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Abstract

Numerous artificial intelligence schemes and applica-
tions require, at their core. a solution to intractable
computational problems. such as probabilistic reason-
ing. Conditions for theorems guarantecing polyno-
mial time algorithms for special cases, do not hold for
many real-world problem instances. While there are a
numher of highly specialized algorithms/heuristics that
can solve specific problem subclasses, a greatl. variance
exists between algorithm performance over the spoc-
trumn ol different problem instances. However. match-
ing the best algorithm to a problem instance is a ditfi-
cult proposition at best. Unfortunately. this is also as-
suming that such an individual algorithin exists which
can aclually solve the given problem in a reasonable
amount of time and space. Harnessing several differ-
ent problem-solving algorithms/methods fogether into
a cooperative system (or portfolio) has been vbserved
to have the potential for solving these NP-hard prob-
lews.

The need exists for an intelligent controller that is
able 1o effectively combine radically different problen-
soiving techniques into a distributed, cooperative envi-
ronment. In this paper. we describe the OVERMIND
systemn which provides a framework and approach for
developing such controllers. By modeling the perfor-
mance/behavior of the component algorithms, espe-
cially how they cooperate and interact. this provides
the means for developing a controller to select the most
appropriate algorithm mix (portfolio). We applied this
approach to belief revision in Bayvesian networks.

Introduction

Numerous Al tasks require solving problems that are
known to be computationally intractable in the general
case. The latter include diverse subtasks, such as prob-
abilistic reasouning, central to many domains from med-
ical diagnosis to protein structure prediction, Though
various algorithms exist for these NP-hard problems.
their runtimues are exponential in the worst case. All
of the above problems exhibit special cases - subclasses
where polynomial time algorichms are known. Unfortu-
nately, these henevolent condirions fail to hold for many
real-world problem instances,

A great variance exists in individual algovithm per-
formances over different problem instances. In fact. it is
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often the case that an algorithm that performs best for
one problem instance, may perform wmuch worse than
another algorithm on another problem instance. How-
ever. matching the best algorithm to a problem instance
can be as difficult as determining the correct solution to
the problem itsclf. Alchough some indication on how to
do that may be available from an inspection of the prob-
lem, such predictions are notoriously unreliable. Fur-
ther complicating matters is the possibility that uo siu-
gle algorithin currently exists which can solve the given
problem in a reasonable amount of time and space.
With the increasing use of large networks of per-
sonal workstations, the available computing power is
no longer limited to a single computer. Harnessing the
power of more than one computer (possibly even the
enlire network) into a cooperative problemn solving en-
viroument where each different algorithin actively as-
sists other algorithms can create a significant resource
for working these difficult problems. Tu begin pursuing
this idea, we conceived of and developed OVERMIND
(Santos, Shimony. & Williams 1995), o distritnuted ar-
chitecture/system for problem solving which addressed
algorithm couperation for probabilistic reasoning. The
OVERMIND architecturc allows the use of different in-
ference methods in parallel and selects the initial set of
algorithms to use based on the attributes of the given
problem instance. In order to solve the given prob-
lemr using the available resources, limitations such as
processor speed. job load, memory availability, network
latency, ete. are also considered.
To make
a determination of which algorithms/methods to use.
a model of both the methods® overall performance for
a given class of networks and the methods’ run-time
performance profiles (Gomes & Selman 1997) are re-
quired. Furthermore, an overall algorithm interaction
model must be derivable from these models since algo-
rithms are meant to communicate amongst themselves
to increase the overall effecriveness through synergy in
solving the problem. The model allows OVERMIND
to choose appropriate methods to begin the inferencing
process in order to converge more rapidly towards the
optimal solution. The models for the ditferent inference
aleorithis are created (where possible) nsing analytical
Copyright © 1999, American Association for Artificial Intelligence
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methods instead of run-time profiling. The goal is to
develop easily calculated approximate models to mini-
mize the computational overhead for OVERMIND. Ac-
complishing this goal required the following effort: 1)
empirical verification of the effectiveness of cooperative
algorithms; 2) formulation of models of the algorithms’
behavior through analytic methods; and 3) identifica-
tion of requirements and development of a prototype
method for selecting algorithm combinations given a
specific problem instance.

