is repeatedly divided by two, and the result allocated
to the next recommended ATP system. This continues until
the allocation would be below the minimal time allocation
value, at which stage all the remaining time is allocated to
the next ATP system. For example, with a CPU time limit
of 300 seconds and a minimal time allocation of 30
seconds, four systems would be used. The allocated times
would be 150 seconds, 75 seconds, 37.5 seconds, and 37.5
seconds. If insufficient ATP systems are recommended the
allocation process terminates early, with all the remaining
time being allocated to the last recommended system. It is
important to make the minimal time allocation large
enough, such that the individual ATP systems are able to
solve most of the problems that they can within the CPU

time limit. Figure 2 suggests that about 50 seconds is
appropriate.

There are three sub-modes to the smart selective mode.
These specify when each of the ATP systems is started and
what CPU priority is given to each ATP system. The eager
smart selective mode starts all systems together, with equal
priority. The systems with smaller time allocations
progressively leave if they do not find a solution, leaving
the CPU to the systems with larger allocations. This mode
should work well if the ATP systems are equally likely to
find a solution quickly, but the higher rated systems are
more likely to find a proof after a longer time. The fair
smart selective mode starts all systems together, with CPU
priorities arranged so that the systems get time on the CPU
in proportion to their allocations (so that if no system finds
a solution, they all end together). This mode should work
well if the time allocations reflect the likelihood of each
system finding a solution. The reluctant smart selective
mode starts the system with the largest allocation first, and
then when half of its allocation is used, starts the next
system, and so on (so that if no system finds a solution,
they all end together). The reluctant mode should work
well if the higher rated systems are more likely to find a
solution quickly than the lower rated systems. Table 1
summarizes the SSCPA modes.

Naive Naive Smart selective
selective Eager Fair Reluct't

Systems All Recommended systems
CPU
allocat'n

CPU limit /
# of systems

Based on rating

CPU
priority

Equal Based on
CPU all'n

Equal

Start Together Staggered

Table 1: SSCPA Modes

The SSCPA Implementation

The current SSCPA implementation uses the following
ATP systems:

· Bliksem 1.01, the current release of Bliksem. Bliksem is
available from http://www.cwi.nl/~nivelle.

· Gandalf c-1.8c, the release of Gandalf used in CASC-15.
Gandalf is available from

 http://www.cs.chalmers.se/~tammet/gandalf/.

· OtterMACE 437, a combination of Otter 3.0.5 and
MACE 1.3.2. Both are available from

 http://www.mcs.anl.gov/home/mccune/ar/
 otter/.

· SETHEO C-14, the release of SETHEO used in
CASC-14. SETHEO is available from

 http://wwwjessen.informatik.tu-muenchen.de/
~setheo/.

· SPASS 0.94. SPASS is available from
http://www.mpi-sb.mpg.de/guide/software/
spass.html.
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These systems have been combined using perl scripts
that extract system recommendations from the performance
data and control the parallel execution of the systems. The
SSCPA implementation accepts problems in TPTP format,
and uses the tptp2X utility to convert the problem to the
formats expected by the ATP systems. In practice this
conversion often takes significantly more CPU time than to
find a solution. This overhead could be greatly reduced, as
tptp2X  is written in Prolog and is not optimised. A
WWW interface to some SSCPA modes is publicly
available (Sutcliffe 1998).

Results

In order to evaluate SSCPA, it has not been necessary to
physically run the implemented SSCPA. Rather, the
collected performance data for the component systems has
been used to compute SSCPA results. The computed
results slightly underestimate the true capabilities of
SSCPA, for two reasons. Firstly, the computation uses
results from some slightly earlier system versions than used
in the SSCPA implementation. The computation uses
results from BliksemÊ1.01, Gandalf c-1.0d, OtterMACE
437, SETHEO C-14, and SPASS 0.85. Secondly, the
collected performance data was obtained on a range of
hardware. By running SSCPA on the best of the hardware
platforms (such porting appears to be easily possible),
better results could be obtained. However, as was noted
earlier, linear increases in the computational resources do
not lead to the solution of significantly more problems.

SSCPA results have been computed for all 3622
problems in TPTP v2.1.0, with a 300 second time limit.
The use of a 300 second time limit was the limit used in the
CADE ATP system competitions, and seems to be
accepted as reasonable by the ATP community. Table 2
shows the results for the individual systems. Table 3 shows
the SSCPA results with minimal time allocations of 60
seconds (SSCPA uses up to three systems), 30 seconds
(SSCPA uses up to four systems), and 15 seconds (SSCPA
uses up to five systems). The 'Solved' columns show how
many problems each system solves, and the 'Time' columns
show the average CPU time taken over problems solved.

