
Abstract 1

An incomplete planning domain theory can cause an
inconsistency problem in a noisy domain. To solve the
problem of applying two opposite operators to the same state,
we present a novel method to learn a negative precondition as
control knowledge. Even though the control knowledge is
unknown to a machine, it is implicitly known as opposite
concept to a human. To learn the human concept, we propose
a new technique to mechanically generate a graph composed
of opposite operators from a domain theory and extract
opposite literals. We show that the opposite concept is a
special type of mutex used in Graphplan. A learned concept
can simplify the operator by removing a redundant
precondition while preventing inconsistencies.

Introduction

A domain theory constitutes a basic building block for a
planning system. However one of the hard problems in
planning is that a machine does not know the interpretation
of sentences in the theory. For example, Graphplan uses
mutual exclusion relations called mutex, but currently it
cannot infer not and just treats not as a string of characters.
If we have an operator requiring P to be false, then we need
to define a new proposition Q that happens to be equivalent
to (not P). For instance, if P is (on-ground <y>), then w
might have Q be (not on-ground <y>), or (not-on-ground
<y>), or (up-in-the-air <y>) (Brum and Furst, 1997).
Understanding intelligent entities is a hard but
fundamentally important AI problem. One approach fo
building an intelligent system is to study a human as an
example.
In this paper, we will investigate a subtle aspect of an
incomplete domain theory that is related with a domain
expert's implicit knowledge. First, we introduce an
inconsistency problem in which incomplete ly-specified
opposite operators are applied incoherently. Then, by
adopting a three-valued logic in learning preconditions, we
show how to learn a negative precondition that ca detect an
inconsistency (Tae and Cook 1996). As a next step,
observing that a human possesses certain knowledge that
detects an inconsistency easily and almost unconsciously,
we propose an approach that automatically extracts this

Copyright 1999 American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

kind of human knowledge from a graphical domain theory
and applies the new concept in order to make an operator
definition more compact.

Learning a Negative Precondition

A planning domain theory specifies an agent's legal
actions in terms of a set of operators. A Strips-lik
operator models an agent's action in terms of a set of
preconditionspre(op), an add-list, add(op), and a delete-
list, del(op). In order to apply an operator, the operator's
positive and negative preconditions must be satisfied in
the internal state of the agent. We will first introduce a
previous method that learns an operator's preconditions
directly from a two-valued state and point out the
resulting inconsistent planning problem, where two
opposite operators can be applied to the same state in a
noisy domain. To solve this problem, we introduce a ne
method of learning a negative precondition from a three-
valued state. A learne negative precondition detects an
inconsistent state and functions as control knowledge for
not executing an operator.

I nconsistency Problem of a Machine
A state is conventionally described by a two-valued logic,
where a fact is either true or false in the state. Based on the
Closed-World Assumption (CWA), if p is false, �p is
assumed to hold. Using CWA, OBSERVER learns an
operator through observing how states change while an
expert solves a problem (Wang 1995) . If an operator is
successfully executed in a state satisfying all the necessary
positive and negative preconditions of the operator, the state
constitutes a positive training example for learning the
operator. OBSERVER learns initial preconditions b
parameterizing each predicate in the state according to type
information. Learned from a single training example, the
initial preconditions may contain irrelevant literals.
OBSERVER generalizes this overly-specific preconditions
by removing irrelevant literals through observing more
training examples. If a predicate does not appear in a new
training example, the predicate is removed from the real
preconditions.
However, learning an operator simply from a state using
CWA, OBSERVER is unable to learn a negative
precondition. OBSERVER's incomplete operator faces