Algorithm behaviour modeling and algorithm coop-
eration were analytically developed for reasoning al-
gorithms over Bayesian networks (Santos, Shimony, &
Williams 1995). These included best-first search (Shi-
mony, Domshlak, & Santos 1997; Santos & Shimony
1994; Shimony & Santos 1996), stochastic simulation
{Santos, Shimony, & Williams 1997), integer program-
ming (Santos & Shimony 1994; Santos, Shimony, &
Williams 1997; Shimony & Santos 1996; Santos 1993;
1991; 1994), genetic algorithms (Santos & Shimony
1994; Santos, Shimony, & Williams 1997), and clus-
tering/conditioning methods (Williams, Santos, & Shi-
mony 1997). With these models, we demonstrated
both theoretically and empirically that cooperative al-
gorithms were capable of solving new classes of prob-
lems previously intractable for individual algorithms.

In this paper, we discuss OVERMIND and our exper-
imental results on belief revision for Bayesian networks.
It is important to note that although the above scheme
was formulated for probabilistic reasoning, it is clear
that this can be applied to a larger host of problems.
Observe that almost all hard computational problems
can be and are naturally solvable using iterative or pro-
gressive optimization algorithms.

Anytime Algorithms

Anytime algorithms were first used by Dean and Boddy
(Boddy 1991; Dean & Boddy 1988) to provide a means
to balance execution time with solution quality in their
work on time-dependent planning. In gencral, any-
time algorithms are useful when problems are computa-
tionally hard; they provide a means for evaluating the
progress of an algorithm during its execution. Anytime
algorithms have four characteristics which differentiate
them from traditional algorithms (Grass & Zilberstein
1996): 1) Quality Measure. It is possible to quantify
the quality of a solution generated by the anytime al-
gorithm. 2) Predictability. Through empirical, statis-
tical or analytical means, we can estimate the output
quality of the anytime algorithm given a particular time
and input data. 3) Interruptebility. An anytime algo-
rithm produces the current status of its solution process
when interrupted or periodically throughout its execu-
tion. 4) Monotonicity. The quality of the output of
anytime algorithms never decreases over time; it either
remains constant or increases as the algorithm is given
more time to work.

Even if time is not a factor in the value of a solution,
it is frequently useful to be able to predict the improve-

ment an algorithm will make if allowed to continue. One
method for making this prediction is to create a perfor-
mance profile for the algorithm. This profile character-
izes an algorithm’s performance over a set of parame-
ters; they can be generated analytically or empirically.
Extensive work has been done in empirically character-
izing anytime algorithms (Garvey & Lesser 1996; Grass
& Zilberstein 1996}, but little has been done through
algorithm analysis (Santos, Shimony, & Williams 1995;
Williams, Santos, & Shimony 1997).

In cases where a single algorithm is not sufficient to
solve the problem, multiple algorithms would need to
be used; Zilberstein and Russell have researched the use
of anytime algorithms only as sequential components of
a larger system (Zilberstein & Russell 1996).

Algorithm Combinations and Anywhere
Algorithms

In problems where more than one algorithm is available,

we have observed, as have others (Hogg & Huberman

1993; Hogg & Williams 1993; Huberman, Lukose, &

Hogg 1997; Gomes & Selman 1997) that cooperation

between algorithms can likewise result in a more rapid

solution. The current issues we have identified with this
approach are:

o What to share between algorithms: How much and
what kind of information is needed to effectively help
the other algorithm(s) without inducing too much
overhead?

e How to use the shared information: How should the
algorithm utilize the information imported from the
other algorithm(s)?

o When to share information: When is sharing the in-
formation beneficial, or is it better to just let the
algorithms run independently?

