
Anytime planning for optimal tradeoff between deliberative and
reactive planning

Will Briggs
Department of Computer Science

Lynchburg College
Lynchburg, VA 24501 U.S. A

briggs _wQacavax.lynchburg.edu

Diane Cook
Department of Computer Science and Engineering

University of Texas at Arlington
Arlington, TX 76019 U.S.A.

cookQcse.uta.edu

Abstract

Anytime algorithms are useful when the time
available for computation is limited, that is, when
there is a tradec~ between the time cost of fur-
ther computation and the cost of using a solu-
tion that is only partially complete. Although
machine planning presents this sort of problem,
there has not yet been a treatment of anytime
plAn-ing for the general case, that is, a treatment
not tied to specific domains. In this paper, we
present a model fur general-purpose anytime plan-
ning which allows the user to trade off the opti-
mality of plans generated deliberatively with the
speed of reactive plan generation. The anytime
p|~n~er allows an interruption of hierarchical de-
liberative planning at the completion of any crit-
icality level, and completes the plan st execution
time using reactive planning. We illustrate the
usefulness of this approach on a manufacturing
domain.

Introduction

Automation of planning techniques can potentially save
a great deal of design and programming time, and can
help robots design plans when human help is not avail-
able. Unfortunately, machine planning programs search
a space of possible world states (or, for many planners,
a space of possible plans) which grows exponentially
with plan length. Currently, the computational cost of
machine planning algorithms prevents wide-spread use
of these systems.

There are various methods for limiting the cost
of planning. Hierarchical planning (Sacerdoti 1974;
Woods 1991; Tennenberg 1099) orders goals or subgoals
to plan for the most "critical ~ goals first, thereby replac-
ing the vast search space with several spaces of reduced
branching factor and smaller depth, which (usually) to-
gether form a significantly smaller space.

HierarehicoJ t~k network (HTN) pls-n~ng (Wilkins
1984) refines subplans in a predetermined way, thus re-
ducing the branching factor, sometimes to one.

Copyright © 1999. American Association for Artificial Intelligence
(www.anai.org). All rights reserved.

Speedup learning (Minton, Bresina, & Drummond
1991) derives macro-operators to reduce the depth of
search.

Each of these methods has the disadvantage of sav-
ing an indeterminate amount of plan generation time,
and hierarchical planning can actually degrade the qual-
ity of the generated plan. Reactive planning (Kael-
bling 1987; Brooks 1991), which limits the depth of
the search space, can be significantly faster than non-
reactive, or deliberative methods, but may produce sub-
optimal plaus.

Anytime planning (Boddy 1991; ZUberstein & Russell
1996), allows a tradeofF between the solution quality of
deliberative planning and the speed of reactive plan-
ning. An anytime planner allows the user to decide
when to interrupt planning, giving the user a partially
completed plan which may then be expanded by the
user or by another program.

This type of system has the advantage that a user,
not the program, determines how much computation
cost is acceptable. Also, an anytime planner could en-
able an autonomous agent to begin plan execution with
a partially specified plan, and refine the plan further
during execution.

Existing anytime pla.nning systems, however, are usu-
ally specific to particular domains, including path plan-
ning (Zilberstein & Russell 1996) and manufacturing
(Fax & Kempf 1985). When probabilities and utilities
axe known and do not fall mostly into relatively high
or low ranges, general-purpose decision-theoretic mod-
els may provide incremental performance by reducing
the state space (Drummond & Bresins 1990) or plan
space (Haddawy 1996) under consideration. A model
of general-purpose anytime planning is needed if any-
time planners are to find general use. The construction
of such a model is the purpose of this work.

Anytime planning

Overall structure
For a partial planning solution to have value, there must
be some mechanism for completing it. We propose to
complete the plan with a (reactive) component that
fast but may not guarantee optimality. Figure I shows
the structure of the anytime planner.

PLANNING 367

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Initial generation partially [component

[Plan completion
(deliberative,

comp I eted component
hierarchical)

plan
(reactive)

Figure 1: An general-purpose anytime planner. When
the deliberative component is interrupted, the reactive
component takes over.