All the SSCPA modes out-perform the individual
systems in terms of number of problems solved. This
immediately justifies the use of parallelism. The slight
improvement of the naive selective mode over the naive
mode shows the benefit of using the recommended ATP
systems. The improvement of the smart selective modes
over the naive selective mode shows the benefit of
allocating CPU time relative to the systems' ratings.

Running SSCPA with a 240 second minimal time
allocation, so that only the highest recommended ATP
system is used, solves just 2145 problems with an average
solution time of 13.4 seconds. This again shows the
benefits of parallelism, but also shows the benefit of using
a recommended ATP system.

All the SSCPA modes are slower than the individual
systems, as would be expected. However, all the average
CPU times are very low compared to the CPU time limit.
Over the entire TPTP the average times taken do not vary
much across the smart selective modes. The eager mode
gives the most consistent performance, suggesting that the
ATP systems are equally likely to find a solution quickly.
This corresponds to the very short solutions times that all
the systems achieve for many problems, as shown in Figure
2. Further discussion and analysis of times taken is given in
(Seyfang 1998).

The results show an improved performance by SSCPA
when four systems are used (30 second minimal time
allocation) instead of three (60 second minimal time
allocation), but no further improvement when five systems
are used (15 second minimal time allocation). This is due
to the very short time allocated to the fourth and fifth
systems when they are recommended, and shows the
importance of the minimal time allocation parameter.

In some SPCs less than the maximal number of systems
are recommended, for all minimal time allocation values.
In SPCs for FOF problems, Gandalf and SETHEO are
never recommended, as their input format does not permit
FOF. In some SPCs only one system is recommended,
resulting in that system being allocated all 300 seconds.

SSCPA has also been evaluated on the 475 problems
that were eligible for selection in the MIX division of
CASC-15 (Sutcliffe and Suttner 1998c), using a 300
second time limit and a minimal time allocation of 60
seconds. The results are shown in Table 4.

System Solved Time
Bliksem 1.01 1634 11.1
Gandalf c-1.0d 1551 15.6
OtterMACE 437 1892 12.4
SETHEO C-14 1220 18.0
SPASS 0.85 2054 16.6

Table 2: Individual System Results for TPTP v2.1.0

60 seconds 30 seconds 15 seconds
SSCPA Solved Time Solved Time Solved Time
Naive 2266 19.4 2301 17.6 2297 17.2
Naive sel. 2284 18.1 2304 16.8 2297 17.2
Eager 2309 20.6 2328 18.9 2324 18.9
Fair 2309 29.5 2328 17.8 2324 17.8
Reluctant 2309 24.1 2328 22.6 2324 19.2

Table 3: SSCPA Results for TPTP v2.1.0

System Solved Time
Bliksem 1.01 273 13.6
Gandalf c-1.0d 335 28.2
OtterMACE 437 292 20.2
SETHEO C-14 208 23.8
SPASS 0.85 367 39.4
Naive 418 39.7
Naive selective 433 37.9
Eager 442 43.3
Fair 442 39.5
Reluctant 442 44.6

Table 4: SSCPA Results for the CASC-15 MIX Problems



Conclusion

This paper has described SSCPA, an uncooperative
multiple calculus competition parallelism ATP system, that
multitasks on a single CPU. SSCPA runs multiple
sequential ATP systems in parallel. This approach is
motivated by the observation that no individual ATP
system performs well on all problems. SSCPA uses
performance data from the ATP systems to select those that
are best suited to the problem, to run in parallel.

It is clear that SSCPA is a meta-system, and is reliant on
the capabilities of the sequential ATP systems it employs.
As a result, SSCPA is easily upgraded as new ATP
systems, or new versions of ATP systems, become
available. All that is required it to run the new system over
the TPTP, collect the performance data, and make the new
system available to SSCPA. Thus it is expected that
SSCPA will always be able to out perform the available
sequential ATP systems.

Currently SSCPA recommends the arbitarily chosen
representatives from equivalence classes of unsubsumed
systems. This could immediately be improved by choosing
the representative based average solution time. Further, the
motivation for recommending only the equivalence class
representatives is that members of an equivalence class
have very similar capabilities with respect to TPTP
problems. For arbitrary (non-TPTP) problems it may be the
case that using more equivalence class members would
improve performance. This would be particularly
appropriate if the number recommended equivalence class
representatives is less than the number of systems that
SSCPA could use. This is an issue for further investigation.
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