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Abstract

Numerous artificial intelligence schemes and applica-
tions require, at. their core. a solution to intractable
computational problems, such a.~ probabilistic reaso,-
ing. Conditions tbr theorems guaranteeing polyno-
mial time algorithms tbr special cases, do not hold for
many real-world problem instances. While ther,, arc a
numlmr of highly specialized algorit hms/hc,u fist its that
can solve Sl)ecific problem sulx’lass#s, a gr,.al, variant,,
exists bet.wec..n algorithm performano, over the SlmC-
|rum ur difl’orent IJrobh’m in.~tanct..-. I|mw:w:r. Iltltl.¢h-
illg t.llV [)cst algorithm to a IJl’olJl(’lll instal,ce is a ditfi-
cult. prop,)sil.iou at. hi.st, trnhJrtunately, this is also as-
sunfil,g that sudt an individl,al algorithm cxist.s which
can actually solve the giw:n probh.lu in st rvasunabh.
amount of time and SlmCe. llarnessiug several difh.r-
ent problem-sole|rig algorithms/ate|hods Ioget.her into
a cooperative system (ca" portfolio) h,’m bet.l| observed
1.o have the potential for solving tht:se NP-harcl prob-
le’l.ltS.

The need exists for an il,telligt,nt c,mtroller that is
able to elfectiw,ly combine radically ditl;::rent I~roblem-
solving techniques inl.u a distribut,:tl, cooperative envi-
ronment. In this paper, we describe the OVERMIND
system which provides a fi’atm,work and approach lbr
developing such controllers. By modeling tlte p,~rl’or-
man,’e/behavior |)f the conlpon,,nt algori!hms, esl.,e-
tinily how !,hey cooperaie and interact, this provides
the means for developing a controlh.’r to selec! the most
appropriate algorit hm mix (portfi~lio). We applied this
approach to belief revision in Bayesian networks.

Introduction
Numerous AI tasks require solving prol)lems that are
known to be comput.ationally int.ractable in lit(’ general
case. The latter include diw,rsc sul)tasks, such as prol)-
alfilistic rt,asoning, central to many domains from me(I-
leal diagnosis to protein structure predi,’lion. Though
wtrious algorithms exist for these NP-hard l)roblems.
their runt|rues arc exl)onenfial in the worst ca.~e. A.11
of the above problems exhibit special cases - subchLsses
where i)olynonfial tim(’ algorithms re’t, knuwn. L’nforttt-
nately, thest, b(,nevoh,nt conditions fail re hold for Inauy
real-wt)rh.l probh,nx instanct,s.

A great variance exists in individual alger|that wr-
formanees over different problem instances. In fact. it. is
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often the case that aai ~dgorithtn that performs best for
one problem instance, may perform much worse than
azmthcr algorithm on another problem instance. How-
ever. matching the best algorithm to a problem instance
can be ms difficult as determining the correct solution to
the problem itself. Although some indication on how to
do that may be available frotn an inspection of the prob-
lem, such predictions are not.t)riously tmrdi;d4e. Fur-
Iher r’Oml)licaf.ing mat,ters is the possibility thai no sit>
gle algorilllm currently cxist.s which can solve the given
l)roblem in a remsonable alllOllllt of time and space.

With the increasiug use of large networks of per-
sonal workstations, the available computing power is
no hmger limited to a single coml)uter. Harnessing the
power of ntore than one computer (possibly even tim
eniira network) into a cooperative problmn solving en-
vironment where each different, algorithm actively as-
sists other algorithms can creat,c a sign|fie;rot resource
for working Ihese difficult l)robhmts. To begin pursuing
this idea, we conceived of and developed OVERMIND
(Santos, Shimony. &: Williams 1995), ;t tiistrihut.ed ar-
chitecl.urt~/system for proi)lem solving whirl| addressed
alger|tirol cooperation for probabilistic reasoning. The
OVERMIND architecture ,allows the use of different in-
feren(’e methods in parallel and selects the initial set of
~flgorithms to use based on the attributes of the giw’n
probhun instance. In order to solve the given prob-
lem using the available resources, limitations such as
processor speed..iob load, memory availability, network
latmtcy, etc. are also considered.