The initial plan generation component must neces-
sarily be better able to find optimal plans than the
plan completion component; if not, the speedier plan
completion compovent would be better to use for all
of the plan generation. Our initial plan generator is a
hierarchical deliberative planner, which (given enough
time), can find solutions to any planning problem; these
solutions are guaranteed to be optimal if the planning
domain has the downward refinemen~ propertlt (Bacchus
& Yang 1991), that is, if the domain is such that back-
tracking across criticality levels is not required.

Deliberative planning unfortunately is NP-hard
(Chapman 1987). Recent advances in deliberative plan-
ning have improved the average-case performance of
these systems (Blum & Furst 1997), but run time cost
can still be a prohibiting factor. When the planner is
interrupted, the partially completed plan is transferred
to the plan completion component, which, being reac-
tive, can be expected to complete the plan in polyno-
mial time, and thus more quickly than the deliberative
component.

The model allows the integration of alternative de-
liberative and reactive planners into the architecture,
to take advantage of existing or future techniques for
reducing plan generation cost.

Deliberative component

A deliberative planner is not necessarily guaranteed to
have useful partial planning solutions during any point
of its search; any plan being constructed runs the risk
of being rendered invalid by interactions between sub-
goals. To provide partial solutions we use a hierarchical
planner, which generates a plan for the most critical
goals or subgoais first, and then refines the plans for
successively less critical goals or subgoais. A ranking
of criticality may be given by the programmer, or de-
rived from the domain (Knoblock 1994). The partially
specified plan generated by planning for some criticality
level is guaranteed to be correct, if the planning domain
exhibits the downward refinement property (Bacchus
Yang 1991) (or if the criticality ranking happens to
appropriate to the given problem), and (given time)
final solution is guaranteed to be optimal. Even without
the downward refinement property, the partial solution
may require only minor adjustment. In the worst case,
a hierarchical planner working in a domain without the
downward refinement property may generate a subop-
timal plan (Harris 1994).

368 BRIGGS

We interrupt tiie hierarchical anytime pla~iner M~er
an upper limit on the number of node expansions in
the planner’s search space has been reached. (We have
chosen to consider a node expansion as an operation
considered, rather than including constraints on oper-
ation variables, for simplicity.) The plan so far for the
current criticality level may be unusable, because of in-
teractions between subgoais; so the plan for the previ-
ous criticality level, which is complete with respect to
goals and subgoais at that criticality level or higher, is
sent to the reactive plan completion component.

Plan completion component

We require that the plan completion component in-
cur cost no worse than polynomial in plan length; for
general-purpose planning this requires that the sec-
ond component be reactive. Our reactive planner is
a forward-chaining rule-based system, which fires rules
in the order given by the designer until one identifies
an operator to be applied.

If a solution exists, we assume that the reactive plan-
ner can find it eventually; that is, the reactive planner is
powerful enough to recognize when it has encountered
a world state before, and thus take a different course
of action, avoiding infinite loops. If the reactive plan-
ner fails to find a useful step, planning is aborted. The
utility of the partially completed plan from the initial
component is a combination of the percentage of goals
achieved and the length of the plan.

Theoretical results
The cost of computation and execution depend on the
time of interruption. For deliberative planners, the cost
of planning is O(bN), where b is branching factor of the
search space and N is plan length. For hierarchical
planners in particular, if the planning domain has the
downward refinement property, the cost of planning is
O(Cb"), where C is the number of criticality levels en-
countered and n is the maximum number of operators
added at any level.

In real-world domains, the computation cost for a re-
active planner is dominated by the execution cost, and
can thus be ignored. Therefore, given the downward
refinement property, the cost is approximately the com-
putation cost of hierarchical deliberative planning plus
the cost for execution, or,

Cost,,~u~, ... Cb" + wl (C, un + R)
where tVz is a user-defined constant or function giving

the desired relative weight between cost of plan gener-
ation and cost of execution; Can is the totai number of
criticality levels; and R is the number of steps added
by the reactive planner, above the optimal.

If there are goals that may not be achieved because
of poor decisions by the reactive planner, this becomes

where G is the number of goals so affected, and ~ is
a weighting constant to be determined by the user.