We call the concept underlying information sharing be-

tween algorithms, the anywhere property (Santos, Shi-

mony, & Williams 1995). This property refers to an al-
gorithm’s ability to accept complete or partial solutions
generated elsewhere and its ability to incorporate that
solution into its own processing. The methods used
to accomplish the incorporation of external solutions
varies based on the methods used by the algorithm. The
solution could be used to place bounds on the problem

being worked by the algorithm, it could change the di-

rection of the processing, or it could simply be used to

affect the way the algorithm interacts with the rest of
the system.

Algorithm Analysis and Modeling for
Portfolio Construction

We now briefly discuss the algorithms analysis used
for building algorithm models necessary to managing
the overall algorithms mix/portfolio. Detailed analy-
ses and the resulting models of the different algorithms
used in the Bayesian Network testbed can be found in
(Williams, Santos, & Shimony 1997; Santos, Shimony,
& Williams 1995).
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Algorithm portfolio selection requires the ability to
predict algorithm performance over an initial short, time
interval. This time interval is dependent on the time re-
quired for the algorithms to initialize and begin produc-
ing results. An algorithm model consists of six factors
which we have identificd as beiug useful in predicting
algorithm performance: Time Complerity, Space Com-
plexity, Resource Cost, Restart Cost, Level of Improve-
ment and Probability of Improvement. The model also
contains one factor (Interaction Rate), which is calcu-
lated during run-time for each algorithm. These factors
capture the expected performance of an algorithm (or
combination of algorithms) in a domain-independent
manner: when applied to an algorithm, the factors are
calculated using characteristics of the problem domain.
Woe use the term solution quality to refer to the output of
the process, with the goal to produce the solution with
the highest quality value. How the quality of a partic-
ular solution is determined depends on the domain: it
could be related to the progress of the algorithin (how
far until it is done) or possibly a value which is cal-
culated directly from the solution itself. The impor-
tant concept is that the solution quality can be used to
compare solutions. with the goal to obtain the highest
quality solution(s).

One factor needed by the run-time controller is the
likelihood that an algorithm will produce a better solu-
tion if allowed 1o continue from a known point. This
likelihood
is called the probability of improvement: Py, ,(Si) =
25.+1E5 Psclu‘t(SH 1 IS'L)P [Q(S1+1) > Q(S:)] where 5;
is the current anytime solution available at time / and
S is the set of all possible solutions. This probabil-
ity encompasses both the characteristics of the solu-
tion landscape (through the solution quality evaluation
function Q(S;+1)) and the actions of the algorithm it-
self (Pscteet (Sir1]5i)), the probability that S;,, is gen-
crated from S, by the algorithu.

The other interesting characteristic of anytime algo-
rithms is the level of improvement produced by the al-
gorithm. This is the expected magnitude of the increase
in solution quality that the algorithm will make in the
next increment: Ej,, = %TT” With anytime algo-
rithms the level of improvement is always greater than
or equal to 1.0 because the output quality is required to
be non-decreasing. For our Bayesian Networks problem
domain, the joint probability of the solution is used as
the solution quality.

Algorithin Interaction

With the analysis method for the different algorithms
established, we can look at the impact when the al-
gorithms are used cooperatively. Intuitively. the cow-
bination should perform at least as well as the algo-
rithms run individually (assuming no resource limita-
tions): but the open issue is whether to expect an imn-
provement over the individual algorithmm performance.
Performance improvement due to sharing information
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mostly occurs when the algorithm’s performance char-
acteristic is significantly different from the rest of the
collection. One algorithm with a steep performance
curve can boost the performance of a slower performer;
or if the performance curves for two algorithms inter-
sect, they alternate the roles of leader and follower.
Obviously, algorithms from different classes have sig-
nificantly different performance profiles; but in some
cases, it is possible to significantly affect the perfor-
mance of an algorithm through its parameters. In such
cases, it may be beneficial to use two similar algorithms,
but with different parameters.