To n,ake
a determination of which algorithms/ntethods to use.
a model of both the methods" overall performalwo for
a given class of networks and the methods’ run-time
performance profiles (Gomes & Selman 1997) are re-
qtfired. Furtherm()re, tax over~fll algorithm interaction
model n,ust he derivable front these models since algo-
rithnts are lllea~lt t,O conmnnticate ~.tlnollgst thtunsclves
to increase the ovcr:dl effectiveness t,hrough synergy iu
solving the In’oldem. The model alluws OVERMIND
to choose appropriate methods re begin the intbrencing
pro(’ess in order to t:onverge moru rapidly towards the
(~ptitttaI solutkm. The models fur the differet.t ittference
a.leorithms are created (where t)ossiblc) u,,,inK atnalyt,ical
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methods instead of run-time profiling. The goal is to
develop easily calculated approximate nmdels to mini-
mize the computational overhead for OVERMIND. Ac-
complishing this goal required the following effort: 1)
empirical verification of the effectiveness of cooperative
algorithms; 2) formulation of models of the algorithms’
behavior through analytic methods; and 3) identifica-
tion of requirements and development of a prototype
method for selecting algorithm combinations given a
specific problem instance.

Algorithm behaviour modeling and algorithm coop-
eration were analytically developed for reasoning al-
gorithms over Bayesian networks (Santos, Shimony, 
Williams 1995). These included best-first search (Shi-
mony, Domshlak, & Santos 1997; Santos & Shimony
1994; Shimony & Santos 1996), stochastic simulation
(Santos, Shimony, & Williams 1997), integer program-
ming (Samos & Shimony 1994; Smltos, Shimony, 
Williams 1997; Shimony & Santos 1996; Santos 1993;
1991i 1994), genetic algorithms (Santos & Shimony
1994; Santos, Shimony, & Williams 1997), and clus-
tering/conditioning methods (Williams, Santos, & Shi-
mony 1997). With these models, we demonstrated
both theoretically and empirically that. cooperative al-
gorithms were capable of solving new classes of prob-
lems previously intractable for individual algorithms.

In this paper, we discuss OVERMIND and our exper-
imental results on belief revision for Bayesian networks.
It is important to note that although the above scheme
was formulated for probabilistic reasoning, it is clear
that this can be applied to a larger host of problems.
Observe that almost all hard computational problems
can be and are naturally solvable using iterative or pro-
gressive optimization algorithms.

Anytime Algorithms
Anytime algorithms were first used by Dean and Boddy
(Boddy 1991; Dean & Boddy 1988) to provide a means
to balance execution time with solution quality in their
work on time-dependent planning. In general, any-
time algorithms axe useful when problems are computa-
tionally hard; they provide a means for evaluating the
progress of an algorithm during its execution. Anytime
algorithms have four characteristics which differentiate
them from traditional algorithms (Grass & Zilberstein
1996): 1) Quality Measure. It is possible to quantify
the quality of a solution generated by the anytime al-
gorithm. 2) Predictability. Through empirical, statis-
tical or analytical means, we can estimate the output
quality of the anytime algorithm given a particular time
and input data. 3) Interruptability. An anytime algo-
rithm produces the current status of its solution process
when interrupted or periodically throughout its execu-
tion. 4) Monotonicity. The quality of the output of
anytime algorithms never decreases over time; it either
remains constant or increases as the algorithm is given
more time to work.

Even if time is not a factor in the value of a solution,
it is frequently useful to be able to predict the improve-

ment an algorithm will make if allowed to continue. One
method for making this prediction is to create a perfor-
mance profile for the algorithm. This profile character-
izes an algorithm’s performance over a set of parame-
ters; they can be generated analytically or empirically.
Extensive work has been done in empirically character-
izing anytime algorithms (Garvey & Lesser 1996; Grass
& Zilberstein 1996), but little has been done through
algorithm analysis (Santos, Shimony, & Willianls 1995;
Williams, Santos, & Shimony 1997).

In cases where a single algorithm is not sufficient to
solve the problem, multiple algorithms would need to
be used; Zilberstein and Russell have researched the use
of anytime algorithms only as sequential components of
a larger system (Zilberstein & Russell 1996).