Learn in g O pposite concept for M ach ine P lann in g
Kang Soo Tae

Department of Computer Engineering

Jeonju Universit

1200 3-Ka Hyojadong Chonju, 560-759 Korea

kstae@www.jeonju.ac.kr

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

some inconsistency problems in a noisy domain. Suppose
that an agent's arm is empty in the actual world. If the agent
uses noisy sensors, the agent may internally believe that its
arm is empty and that it is also holding an object at the same
time: {arm-empty, (holding x)}. Strangely, a machine may
not detect that it is an impossible state. For example, if a
state, {(holding box1), (arm-empty), (next-to robot box1),
(carriable box1)}, is supplied, PRODIGY (Carbonell et al.
1992) cannot detect that it is inconsistent and it may try to
execute a wrong operator. Let the preconditions of picku
be {(arm-empty), (next-to robot box), (carriable box)} and
those of putdown be {(holding box). If the goal is {(�
arm-empty)}, PRODIGY generates a plan, (pickup box1),
while if the goal is {(� holding box1)}, it generates another
plan, (putdown box1) from the initial state. This shows that
if a planner is equipped with incomplete domain knowledge,
planning is unreliable in a complex domain. On the other
hand, note that if arm-empty is true in a state, a human can
infer that �(holding x) also holds at the same time. Thus, he
can easily perceive that the above belief, {arm-empty,
(holding x)}, is inconsistent containing opposite literals
{(holding x), �(holding x)}. Note that a negative
precondition, used as crucial control knowledge in a
machine, is rather obvious and redundant to a human, and
we will focus on this matter in the next section.

Negative Precondition as Control Knowledge
To solve this kind of inconsistency problem, we present a
method of learning a negative precondition and using the
learned precondition as a machine's control knowledge.
WISER (Tae and Cook 1996) is an operator learning
system running on top of PRODIGY and actually learns a
negative precondition. Note that while a state is described
by a two-valued logic, an operator is described by a
three-valued logic. If p is not in the preconditions of an
operator, p in a state is irrelevant in applying the operator.
If p should not hold in a state, �p must explicitly appea
as an operator's precondition. To learn such a negative
precondition from a state, we need t describe a state by a
three-valued logic. For that purpose, we first transform
the state into its closure by releasing CWA.
Let PRED* represent the space of all the predicates known
to WISER. Let S be a positive state, P be the set of
predicates true in S, and N the set of predicates not true in S.
Since {PRED* - P} represents the set of predicates which
are not true by CWA, it corresponds to N. Releasing CWA,
S transits to its closure, S* = P + Neg({PRED* - P}), where
Neg(X) means the negated value of X. S is identical to S,
but it provides a more comprehensive description of the
same state by comprising negative literals. S* constitutes an
overly-specific definition for inducing preconditions in
WISER. WISER generalizes overly-specific preconditions
by eliminating irrelevant literals through experimentation
by adopting a bottom-up search generalization method
(Craven and Shavlik 1994). While the preconditions are
overly-specific, WISER negates each literal in the initial

definitions, l � S*, transitioning to a new state Snew = {S* - l
+ �l}. If the operator is still applicable, WISER deletes the
irrelevant literal, l, from the overly-specific preconditions.
Note that while an irrelevant literal is assigned the symbol *
in a state description a priori in Oates and Cohen's work,
WISER can detect a n irrelevant literal through
experimentation.
To illustrate this method through an example, let
PRED*={A, B, C, D, E, F}, and the real preconditions
Pre(op) of an operator op be {A, B, C, �D}. Let a positive
state S0 be {A, B, C, E}. OBSERVER initializes the
preconditions as {A, B, C, E}. Given another positive state
{A, B, C, F}, OBSERVER deletes E and generalizes the
preconditions to {A, B, C}. On the other hand, WISER
initializes the preconditions to {A, B, C, �D, E, �F}. To
generalize the overly-specific initial preconditions through
experiments, WISER negates each literal in the initial
definitions one at a time. If the operator is still applicable,
WISER deletes the literal from the preconditions. Given a
new state, S1 = {�A, B, C, �D, E, �F}, since op cannot be
applied to S1, WISER learns that A is relevant. Similarly, op
cannot be applied to another state S2 = {A, B, C, D, E,�F},
and WISER learns that �D is also relevant. When op is
successfully applied to S3 = {A, B, C, �D,�E, �F},
WISER learns that E is not relevant and deletes the literal
from the preconditions. In this way, WISER generalizes th
initial precondition, {A, B, C, �D, E, �F}, to {A, B, C, �
D}. Given a state, {A, B, C, D}, Pre(op) is not met, and the
operator must not be fired. Note that while op internall
fires in OBSERVER, it is not fired in WISER
Finally, let's show how WISER can solve the previous
inconsistency problem after learning a negative
precondition. Suppose the inconsistent state is supplied to
an agent by noisy sensors: {(holding box1), (arm-empty),
(next-to robot box1), (carriable box1)}. Given the expert-
generated preconditions of picku and putdown, if the goal
is {�arm-empty}, PRODIGY generates a plan, (pickup
box1), and if the goal is {�(holding box1)}, it generates
another plan, (putdown box1). The plan execution
sometimes succeeds and sometimes fails due to a perceptual
alias (Benson 1995). Using the above algorithm, WISER
successfully generates more constrained preconditions of
picku : {(�holding box), (arm-empty), (next-to robot box),
(carriable box)}.

