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Abstract

Strategy parallelism is a powerful concept for apply-
ing parMicUsm to automated theorem proving. One
of the most important problems to be solved in this
approach is the proper distribution of the available
resources mnong the different strategies. This task
usually requires a lot of user expertise. When the re-
source distribution has to be done automatically, an
adaptive algorithm must be used to optimize prover
performance. We introduce a genetic algorithm that
can be used for such an optimization and we show
lmw such an algorithm can be integrated with other
methods for automatic prover configuratkm. "Ore give
some experimental data to veri~, the validity of our
approach and explain g~me of the future development
possibilities.

Introduction

When applying parallelism to autonmted theorem
proving there are several methods for splitting up the
proof task. One of these methods, (.ailed strategy paral-
lelism, distributes the workload by selecting a number
of certain prover strategies and assigning resources (i.e.
processors and time) to each of those. A strategy is 
particular way of traversing the search space looking
for a proof. This way we get a number of proof agents
traversing the seaxch space in parallel in different or-
ders. The set of strategies together with their resource
assignments is called a schedule. The task of devising
an optimal schedule is highly non-trivial. Usually a
lot of experimentation and user expertise is required
to dcfine which strategies are the most pronfising for
a given problem and how the usually linfited resources
should be distributed among those strategies. How-
ever, an automated theorem prover usually is not ap-
plied to a single problem but to a larger set of prob-
lems where such manual prove.r tuning is not an op-
tion. Also, if the parallel prover is to be integrated
a.s a sub-tool, for cxample into a system for ~ftware
component retrieval (Fischer & Schumann 1997) or 
interactive mathematical proof generation and presen-
tation systeln (Dahn & Wolf 1996), the prover con-
figuration mttst be done automatically without special
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knowledge of the problem domain. In order to achieve
this goal one can employ adaptive tedmiques from tim
field of machine learning, like neural networks or ge-,
lmtic prograrmning. We chose the latter to automati-
cally generate semi-optimal schedules.

This paper is organized as follows. In the next sec-
tion, we give an overview of the concept of stratcgy
parallelism. Then we explain the problem of sched-
ule optimization. This is followed by a brief intro-
duction to genetic algorithms. After that we describe
the combination of methods we employed for our so-
lution. The subsequent sectkm contains some data we
obtained during our experiments, and finally, we give
an asscssment of our achievements and suggest future
ilnprovements.

Strategy Parallelism

For us, a strategy is one particular way of traversing
the search space. Given our example of searching for
(’onnection tableau proofs, a strategy can be one spe-.
cific way of using a completeness bound. We axe now
looking for a way of efficiently combining and applying
differcnt strategies in parallel.

Many ways of organizing parallcl computing have al-
ready been proposed, developed and studied. However,
many of these methods do not apply to automated the-
orem proving, since it is generally impossible to predict
the size of each of the parallelized subproblems azld
it is therefore very hard to create an even workload
distribution among the different agents. The differ-
ent available approaches to parallelization in theorem
proving can generally be divided into two categories:
AND-paxallclism and OR-parallelism.

With AND-paxallelism, all subtasks have to be suc-
cessfully completed to guarantee success for the entire
problem, while in OR-parallelism it is sufficient if one
subtask is successful. An example for AND-parallelism
can bc found in the nagging concept (Sturgill & Segre
1994): dependent subtasks will be sent by a master
proccss to the uaggers, which try to solve them and
report on their success. The results will be integrated
into the main proof attempt.

OR-paxallcl approaches include the clause d.iff~zsion
conccpt of AQUARIUS (Bonacina & Hsiang 1993),
where a resolution based prover with cooperating
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agents works on splitted databases. The coopera-
tion of the distributed agents is necessary to guaran-
tee completeness of the prover system. A combina-
tion of different strategies is used within the Team-
Work concept (Denzinger 1995) of DISCOUNT (Den-
zingeret al. 1997). There a combination of several
completion strategies is used for unit equality prob-
lems. These strategies periodically exchange interme-
diate results and work together evaluating these in-
termediate results and determining the further search
strategies. Partitioning of the search space (Suttner
& Schumann 1994) is done in PARTHEO (Schumann
& Letz 1990). Partitioning guarantees that no part of
the search space is explored more than once1.

In (Cook & Varnell 1998) also an adaptive method
for strategy selection for solving AI problems on finite
but huge search spaces is used, which has some simi-
larities to strategy parallelism.