Each of the model factors are evaluated for each in-
dividual algorithm for the given problem instance at-
tributes; however we also want to evaluate different
combinations of algorithms. There are two approaches
we can take: analyze cach possible combination of al-
gorithms, producing a separate model for each combi-
nation; or combine the results of the models for the
individual algorithms, producing a composite result.

We note that since the interaction between the com-
ponent algorithms occurs throughout the time interval
t. a simple combination of the convergence factors for
the individual algorithms is not adequate. We can, how-
cver, simulate the interaction by iteratively calculating
the convergence factors at approximately the same rate
that the algorithms would actually exchange solutions;
this rate is determined by obtaining for each algorithm
the length of time between production of solutions. At
each iteration, each algorithm model would account for
the received solution in its prediction for the next it-
cration.The best score received from any algorithm is
retained for the next iteration.

Case Study — Belief Revision in
Bayesian Networks

The overall goal of our cxperiments is to demonstrate
the effectiveness of solving computationally hard prob-
lems with multiple cooperating algorithms using an ini-
tial algorithm selection based on our portfolio construc-
tion model. This is contrasted against using an arbi-
trary single algorithm system.

Bayesian Networks arc a compact way of representing
probabilistic uncertainty in automated reasoning. Such
networks consist of directed acyclic graphs of nodes,
each representing a random variable (RV) with a fi-
nite domain. Edges represent direct dependency, and
the topology as a whole conveys independence assump-
tions. These allow the joint probability distribution
over all the RVs to be fully determined by providing
conditional probabilities of variable states given all their
predecessor states as the product of all the conditional
probabilitics.

One form of uncertain reasoning on Bayesian Net-
works is belief revision. Belief revision is the process of
determining the most probable instantiation of the ran-
dom variables (RVs) in a network given some evidence.
More formally, if W is the set of all RVs in the given
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extreme flat merged

GA 3.367e-05 | 6.085e-12 2.737e-16

best-first | 6.369e-01 | 3.948e-12  1.681e-12

Both 6.369e-01 | 6.085e-12  3.790e-12

Optimal | 6.369¢-01 | 6.099e-12  3.884e-12
TaBLE 0.1. Performance comparison for ex-

treme, flat and merged cxtreme-flat network with
GA, best-first, and cooperating GA and best-first.
Numbers reflect the best probabilities found.

Bayesian Network and e is the evidence, any complete
instantiations to all the RVs in W that is consistent
with e is called an erplanation or interpretation of e.
The problem is to find an explanation w* such that
P(w"|e) = maxyew P(w|e). Intuitively, we can think
of the non-cvidence RVs in 1 as possible hypotheses
for e.

Experiment Setup and Environment The test
cnvironment utilizes a heterogeneous network of Sun
workstations (both Sparc 20 and UltraSparc I) and
Linux workstations (200 MHz Pentium Pro). The ex-
periments were conducted using 75 randomly gener-
ated Bayesian Networks. The networks contain from
30 to 500 random variables, cach having 2 or 3 possi-
ble states. The connectivity between the randomn vari-
ables was kept moderate, with the number of arcs typ-
ically ranging between twice and three times the num-
ber of random variables. The conditional probability
tables were generated with varying distributions, from
extremely flat (small variance between entries) through
extremely spiked (most entries close to zero, with onc
nearly 1.0).

Multiple Algorithin Cooperation. The effective-
ness of multiple cooperative algorithms were best char-
acterized when the individual algorithms in the mix
werc quite different from one another. Taking a sim-
ple algorithm mix of a genetic algorithm (GA) and a
best-first search method, we compared the cooperative
runs against individual algorithin runs. We found that
for homogencous networks (all r.v.s in the network have
the same characteristics), the combination of the two al-
gorithms always performed at or above the level of the
individual algorithms.