Learning Opposite Concepts

In the previous section, we observed that a human possesses
knowledge that is unknown to a machine and he/she can
immediately detect an inconsistent state. To mechine-learn
this type of knowledge, we suggest a method to generate
opposite operators from a graph in a domain theory and
extract opposite propositions through experimenting the
operators. The learned concept simplifies an operator b
removing redundant negative preconditions while
preventing inconsistency We show that this opposite

concept is a mutex in Graphplan.

Machine and Implicit Human Knowledge
Using a negative precondition raises a question of wh
explicitl encoding control knowledge is necessary to a
machine while it i unnecessary to a human. Suppose a state
description S1 includes two predicates p and q. If a rule R: p
� q is known for system A, another state description S2 is
obtained by removing q from S1. S1 and S2 are equivalent
with respect to the rule. On the other hand, suppose the rule
is not known to another system B. Since B cannot infer q
from p, S2 is not equivalent to S1 and not encoding q in S2

may cause a problem. For instance, suppose a simple rule
(dr-open dr) � �(dr-closed dr) is known to a human. Then,
S1 = { (dr-open dr), �(dr-closed dr), (next-to robot dr)} and
S2 = { (dr-open dr), (next-to robot dr)} are equivalent, and �
(dr-closed dr) in S1 is redundant. On the other hand, if the
rule is not known to a planning system, the negative literal
is not known to the system in S2.
Knowledge acquisition is mapping of expert knowledge to a
machine. However, after mapping, the expert may possess
some knowledge not captured in a planning system
(desJardins 1992). If an expert wrongly assumes that a
planning system knows the rule and S1 and S2 are equivalent
states to the system, the domain theory that he/she build
may cause an inconsistency problem as shown previously
A type of incompleteness in a domain theory may occur due
to certain types of expert knowledge which a machine does
not possess after knowledge mapping, but which the expert
assumes that th machine possesses. This type of exper
knowledge is called implicit knowledge. Since we are not
yet at the level of scientifically understanding how the
human mind works, especiall at the level of
unconsciousness, it is difficult to analyze the complicated
structure of an expert's implicit knowledge and make it
explicit for a machine. But, as a first step, we will focus on a
somewhat simple problem of understanding an opposite
concept. Note that an opposite concept can be used to infer a
negative fact from a positive fact. For example, if a door is
open, it can be inferred that the door is not closed. An expert
can initially encode an opposite concept into the domain
theory as an inference rule (Minton 1988) or as an axiom
(Knoblock 1994). However, it is overwhelming to manuall
encode all the related opposite concepts in a complex
domain. Thus, an adaptive intelligent agent should be able
to lear an opposite concept autonomousl in a new
situation.
Suppose that a domain expert does not encode opposite
concepts into the domain theory as shown in PRODIGY.
Then, while the expert unconsciously uses an opposite
concept, a system cannot infer a negative literal. Fo
example, if a door is open, the expert understands that the
door is not closed, and if a state includes both door-open
and door-closed, he knows that the state is inconsistent . But
a current symbolic planning system like PRODIGY, which
does not understand opposite concepts, cannot detect an
inconsistent state. While PRODIGY's simple theory

operates in a noiseless domain, this causes a problem in a
complex domain. Building a system with an erroneous
assumption that the system understands human concept s
can cause unexpected serious problems.