Some of these approaches are very good in certain as-
pects. Partitioning: for example, can guarantee that no
part of the search space is considered twice, ttmrefore
providing an optimal solution to the problem of gem
crating "significantly" differing search strategies. The
fundamental weakness of partitioning, however, is that
all sub-provers must be reliable to guarantee the com-
pleteness of the prover system. Therefore, we have in-
vestigated a competition approach. Different strategies
are applied to the same problem and the first success-
ful strategy stops all others. Experimental experience
shows that competition is a very good approach to par-
allelization in automated theorem proving (Schumann
et al. 1998). However, not all strategies are equally
promising or require equal effort. It is therefore advis-
able to divide the available resources in an adequate
way.

The selection of more than one search strategy in
combination with techniques to partition the available
resources such as time and processors is called strat-
egy parallelism (Wolf & Letz 1998; 1999). Different
competitive agents traverse the same ~arch space in a
different order. Such a selection of strategies together
with a resource allocation for the strategies is called a
sch~ulc~ .

The method of strategy parallelism implements a
special kind of cooperation, cooperation without com-
munication (Geneserethet a/. 1986). Although the dif-
ferent agents do not comnmnicate with each other af-
ter they have been started, they still cooperate since
they have been chosen for their suitably different search
space traversing behavior in the first place.

Strategy parallelism also avoids a fundamental dis-

1There is also an AND-parallel (but less often used) vari-
ant of partitioning.

2Definition: Let {sl,...,s~} be a set of strate~es. A
schedule is a set S of ordered triples (si, ti,p~ (1 < i < n)
with the ti (time) and p~ (processor ID) being non-negative
natural numbers. The ordered pairs (s~,t~,p~) are called
schedule components.

advantage that is contained both in conventional AND-
and OR-parallelization methods. In order to maintain
completeness of the proof procedure, it is not necessary
that all agents are reliable, a condition very difficult to
ensure in a distributed environmcnt. In contrast, strat-
egy parallelism retains completeness as long as only
one agent is reliable

The Multi-Processor Schedule Selection

Problem

In strategy parallelism, we are faced with an optimiza-
tion problem, the strategy allocation problem (SAP)
which can be formulated as follows.
GIVEN a set F = {fl .... ,fn} of problems, a set
S = {sx,... ,sin} of strategies, and two nonnegative
integers t (time) and p (processors).
FIN D a schedule { (sl, tl. Pt) ..... (sin, tin, Pro) } with
1 <_ Pi <- P (strategy si will be scheduled for time
ti on processor p~) such that

( ~’~ ti) <tforallj=l,...,p, and{,:,,=D

I U{f E F: si(f) .<_ ti} is lnaximal3.

[=1i

We capture this problem by using a set of training
examples from the given domain mad optimizing the
admissible strategies for this training set. The train-
ing phase, however, is extensive, as can be seen from
the following consideration. Given a set of training
problems, a set. of usable strategies, a time limit, and a
number of processors, we want to determine an optimal
distribution of resources to each strategy, i.e., a com-
bination of strategies which solves a maximal number
of problems from the training set within the given re-.
sources. Unfortunately, even the single processor deci-
sion variant of this problem is strongly NP-completea.

Therefore, in practice, the determination of an optimal
solution for the problem is problematic, and only sub-
optimal solutions can be expected. For manual prover
configuration we determined a set of heuristically good
schedules which are selected according to feature based
problem analysis. The approach we used so far for au-
tomatic strategy selection is a combination of random-
ization elements with a gradient procedure of restricted
dimension (Wolf 1998b). Even if tim gradient proce-
dure yields very good results, it should be mentioned

¯ ~s(f) = memm that th e st rategy s solves th e problem
f in time t.

aA problem is strongly NP-complete if it is NP-complete
even if the numbers occurring in the input are written in
unary notation. For details see. (Garey & Johnson 1979).
The SAP for one processor can be reduced to the minimum
cover pzoblem (Wolf & Letz 1999). The general case with
an arbitrary number of processors additionally includes the
multiprocessor scheduling problem, which is also known to
be strongly NP-complete.
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here that the complexity of the gradient algorithm is
cubic in the size of its input. This complexity leads to
long run-times on real problem and strategy sets. An-
other disadwantagc of the gradient procedure is its bad
adaptability to large sets of processors. Tim strategies
are assigned to the processors at the beginning of the
algorithm and can not bc moved. So potentially badly
performing strategy assignments can not be chmlged.

Genetic Algorithms
Gene~ic algorithms as a simple and efficient method
of machine lcarning have been introduced in (Holland
1992; Koza 1992). A briefer introduction can be found
in (Denzinger & Fucils 1996).