We will have reduced cost over hierarchical planning
provided that Costan~me is less than Cost~ierarc~ic~,
or CP + wl (C,,n + R) +w2G < CaaP +Wl C=,n. This
can be reduced to the inequality C < Cau - (wlR
w~G)/bn, which shows at what criticality level the pro-
cess should be interrupted to minimize cost. If n is
large, this is appraximately C < Cau; that is, any in-
terruption at all will result in savings, as deliberative
planning is so time-consumlng. For sm~|ler n, the user,
or an automated process, can calculate when best to
interrupt the planner to mln~mize cost.

Application

Our anytime planner is implemented as a hierarchical
deliberative planner based on GPS (Newell & Simon
1963), modified to use IDS search (Korf 1985) on
plan space, both for efficiency and to ensure that the
generated plan will be optimal: the initial depth limit
for search (which is the same as maximal plan length)
is 1 step, and on failure this is incremented by 1, until
a solution is found or the number of node expansions
forces the planner to be interrupted.

Manufacturing
In this domain, planning problems relate to altering
parts in these ways: altering the shape of the part, by
using a roller or a lathe, or using a punch or drill press
to create holes; altering the texture of the surface, by
polishing, grinding to a smooth surface, or as a side ef-
fect of the previous operations; or painting, either with
a spray gun or a painter that works by immersion. As
the shape must be determined before the surface can
be ground or polished, and the surface must be finished
before paint is applied, we have goals with three levels
of criticality: those related to shape; those related to
texture; and those related to painting.

Some operations interfere with others: roiling makes
a part hot, which prevents later polishing, punching,
drilling, or spray-painting, and fills in any holes previ-
ously created by the punch or drill press. Operations
related to shape undo operations related to texture or
painting.

Exan~ples These simple examples illustrate the prob-
lems of this domain related to optimality.

Straightforward exp=n~ion. In this example, the
goals were to have Part A round and painted blue; Part
B smooth and blue; Part C blue, and with a hole. Of
the two most critical goals, each may be met in 2 ways:
A’s shape may be formed with the roller or the lathe,
and C’s hole may be made by the punch or the drill
press. As the initial depth limit for search is 1, each of
these four operations was tried and failed at this limit
to achieve all goals at this criticality; then, at the next
depth limit of 2, 2 operations (roll A, and punch C)
are expanded before we have a plan for this criticality
level. Therefore, until we allow 6 node expansions, the

deliberative planner produces no solution; the reactive
planner does all the plan generation. After that, the
deliberative planner can meet the above goals; if we
allow ? node expansions, it can also plan for the next
level, which involves grinding B. Neither component can
paint the parts, as we have no blue paint.

Differences in goals achieved. In this problem,
the planner is required to make A round and give it
a hole. By arbitrary ordering, the planner considers
rolling before lathing to achieve the shape, but is unable
to complete a plan this way, as rolling heats the part
and makes punching impossible; whereas if the hole is
created first, the roller fills in the hole.

For this reason, not only must the deliberative plan-
ner consider 4 operations (rolling and lathing, because
they can make A round, and punching and drilling, two
ways to create the hole) before finding that no plan
with only one operator will meet both goals. Then it
considers these 3 operators: rolling; adding a punching
operator before rolling; drilling rather than punching.
It then backtracks, tries lathing rather than rolling, and
completes the plan with punching (2 more operators).
There are therefore 9 node expansions before plan com-
pletion at this (sole) criticality level.

When the allowed node expansions are less than 9,
the reactive planner must generate the plan. It first
applies the operation of rolling (by the same arbitrary
ordering), then finds itself unable to create the hole, as
the part is now hot. So in this case, an early interrup-
tion means that a goal will not be met.

Differences in length of the final plan. As in
the previous problem, Part A is to be made round and
given a hole, but now is also to be painted. As before,
the deliberative component requires 9 node expansions
to finish its first criticality level (relating to the first
two goals). If the interruption comes sooner, the re-
active plan completion component, given the arbitrary
ordering of its choices, paints the part before meeting
the other goals. Since the act of changing its shape re-
moves the paint, the part must be painted again after.
This results in one extra step in the final plan.