Finding Opposite Operators
An operator corresponds to an action routine of a robot
(Fikes, Hart, and Nilsson 1972). Since each routine can be
processed independently from other routines, each operato
is also an independent module in the domain theory.
However, even though the operators are unrelated to each
other on the surface, they can be closely related in a deep
structure of human percept. For example, the open-dr and
close-dr operators are conceptually seen as opposite. We
suggest a technique to find opposite relation s existing
between special type of operators and to simplify them
syntactically by removing redundant negative
preconditions
The set of operators in a domain theory can be divided into
two congruent groups based on an operator's effects on its
target object: temporary and destructive operator groups.
When an operator is applied to a target object, the state S of
the object may change. If the operator’s effect on the object
is not permanent, then the operator is classified as
temporary. Applying a series of other operators can restore
S. Thus, the same operator can be applied to the same object
again. On the other hand, if an operator's effect on the target
object is permanent and the original state cannot be restored,
the operator is classified as destructive. Note that i f a
temporary operator is to be repeatedly applied to the same
object, some other temporary operators must restore the
operator's preconditions satisfied at the original state. In fact,
the other operators undo the effect of the operator on the
object. If they do not exist in the domain, the effects of the
operator on the target object may remain permanent and this
domain is useless.
For example, let a domain theory be composed of two
temporary operators, open-dr and close-dr and a destructive
operator, drill . When open-dr is applied to open a closed
door, the original state of the door can be restored b
applying close-dr. Thus, open-dr can be applied again to the
door. Note that close-dr restores the preconditions of open-
dr by undoing the effects of open-dr. On the other hand, for
a destructive operator, drill , the change to the state on the
target object is designed to be permanent, and other
operators must not undo the effects.
To investigate some interesting relationship between two
temporary operators, P and Q, such that P undoes the effects
of Q on a target object as well as it restores the
preconditions of Q, we generate a dependency graph
between the effects of an operator and the preconditions of
another operator. For an operator, op, let prestate(op) be a
state which satisfies pre(op), the preconditions of op, and let
poststate(op) be the state occurring after applying op at
prestate(op). poststate(op) is calculated by the operation:
prestate(op) + add(op) - del(op). The domain theory is
structurally represented as a directed graph, D = (V, E),
where V = {op1, ..., opm} and E={e1, ..., en}. An edge eij � E
connects one operator opi to another operator opj if

poststate(opi) satisfies pre(opj). eij indicates that opj can be
always applied immediately afteopi was applied.
Let's consider a set of operators: open-dr, close-dr, lock-dr,
and unlock-dr. There is an arc from open-dr to close-dr
because applying close-dr always satisfies the precondition
of open-dr, and we can always open the door immediately
after close-dr is applied. Since there is an arc from open-dr
to close-dr as well, there is a cycle composed of close-dr
and open-dr. Similarly, there is a cycle composed of lock-
dr and unlock-dr. However, there is no arc from close-dr to
lock-dr because if a robot does not hold a key yet, it needs to
subgoal to pick-up a key before it locks the door.
For an n-cycle, a cycle composed of n operators, an arc ei,

(i+1) mod n, for i = 1, ..., n, connects opi to op (i+1) mod n. The arc
represents that poststate(opi) satisfies the preconditions of
op (i+1) mod n. Thus, poststate(opi) obviously becomes
prestate(op (i+1) mod n).

Theorem: A temporary operator belongs to an n-cycle.
Proof) Let op be a temporary operator. Given

prestate(op), poststate(op) is obtained by applying op to
prestate(op). If pre(op) still holds after applying op, then
pre(op) � poststate(op). Thus, poststate(op) becomes
prestate(op) and there is an arc from op to itself as a
vacuous self-loop. On the other hand, if pre(op) does not
hold after applying op, then pre(op) poststate(op). Let P =
{p1, ..., pk} be the literals that existed in prestate(op) but
which disappear in poststate(op) after applying op. To
apply op, a temporary operator, again to the object,
prestate(op) must be restored. Hence, there exists a
sequence of operators opj, ..., opn that establishes P, where
opj immediately follows op. Thus, there is a path from op to
opn. Since op can be applied immediately after the sequence
of operators are applied, poststate(opn) must satisf
prestate(op), and there is an arc from opn to op �

As a special case of an n-cycle, a 2-cycle, composed of two
operators, forms a bipartite complete graph. For any two
operators forming a cycle, let Dual for an operator be the
function that returns the other operator in the pair. If opi and
opj form a cycle, Dual(opi) is opj and Dual(opj) is opi.
Dual(op) establishes th preconditions that op has deleted.
Restoring the preconditions is done by undoing the effects
of op, that is, by deleting what were added badd(op) and
adding again what were deleted bdel(op). Recursively,
Dual(Dual(op)), which is actually op, restores the
preconditions of Dual(op) by undoing the effects of
Dual(op). Note that prestate(op) is the same as
poststate(Dual(op)), and prestate(Dual(op)) is the same as
poststate(op). We ca easily show that the add list of one
operator is the same as the delete list of its dual operator.
From the formula, poststate(op) = prestate(op) + add(op) -
del(op), we deduce prestate(op) = poststate(op) - add(op) +
del(op), which is the same as prestate(Dual(op)) - add(op)
+ del(op). Note that '- add(op)' functions as the delete list of
Dual(op) while '+ del(op)' functions as the add list of
Dual(op). Thus, we showed that add(op) � del(Dual(op))
and del(op) � add(Dual(op)).

What does it mean that Dual(op) adds what op deleted and
deletes what op added? Since the adding and deleting of a
literal to a state is the opposite operation, op and Dual(op)
constitute the opposite function. Two operators are defined
as opposite operators iff the add list of one operator is the
same as the delete list of the other operator and the delete
list of one operator is the same as the add list of the other
operator. The opposite operators undo the effects of each
other. For example, add(Open-dr) is {door-open} and
del(Open-dr) is {door-closed}, while add(Close-dr) is
{door-closed} and del(Close-dr) is {door-open}. Thus,
Open-dr and Close-dr constitute the opposite operators.
Note that two opposite operators are closely related to a
binary mutual exclusion relation (mutex) used in Graphplan.
Two actions in Graphplan (operators in our discussion) at
the same level are mutex if either 1) the effect of one action
is the negation of another action’s effect or 2) one action
deletes the precondition of another, or 3) the actions have
preconditions that are mutually exclusive. We conjecture
that if any two operators satisfy all three conditions, the
form opposite operators.

Using Opposite Literal for Simplificatio
We will show how to extract opposite literals from
opposite operators using an experimentation method and
use them to remove redundant negative preconditions.
Let opi and opj be opposite operators. add(opi) is opposite to
add(opj), and add(opi) = {p1, ..., pn} contains a literal whic
is opposite to another literal in add(opj) = {q1, ...,qm}. If a
literal pi � add(opi) is the opposite concept to a literal qk �

add(opj), a state {pi, �qk} is feasible, but {pi, qk} is
inconsistent and it is not feasible as a state. To find the
opposite literals through experimentation, an initial state S
is set as {pi} in {p1, ..., pn} one at a time, for each i = 1, ..., n,
and then we insert into S each literal qk from {q1, ...,qm} one
at a time, for k = 1, ..., m. When attempting to insert qk to S,
if {pi, qk} is not possible and causes the state to change pi to
�pi, resulting a unexpected state {qk, �pi}, then qk and pi

are the opposite literals, and �pi can be inferred from qk,
thus creating a rule qk � �pi. For example, suppose lock-
dr and unlock-dr are the opposite operators. Let add(lock-
dr) be {locked}, and add(unlock-dr) be {unlocked}. If S =
{locked} is the initial state, adding unlock to S, {locked,
unlocked} is not possible and the state changes to a new
state {unlocked, �locked}, thus a rule unlocked � �
locke is learned by experiments.
In Graphplan (Brum and Furst, 1997), two propositions ar
mutex if one is negation of the other, or if achieving the
preconditions are pair-wise mutex. Note that if any tw
propositions satisfy both of the conditions, they form
opposite literals. Learning the opposite concept as a rule
simplifies an operator definition because a negative literal
can be inferred from a positive literal. For the noise-proof
preconditions of pickup, {(arm-empty), �(holding x),
(next-to robot box), (carriable box)}, if a rule (arm-empty)
� �(holding x) is learned, WISER can generate more
simplified preconditions of pickup: {(arm-empty), (next-to