Algorithm Combinations and Anywhere
Algorithms

In problems where more than one algorithm is available,
wc have observed, as have others (Hogg & Huberman
1993; Hogg & Williams 1993; Huberman, Lukose, &
Hogg 1997; Gomes & Selman 1997) that cooperation
between algorithms can likewise result in a more rapid
solution. The current issues we have identified with this
approach are:
¯ What t.o share between algorithms: How much and

what kind of information is needed to effectively help
the other algorithm(s) without inducing too much
overhead?

¯ How to use the shared information: How should the
algorithm utilize the information imported from the
other algorithm(s)?

¯ When to share information: When is sharing the in-
formation beneficial, or is it better to just let the
algorithms run independently?

We call the concept underlying information sharing be-
tween algorithms, the anywhere property (Santos, Shi-
mony, & Williams 1995). This property refers to an al-
gorithm’s ability to accept complete or partial solutions
generated elsewhere and its ability to incorporate that
solution into its own processing. The methods used
to accomplish the incorporation of external solutions
varies based on the methods used by the algorithm. The
solution could be used to place bounds on the problem
being worked by the algorithm, it could change the di-
rection of the processing, or it could simply be used to
affect the way the algorithm interacts with the rest of
the system.

Algorithm Analysis and Modeling for
Portfolio Construction

Wc now briefly discuss the algorithms analysis used
for building algorithm models necessary to managing
the overall algorithms mix/portfolio. Detailed analy-
ses and the resulting models of the different algorithms
used in the Bayesian Network testbed can be found in
(Williams, Santos, & Shimony 1997; Santos, Shimony,
& Williams 1995).
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Algorithm portfolio selection requires the ability to
predict algorithm performance over an init.ial short time
interval. This time interval is dependent on the time re-
quired for the algorithms to initialize and begin produc-
ing results. An algorithm model consists of six factors
which we have identified as beiug useful in predicting
algorithm performance: Time Complexity, Space Com-
plexity, Resource Cost. Restart Cost, Level of hnp.,vve-
ment and Probability of Improvement. The model also
contains one factor (Interaction Rate), which is calcu-
lated during run-time for each "algorithm. These factors
capture the expected performance of an algorithm (or
combination of algorithms) in a domain-independent
manner: when applied to an algorithm, the factors are
calculated using characteristics of the problem domain.
Wo use the term solution quality to refer to the output of
the process, with the goal to produce the solution with
the highest, quality value. How the quality of a partic-
ular solution is determined depends on the domain: it
could be related to the progress of the algorithm (how
far until it is done) or possibly a value which is cal-
culated directly from the solution it.self. The irnpor-
tant concept, is that the solution quality can be used tel
compare solutions, with the goal to obtain t,he highest
quality solution(s).

One factor needed by the run-time controller is the
likelihood that an algorithna will produce a better solu-
tion if allowed to continue from a known point. This
likelihood
is called the p~vbabilit.y of im.p’lv.vement: l~,,t,(Si) 
~s,+,es P~¢t,~’t(S,4 ,ISi)P [q(S,+,) > Q(S,)] where Si
is the current anytime solut.itm available at t.inm i and
S is the set. of all possible solutions. This I)robal)il-
ity encompasses both lhe cl,aracteristics of the solu-
tion landscape (through the sohttion quality evaluation
function Q(Si+l)) and the actions of the algorR.hm it-
self (P~¢t~.t (Si,-t ]S~)), the probal)ility that, Si+ 1 is gen-
erated fi’om S, by the algorithm.

The ()t.her interesting characteristic of anytime algo-
rithms is the level of i.mpTvvement produced by the al-
gorithm. This is the expected magnitude of the increase
in solution quality that the algorithm will make in the
next increment: Ei,,~p QI.*,-,I With anytime algo--- Q(,~.~) ̄
rithms the level of improvement is always greater than
or equal to 1.0 because the output quality is required to
be non-decreasing. I:’~)r our B~D, esian Networks problem
domain, the joint probability of the solution is used as
the solution quality.

Algorithm Interaction

With tim ~malysis method for the different algorithms
established, wc can look at the, impact when tile al-
gorithms are used cooperatively. Intuitively. the com-
bination should perform at lea.st as well as the algo-
rithms run individually (assuming no resource limita-
tions); but the, open issue is whether to expect an im-
provement over the individual algorithm performance.
Performance improvement due to sharing information

358 .SANTOS

mostly occurs when the algorithm’s performance char-
acteristic is significantly different froin the rest of the
collection. One algorithm with a steep performance
curve can boost the performance of a slower performer;
or if the perh)rmance curves for two algorithms inter-
sect, they alternate the roles of leader aald follower.
Obviously, algorithms from different classes have sig-
nificantly different performance profiles; but in some
ca.scs, it is possible to significantly affect the perfor-
mance of an algorithm through its parameters. In such
cases, it may be beneficial to use two similar algorithms,
but with different parameters.