Where a significant performance improvement was
achieved is with heterogeneous networks. For example,
take a network that was constructed from two individ-
ual networks where one had a relatively flat distribution
and the other with a fairly extreme distribution. On
this network, the GA alone could never achieve even
close to the optimal solution for the extremc network
where as the best-first algorithm bogged down early in
the flat network. Table 0.1 shows the results of run-
ning the individual algorithms on the composite net-
work; neither algorithm could come close to the optimal
solution by itself on the merged network. However, the

Network Initial Time Interval (sec)

Size(RVs) 10 20 50 100 | 200 | 300 500
30 67 | o 67 .67
50
100
200
300
500

FiG. 0.1. Success rates for algorithm selection.

combined cooperative case was much more successful.
Note that the optimal solution was determined through
an extremely lengthy brute force computation.

Portfolio Selection. We used a simulation approach
based on behaviour approximations using a combina-
tion of the seven model factors identified for each al-
gorithm to select from five different algorithms: a Ge-
netic Algorithm (GA), best-first search with two dif-
ferent heuristics: cost-so-far and shared-cost, a hybrid
stochastic search (HySS) and a Barrier Algorithm.

Figure 0.1 shows how the selected combination per-
formed in comparison with the other combinations for
that sized network. The numbers reflect the success
rate/percentages of the selection process. Our defini-
tion of success is when (1) the algorithm(s) selected
were contained in the combination that produced the
best solution at that time and (2) those algorithm(s)
were the ones contributing the best solutions. Clearly,
in most of the cases, the selection process chose an al-
gorithm combination that matched the best-performing
combination.

Since the goal of the initial static selection process is
to select a configuration to get the system off to a good
start, picking the best performing combination is not
essential. On the other hand, the better the initial con-
figuration performs, the easier it will be for the future
dynamic controller.

Looking again at the results, notice the increase in
the success rate as you move from left to right. This
is a result of the varied cycle times for the different al-
gorithms. This effect can also be noticed when moving
from top to bottom. As the network size increases, the
cycle time for the algorithms increase; with the approx-
imate models, it may take several cycles for the mod-
els to accurately predict the algorithm’s performance.
What is not immediately obvious is why the success
rates fall off at the right edge of the table, especially
for the smaller networks. This result is caused by the
“near-sighted” models. Accuracy falls off as time in-
creases, causing inaccurate predictions for the larger
interval times relative to the size of the problem.

Summary

The focus of this research has been to model the process
of managing a distributed system of cooperating pro-
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cesses. We are particularly interested in those domains
where finding the optimal solution is either intractable
or impossible. In these situations. algorithms typically
exist that can produce somne form of sub-optimal so-
lution, but. the problem of choosing which one to use
for a given situation is often difficult as well. In fact,
this selection must be made with some knowledge of
the way problem characteristics affect an algorithm'’s
performance.

We developed a method for capturing the essential in-
formation about a problem domain and the algorithms
to manipulate that domain (Williams, Santos. & Shi-
wouy 1997). The resulting models encapsulate this
information in the form of general performance met-
rics useful in the selection and cvaluation of algorithins
and algorithm combinations. The encapsulation makes
it possible for the controller to he developed indepen-
dent of any problem domain, yet still utilize the algo-
rithm models to determine algorithm performance for
the problem domain being studied. We also developed
a method for selecting the initial algorithm configura-
tion for the system based on the models’ performance
prediction.

The power of this approach is the use of approximate
“near-sighted” models of the algorithms. They are typi-
cally easy to compute, and may be effective in modeling
the algorithn’s behavior in the near future.

To demonstrate the capabilities of this approach, we
applicd it to uncertain inference over Bayesian Not-
works. We characterized the problem domain, extract-
ing the significant features from the networks that affect
the performance of the algorithms. The resulting sys-
tem performed as expected: when priority was given
to solution quality (instead of resource usage. ete.), the
system produced results comparable to the best indi-
vidual algorithin. Wirth the capability of the system 1o
incorporate other factors into the selection process, we
also demonstrated the ability of the controller to reach a
reasonable compromise configuration between solution
quality and resource consumption.
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