robot box), (carriable box)}. When applied as a
preprocesso to an incomplete domain theory, this approach
of learning rules simplifies the domain theory as well a
makes the theory more complete.

Further Research and Conclusion

A planning domain theory represents an agent's knowledge
about the task domain. We presented a method to learn a
negative precondition to detect a problem in which
inconsistent operators can be applied to the same state. Next,
from observing that a human can immediately detects an
inconsistent state, we investigate a type of implicit human
knowledge, called opposite concept. First, we generate a
graph composed of two operator where one operator
deletes the other operator’s preconditions and effects, and
then we show how to extract opposite propositions through
experimentation. The opposite operators and propositions
are a special type of mutex used in Graphplan ’s algorithm.
While mutex is a procedural inference and current systems
cannot understand the concept of not, we conjecture that
understanding an opposite concept is fundamental for an
agent to survive in the real world. We will implement and
test opposite concept as the next step and our human-
oriented system will become more intelligent.

References

Benson, S. Inductive Learning of Reactive Action Models,
in Proceedings of the 12th International Conference on
Machine Learning, 1995.
Brum, A. L. and Furst, M L., Fast Planning through
Planning Graph Analysis, in Artificial Intelligence 90(1-2):
281-300, 1997.
Carbonell, J. G., Blythe, J., Etzioni, O., Gil, Y., Knoblock,
C., Minton, S., Perez, A., and Wang, X. PRODIGY 4.0: The
Manual and Tutorial. Technical Report CMU-CS-92-150,
Carnegie Mellon University, Pittsburgh, PA, 1992.
Craven, M. W. and Shavlik, J. W. Using Sampling and
Queries to Extract Rules from Trained Neural Networks, in
Proceedings of the 11th International Conference on
Machine Learning, 1994.
DesJardin , M. Knowledge Development Methods for
Planning Systems, in AAAI-94 Fall Symposium Series:
Planning and Learning: On to Real Applications, 1994.
Fikes, R. E., Hart, P. E., and Nilsson, N. J. Learning and
Executing Generalized Robot Plans, in Artificial
Intelligence 3, 1972.
Gil, Y. 1992. Acquiring Domain Knowledge for Planning
by Experimentation. Ph.D. Dissertation., Carnegie Mellon
Univ.
Knoblock, C. A. Automatically Generating Abstractions fo
Planning, in Artificial Intelligence, 68, 1994.
Minton, S. Learning Search Control Knowledge: An
Explanation-Based Approach, Kluwer Academic
Publishers, Boston, MA, 1988.

Ourston D. and Mooney, R. J., Theory Refinement
Combining Analytical and Empirical Methods, in Artificial
Intelligence, 66, 1994.
Pearson, D. J. Learning Procedural Planning Knowledge in
Complex Environments, Ph. D. Dissertation, University of
Michigan, Ann Arbor, MI, 1996.
Smith, D. and Weld, D., Conformant Graphplan, in
Proceedings of 15th Nat. Conf. AI, 1998.
Tae, K. S., and Cook, D. J. Experimental Knowledge
Acquisition for Planning, in Proceedings of the 13th
International Conference on Machine Learning, 1996.
Tae, K. S., Cook, D. J., and Holder, L. B
Experimentation-Driven Knowledge Acquisition fo
Planning, to appear in Computational Intelligence 15(3),
1999.
Wang, X. 1995 Learning by Observation and Practice: An
Incremental Approach for Planning Operator Acquisition,
in Proceedings of the 12th International Conference on
Machine Learning, 1995.
Weld, D. Recent Advances in AI Planning, to appear in AI
Magazine, 1999.