Genetic algorithms maintain a sct of sulmptimal so-
lutions for the given problem., called individuals. Each
individual is described by a set of genes (a ~t of at-
tributes and parameters). The set of individuals is
called a generation. Tim fundamental approach of ge-
netic algorithms is to evolve the set of individuals over
a nmnber of generations to obtain better solutions.
This is done by transferring from one generation to
the next the most successflfl or fittest individuals and
replacing tile least fitted individuals with new ones cre-
ated from the preceding generation. For this, there are
three different genetic ope.rators.

The repTvduction operator allows an individuM to
move on to the next generation. The c~vssover op-
erator creates a new individual by mixing the genes
of two parent individuals. This meazls that each at-
tribute of the new individual is chosen from one of the
attribute values of the parent individuals. Reproduc-
tion can be s~en as a specialization of crossover with
both parents being the same individual. Finally, muta-
tion accounts for arbitrary changes in the gene set that
may occasionally happen during reproduction. If an in-
dividual is selected for mutation, each attribute value
is replaced with a certain probability by a randomly
clmsen new ~lue. The operand individuals for each of
these operators are chosen from the parent generation
by applying a fitness measure to each individual. The
initial generation can bc crcated arbitrarily, usually by
generating individual attributes at random.

The Genetic Gradient Approach
The Genetic Gradient Approach is the combination of
the methods described in the previous two sections: A
genetic algorithm is used to generate sonm prelimina.ry
results which are titan further refined by sonm applica-
tion of the gradient method.

In our approach the individuals arc represented by
prover schedules. Tilt: attributes of each schedule are
pairs consisting of a processor and a time resource as-
signment for each strategy. The set of schedules con-
stitutes a generation. The initial generation is created
randomly, tile subsequent generations are created by
applying the genetic algoritllm. As our fitness inca-

sure.., we use the number of problems ill the training
set solved by an individual.

For our implenmntation, we chose the approach used
in (Denzinger & Fut:hs 1996) over the method of (Koza
1992) as it guarantees the survival of the most success-
tiff individuals of cach generation: A predetermined
portion of each generation is to dic before each repro-
duction phase (controlled by a kill-off-rate parameter),
the survivors make up the first part of the succeeding
generation. This truncate or elite selection is followed
by filling the remaining slots applying the crossover op-
erator to the survivors. Mutations appear in the course
of crossovers only, e~mh newly generated individual is
subject to mutations with a certain probal)ility. This
way each generation of individuals can t)c guaranteed
to l)c at least as successful as the preceding one, which
pre.vents tlm recruits from deteriorating over tim genera-
lions. A setback of this method is that by reproducing
the most successful individuals ~md allowing crossovers
only with the reproduced individuals as parents such
an algorithm tends to converge towards a small part of
tim attribute space. The element of mutation is used
to counter this behavior to some degree but this second
approacil still does not c(Jver the search space as good
as the technique from (Koza 1992), with the benefit 
a monotonously increasing fituess uma,uure ~)f tlm best
individual over the number of generations.

Tile lmml)er of generations created is given by the
user, but our results strongly suggest tha.t, at least
on a limited training set, ’after a certain immber of
generations no fllrther improvenmnts can be expected.
We have empirical data for specifying that g(umration
criterion. Tt~rmination criteria based on pcrformau(.e
gains from one generation to the next do not lend
themseh:es to our approach since it can tm observed
that the evaluated performance can stagnate over sev-
eral g(umrations to improw~ later on. For each g(:nera-
lion the schedules arc normalized. The normalization
has to ensure that ttle accunmlated time resources fi)r
each processor (h) not (,xceed the given limit. Further-
more, the full available amount of resources should be
spent in the schedule. To foUow these intentions, the
normalization procedure for all processors p propor-
tionally increases or tlecrc~u~es the time spent to em:h
strategy assigned to p such that the consumption fits
the resources.

The gradient method in combination with the ge-
netic algorithm can l)e used to eliminate runaway
strategies from sclm(lules by transferring their tim(; re-
sources to more suc(’cssful ones". There are basically
two ways t¢~ employ gradient optimization. First, it
would be possible to use that method on eavh s(:hed-
ule as it is computed in each generation. But as the
pcrf()rmance of schedules iml)roves rather rapidly over
the generations (as can bc seen in the section contain-

5For exaznple, given a first-order problem, all resourcc:s
assigned to strategies specialized on l)ropositional problems
would be v,~stcd.
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ing our experimental results) and gradient optimiza-
tion is a very expensive procedure this does not seem
recommendable. A second approach where the sched-
ule evolution using the genetic algorithm is followed by
a gradient optimization of the best resulting schedule
combines good results with moderate cost.