Each of the model factors are evaluated for each in-
dividual algorithm for the given problem instance at-
tributes; however we also want to evaluate different.
combinations of ’algorithms. There are two approaches
we can take: analyze each possible combination of al-
gorithms, producing a separate model for each combi-
nation; or combine the results of the models for the
individual algorithms, producing a composite result.

We note dmt since the interaction between the com-
ponent algorithms occurs throughout the time interval
t, a simple combination of the convergence factors for
the individual algorithms is not adequate. We can, how-
ever, simulate the interaction by iteratively calculating
the convergence factors at approximately the sa~ne rate
that the algorithms would actually exchange solutions;
this rate is dot.ermined by obt,’fining for each algorithm
the length of time between production of solutions. At
each iteration, each algorithm model would account h)r
the received solution in its prediction for the m:xt it-
erat.ion.The best. score received from any algorithm is
retained fi~r the next iteration.

Case Study - Belief Revision in

Bayesian Networks

The overall goal of our experiments is to demonstrate
the effe.ctiveness of solving computationally hard prob-
lems with multiple cooperating algorithms using an ini-
tial algorithm selection based on our portfolio construc-
tion modrl. This is contrasted against using an arbi-
trary single algorithm system.

Bayesian Networks are a compact way of representing
probabilistic uncertainty in automated reasoning. Such
net.works consist of directed acyclic graphs of nodes,
each re’presenting a random variable (RV) with a fi-
nite donmin. Edges represent direct dependency, and
the topology as a whole conveys independence assump-
tions. These allow the joint probability distribution
over all the RVs to be fully determined by providing
conditional probabilities of variable states given all their
predecessor states as the product of all the conditional
probabilities.

One form of uncertain reasoning on Bayesian Net-
works is belief revision. Belief revision is the process of
determining the nmst probable instantiation of the ran-
dom variables (RVs) in a network given some evidence.
More formally, if IV is the set of all RVs in the given



extreme fiat merged
GA 3.367e-05 6.085e-12 2.737e-16

best-first 6.369e-01 3.948e-12 1.681e-12
Both 6.369e-01 6.085e-I 2 3.790e-12

Optimal 6.369e-01 6.099e-12 3.884e-12

TABLE 0.1. Performance comparison for ex-
treme, fiat and merged extreme-flat network with
GA, best-first: and cooperating GA and best-first.
Numbers reflect the best probabilities found.

Bayesian Network and e is tile evidence, any complete
instantiations to all tile RVs in W that is consistent
with e is called all explanation or interpretation of e.
The problem is to find an explanation .u:* such that
P(w*]e) xnax~.ew P(w[e). Intuitively, we canthin k
of the non-evidence RVs in W as possible hypotheses
for e.

Experiment Setup and Environment The test
environment utilizes a heterogeneous network of Sun
workstations (both Sparc 20 and UltraSparc I) and
Linux workstations (200 MHz Pentium Pro). The ex-
periments were conducted using 75 randomly gener-
ated Bayesian Networks. The networks contain from
30 to 500 random variables: each having 2 or 3 possi-
ble states. The connectivity between the random vari-
ables was kept moderate, with the number of arcs typ-
ically ranging between twice and three times the num-
ber of random variables. The conditional probability
tables were generated with varying distributions, front
extremely fiat (small variance between entries) through
extremely spiked (most entries close to zero, with one
nearly 1.0).

Multiple Algorithm Cooperation. The effective-
ness of multiple cooperative algorithms were best char-
acterized when the individual algorithms in the mix
were quite different from one another. Taking a sim-
ple algorithm mix of a genetic algorithm (GA) and 
best-first search method, we compared the cooperative
runs against individual algorithm runs. We found that
for homogeneous networks (all r.v.s in the network have
the santo characteristics), the combination of the two al-
gorithms always performed at or above the level of the
individual algorithms.