Results Planning was interrupted after one node ex-
pansion, after two, and so on, for each of 200 randomly
generated problems of I - 20 goals each, relating to up
to 8 parts. Figure 2 shows the decreasing cost functions
for plans of various lengths with later times of interrup-
tion. Cost functions dropped more quickly for greater
tol, which is the cost of an executed operation divided
by the cost of a node expansion, but were not always
monotonically decreasing for sufficiently small t01 (10
or less). Since an operation executed is generally much
more expensive than a node expansion, this should not
be a problem in real domains.

Conclusions

The use of general-purpose anytime planning presents
an opportunity for user interaction not previously pos-
sible in machine planning. Also, autonomous agents

PLANNING 369

~luors

21500 -

2000-

1500-

tOO0 -

SOO-

0o

i
"’.. ".....

"" "i’"’"’.

i I I I i I
0.1 0.2 0 ~1 0,4 O,S 0.0 0 0 1 OAI t

"~me of Irdm~ldlon

Figure 2: Decreasing cost functions for differing plan
lengths. Cost is calculated as the cost of deliberation
(nodes expanded), plus execution cost (operators exe-
cuted multiplied by a weighting factor w] of 1000), and
is measured in multiples of optimal cost. Time of inter-
ruption is measured as a fraction of plan length.

may make use of this process for making tradeoffs be-
tween generation cost and plan optimality. This work
shows the usefulness of the approach analytically, and
provides evidence regarding anytime planning perfor-
mance in a manufacturing domain.

References

Bacchus, F., and Yang, Q. 1991. The downward refine-
ment property. In P~ccedings of IJCAI-gl. IJCAI.

Blum, A., and Furst, M. 1997. Fast planning throug~h
planning graph analysis. Artificial Intelligence 90:281-
300.
Boddy, M. 1991. Anytime problem solving using dy-
namic programming. In Proceedings of AAAI-91, 738-
743. AAAI.

Brooks, R. A. 1991. Intelligence without representa-
tion. Artificial Intelligence 47:139-159.

Chapman, D. 1987. Planning for conjunctive goals.
Artificial Intelligence 32:333-337.
Drummond, M., and Bresina, J. 1990. Anytime syn-
thetic projection: maximizing the probability of goal
satisfaction. In Proceedings of AAAI-gO, 138-144.
AAAI.
Fox, B. R., and Kempf, K. G. 1985. Opportunis-
tic scheduling for robotic assembly. In IEEE Interna-
tional Conference on Robotics and Automation, 880-
889. IEEE.
Haddawy, P. 1996. Focusing attention in anytime
decision-theoretic planning. In AAAI Spring Sym-
posium on Planning with Incomplete Information for
Robot Problems. AAAI.

Harris, B. 1994. Hierarchical planning: tradeoffs and
alternatives. Master’s thesis, University of Texas at
Arlington, Arlington, Texas.

370 BRIGGS

Kaelbling, L. 1987. An architecture for intelligent re-
active systems. San Mateo, CA: M. Kanfmann. Edited
by Michael P. Georgeff and Amy L. Lansky.

Knoblock, C. A. 1994. Automatically generating ab-
stractions for planning. Artificial Intelligence 68:243-
302.

Koff, R. E. 1985. Depth-first iterafive-deepening: an
optimal admissible tree search. Artificial Intelligence
27(1):97-109.
Minton, S.; Bresina, J.; and Drummond, M. 1991.
Commitment strategies in planning: a comparative
analysis. In Proceedings of IJCAI-91, 259-265. IJCAI.

Newell, A., and Simon, H. A. 1963. Computers and
Thought. R. Oldenbourg KG. GPS: A Program that
Simulates Human Thought. Edited by E. A. Feigen-
baum and J. Feldman.
Sacerdoti, E. D. 1974. PlA.nnlng in a hierarchy of
abstraction spaces. Artificial Intelligence 5:115-135.

Tennenberg, J.D. 1099. Abstraction in plan-
ning. Ph.D. Dissertation, University of Rochester,
Rochester, NY.
Wilkins, D. E. 1984. Domain-independent planning:
representation and plan generation. Artificial Intelli-
gence 22:269-301.
Woods, S. 1991. An implementation and evaluation
of a hierarchical non-linear planner. Master’s thesis,
University of Waterloo.
Zilberstein, S., and Russell, S. J. 1996. Optimal com-
position of real-time systems. Artificial Intelligence
82(1-2):181-213.