Experimental Results
To evaluate our approach we used the 547 eligible
TPTP problems (Sutcliffe et al. 1994) of the theo-
rem prover competition at the 15th Conference on Au-
tomated Deduction 1998 to be our training set. The
experimental data presented in this section was gath-
ered in two distinct phases. Our participating prover
p-SETHEO (Wolf 1998a) system employed 91 differ-
ent strategies, these formed our strategy set. In the
first phase, we extracted all 91 of p-SETHEO’s strate-
gies and ran each strategy on all problems using the
standard sequential SETHEO (Moseret al. 1997). The
successful results of all those runs were collected in a
single list that became the database for our genetic
gradient algorithm. 398 problems can be solved by
at least one of the strategies in at most 300 seconds.
Then, in the second phase we ran the genetic gradient
algorithm on the collected data. The success of each
of the schedules, as the individuals of our genetic al-
gorithm, was evaluated by looking up the list entries
for the problems and respective strategies and time re-
sources.

In all experiments we used the gradient procedure
and the genetic algorithms described above. The at-
tributes of the initial generation that are selected at
random strongly influence the overall results of the ex-
periment. The deficiencies of an unfit initial gener-
ation can not be wholly remedied by the subsequent
optimizations. Therefore all experiments have been
repeated at least ten times. The curves and tables de-
picted in this section represent the median results.
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Coneratim~s

eThe fixed parameters have been a kill-off rate of 0.6, a
mutation rate of 0.1, and a mutation probability for each
strategy of 0.2.

The first figure shows the number of problems solved
after 0 to 100 generations for 10, 20, 40, 80, and 160
individuals (numbers at the curves) in 300 seconds 
a single processor system.
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The second figure displays the number of problems
solved on a single processor system with 100 individu-
als after 0, 10, 20, and 50 generations (numbers at the
curves) in the time interval from 0 to 1000 seconds.
The behavior is compared with the best single strat-
egy (denoted by ha). Note, that the strategy parallel
system proved 378 problems within 1000 seconds, the
best single strategy only 214, that is 57% of the strat-
egy parallel version. These 214 problems have already
been Solved by the strategy parallel system afte.r 25 (!)
seconds.
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The third figure illustrates the number of problems
solved for 100 individuals and 100 generations with
timeout values ranging from 0 to 1000 seconds on sys-
tems with 1, 2, 4, and 8 processors (numbers at the
curves).

processors 1 2 4 8
gradient procedure (solutions) 355 361 3741382
genetic algorithm (solutions) 352 369 381 388
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Finally, we compare the results of the gradient method
and the genetic algorithm on 1, 2, 4, and 8 processors
with 300 seconds each. We see. the slightly better re-
suits of the gradient procedure on one processor. In all
other cases, the genetic algorithm performs better.

Our experimental results show only a poor scalabil-
it), for our actual prover system. That. is due to the
very limited mnnber of training problems. Further-
more, many of the used strategies overlap one another
(see (Wolf & Letz 1999)).

Assessment

In this paper we have shown the applicability of g.e-
netic programming methods to strategy parallel the-
oreln proving. Especially in cases where prover tun-
ing by the user is not an option and the system nmst
automatically configure itself for a problem set, our
approach improves on pre-selected single strategies.
Compared to the old pure gradient method, the run-
time needed decreases from hours to some minutes.

There are some points de~rving our attention in fu-
ture work. First of all. the number of strategies should
be reduced to the point whcrc only u~fill strategies
remain in tile strategy set; this means we only want
to keep strategies that solve at least one prohlem that
cannot be solved by any other strategy. Therefore,
once we have obtained the prover performance data on
the problem domain training set, a strategy evaluation
and subsumption test might be useful.

Also, one of the greatest advantages of genetic al-
gorithms, their generality, can turn out to be a niajor
setback if genetic programming is applied unmodified
to automated ttmorcin proving. There, lnany prob-
h.,.ms fall into special domains (requiring a single sp(.~
cial strategy and not. a generic set of usually successful
strategies) where the unbiased genetic approach will
hardly yield good results. Additionally, a general ap-
proach will always waste resources on hopclcss (at least
in the average case) special strategies that might be
used to better effect on standard strategies.

Undoubtedly, better results might be obtained if we
combine the approaches of genetic I)rogramming and
feature based problem analysis. There, instead of just
one general schedule, using the genetic algorithm we
compute a set of schedules for a certain set of problcln
categories distinguishable by syntactic and scnmntic
l)rol)lem features. In this case, tim schedule for a spe-
cial problem class, such as ground problems, will con-
sist of the appropriate special strategies only, whereas
the schedules for standard categories will still employ a
mixture of several strategies. During an actual prover
run, thc problem is analyzed for its features and the
selected schedule is executed.
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