Where a significant performance improvement was
achieved is with heterogeneous networks. For exanlple,
take a network that was constructed from two individ-
ual networks where one had a relatively flat distribution
and the other with a fairly extreme distribution. On
this network, the GA alone could never ~chievc even
close to the optimal solution for the extreme network
where as the best-first algorithln bogged down early in
the flat network. Table 0.1 shows the results of run-
ning the individual algorithms on the composite net-
work; neither algorithm could come close to the optimal
solution by itself on the merged network. However, the

Network
Size (RVs)

Initial Time Interval (see)
10 20 $0 1O0 ~ 300 500

s0
100

200
300
s0o

FIG. O.l. Success rates for algorithm selection.

combined cooperative case was much more successful.
Note that. the optimal solution was determined through
an extremely lengthy brute force computation.

Portfolio Selection. We used a simulation approach
based on behaviour approximations using a combina-
tion of the seven model factors identified for each al-
gorithm to select from five different algorithms: a Ge-
netic Algorithm (GA), best-first search with two dif-
ferent heuristics: cost-so-far and shared-cost, a hybrid
stochastic search (HySS) and a Barrier Algorithm.

Figure 0.1 shows how the selected combination per-
formed in comparison with the other combinations for
that sized network. The numbers reflect the success
rate/percentages of the selection process. Our defini-
tion of success is when (1) the algorithm(s) selected
were contained in the combination that produced the
best solution at that time and (2) those algorithm(s)
were the ones contributing the best solutions. Clearly,
in most of the cases, the selection process chose an al-
gorithm combination that matched the best-performing
combination.

Since the goal of the initial static selection process is
to select a configuration to get the system off to a good
start, picking the best performing combination is not
essential. On the other hand, the better the initial con-
figuration performs, the easier it will bc for the future
dynamic controller.

Looking again at the results, notice the increase in
the success rate as you move front left. to right. This
is a result of the varied cycle times for the different al-
gorithms. This effect can also be noticed when moving
from top to bottom. As the network size increases, the
cycle time for the algorithms increase; with the approx-
intate models., it may take several cycles for the mod-
els to accurately predict the algorithm’s performance.
What is not immediately obvious is why the success
rates fall off at the right edge of the table, especially
for the smaller networks. This result is caused by the
"near-sighted" models. Accuracy falls off as time in-
creases, causing inaccurate predictions for the larger
interval times relative to the sizc of the problem.

Summary

The focus of this research has been to model the process
of managing a distributed system of cooperating pro-
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cesscs. We are. particularly interested in those domains
where finding the optimal solution is either intractable
,)r impossible. In these situations, algorithms typically
exist that can produce some form of sub-optinml so-
hd.ion, but, the problem of choosing which one to use
for a given situation is often difficult as well. In fact,
this selection must be made with some knowh,dge of
the way problem characteristics affect an algorithm’s
perh)nnazace.

Wc developed a method for capturing the essential in-
formation about a problem domain and the algori!hms
to manipulate that donmin (Williams: Santos. ~: Shi-
mony 1997). The resulting models encapsulate this
information in the form of general performance met-
rics useful in the selection azM evaluation of algorithms
and algorithm combinations. The encapsulation makes
it. possible for the controller to be developed inde.p[m-
dent of azD" problem domain, yet still utilize the algo-
rithm models to determine ;flgorithm pertbrmmwe for
the problem domain being studied. We also developed
a method for selecting the initial algorithm configura-
tion for the system based on the models’ perform(race
prediction.

The l.)owcr of this approach is the use of approximate
¯ "near-sighted" models of the algorithms. They are typi-
cally easy to compute, and may be effective in modeling
the algorithm’s behavior in the near future.

To demonstrate the capabilities of this approach, w(,
applied it to uncertain inference over Bayesimt N(q-
works. We characterized the l)roble.n~ domain, extract-
ing the significant features fl’om the networks that aft’oct
the performance of the algorithn~s. The resulting sys-
tem perfi)rmed as expected: when priority wa.~ given
to solution quality (instead of resource usage, t:tr...), the
system produced results cOral)arable to the best indi-
vidual algorithm. With the capability of the system lo
incorporate other factors illtO the sele(’tion process, we
also demonstrated the ability of ttm controller to reach a
reasonable compromise configuration between sohttion
quality and resource consumption.
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