From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Learning Opposite concept for Machine Planning
Kang Soo Tae

Department of Computer Engineering
Jeonju Universit
1200 3-Ka Hyojadong Chonju, 560-759 Korea
kstae @www.jeonju.ac.kr

Abstract®

An incomplete planning domain theory can cause an
inconsistency problem in a noisy domain. To solve the
problem of applying two opposite operators to the same state,
we present a novel method to learn a negative precondition as
control knowledge. Even though the control knowledge is
unknown to a machine, it is implicitly known as opposite
concept to a human. To learn the human concept, we propose
a new technigue to mechanically generate a graph composed
of opposite operators from a domain theory and extract
opposite literals. We show that the opposite concept is a
special type of mutex used in Graphplan. A learned concept
can simplify the operatorbyremoving a redundant
precondition while preventing inconsistencies.

Introduction

A domain theory constitutes a basic building block for a
planning systemHowever one of the hard problems in
planning is that a machine does not know the interpretation

of sentences in the theory. For example, Graphplan uses

mutual exclusion relations called mutex, but currently it
cannot infemotand just treataot as a string of characters.

If we have an operator requiring P to be false, then we need

kind of human knowledge from a graphical domain theory
and applies the new concept in order to make an operator
definition more compact.

L earning a Negative Precondition

A planning domain theory specifies an agent's legal
actions in terms of a set of operators. A Strips-lik
operator models an agent's action in terms of a set of
preconditionspre(op) an add-listadd(op) and a delete-
list, del(op) In order to apply an operator, the operator's
positive and negative preconditions must be satisfied in
the internal state of the agent. We will first introduce a
previous methodhat learns an operator's poaditions
directly from a two-valued state and pointout the
resulting inconsistent planning problem, where two
opposite operators can be applied to the same state in a
noisy domain. To solve this problem, we introduce a ne
method of learimg a negative premdition from a three-
valued state. A learne negative precondition detects an
inconsistent state and functions astooirknowledge for

not executing an operator.

to define a new proposition Q that happens to be equivalent | nconsistency Problem of a Machine

to (not P). For instance, if P is (on-ground <y>), then w
might have Q be (not on-ground <y>), or (not-on-ground
<y>), or (up-in-the-air <y>) (Brum and Furst, 1997)
Understanding intelligent entities is a hard but
fundamentally important Al problem. One approach fo
building an intelligent system is to study a human as an
example.

In this paper, we will investigate a subtle aspect of an
incomplete domain theory that is related with a domain
expert's implicit knowledge. Et, we intraluce an
inconsistency problem in which incompletesipecified
opposite operators are applied incoherently. Then, by
adopting ahiree-vdued logic in learning preconditions, we
show how to learn a negative precondition that ca detect an
inconsistency (Tae and Cook 1996). As a next step,

A state is conventionally described by a two-valued logic,
where afact is either true or false in the state. Based on the
Closed-World Assumption (CWA), ip is false, ~p is
assumed to hold. Using CWA, OBSERVER learns an
operator through observing how states change while an
expert solves a problem (Wang 1995). If an operator is
successfully executed in a state satisfying all the necessary
positive and negative preconditions of the operator, the state
constitutes a positive training example for learning the
operator. OBSERVER learns initial preconditionsb
parameterizing each predicate in the state according to type
information. Learned from a single training example, the
initial preconditions may contain irrelevant literals.
OBSERVER generalizes this overly-specifie®nditions

by removing irrelevant literals through observing more

observing that a human possesses certain knowledge thattraining examples. If a predicate does not appear in a new

detects an inconsistency easily and almost unconsciously,
we propose an approach that automatically extracts this

Copyright 7] 1999 American Assciation for Artificial
Intelligence ywww.aaai.org) All rights reserved.

training example, the predicate is removed from the real
preconditions.

However, learning an operator simply from a state using
CWA, OBSERVER is unable to learn a negative
precondition. OBSERVER's incomplete operator faces

some inconsistency problems in a noisy domaupp8se definitions,| = S*, transitioning to a new stafg,,,= {S* - |

that an agent's arm is empty in the actual world. If the agent + —~|} |f the operator is still applicable, WISER deletes the
uses noisy sensors, the agent may internally believe that its jrrelevant literal,l, from the overly-specific preconditions.
arm is empty and that itis also holding an object at the same Ngte that while an irrelevant literal is assigned the symbol *
time: {arm-empty (holding x}. Strangely, a machine may i 3 state descriptioa priori in Oates and Cohen's work,
not detect that it is an impossible state. For example, if a \W|SER can detecta n irrelevant literal through
state, {holding box1), (arm-empty), (next-to robot box1), experimentation.

(carriable box3}, is supplied, PRODIGY (Carbonell etal. 1o jlustrate this method through an example, let
1992) cannot detect that it is inconsistent and it may try to PRED*={A, B, C, D, E, F},and the real preconditions
execute a wrong operator. Let the preconditiongicku Pre(op)of an operatoop be{A, B, C, ~D}. Let a positive

be {(arm-empty), (next-to “_)bOt box), (carriable ,bp&nd state §, be {A, B, C, E}. OBSERVER initializes the
those of putdown be {(holding boy. If the goal is {(~ preconditions agA, B, C, E}.Given another positive state
arm-empty}, PRODIGY generates a plaigpickup box1) {A, B, C, F} OBSERVER deleteE and generalizes the

while if the goal is {(~ holding box}}, it generates another preconditions to{A, B, C}. On the other hand, WISER
plan, (putdown box1jrom the initial state. This shows that jnjtializes the preconditions tA, B, C, ~D, E, ~F}. To

ifa planner is equipped with incomplete domain knowledge, generalize the overly-specific initial preconditiohsotigh
planning is areliable in a complex domain. On the other experiments, WISER negates each literal in the initial
hand, note that irm-emptyis true in a state, a human can gefinitions one at a time. If the operator is still applicable,
infer that ™ (holding ¥ also holds at the same time. Thus, he WISER deletes the literal from the preconditions. Given a
can easily perceive that the above beliefrnf-empty new stateS, ={ ~A, B, C,~D, E, ~F}, sinceop cannot be
(holding x}, is inconsistent containing oppositeelitils applied toS, WISER learns tha is relevant. Similarlypp
{(holding x), “(holding X}. Note that a negative cannot be applied to another st&e= {A, B, C, D, E,~F},
precopdltlpn, used as crucial ¢mi knowledge in a and WISER learns that-D is also relevant. Wheop is
machine, is rather obvious and redundant to a human, andsuccessfully applied & = {A, B, C, ~D, ~E, ~F},
we will focus on this matter in the next section. WISER learns thaE is not relevant and deletes the literal
from the preconditions. In this way, WISER generalizes th

Negative Precondition as Control Knowédge initial preconditionfA, B, C, ~D, E, ~F}, to{A, B, C, ~
To solve this kind of inconsisteng@yoblem, we present a D}. Given a statdA, B, C, D}, Pre(op)is not met, and the
method of learimg a negative premdition and using the operator must not be fired. Note that while internall
learned precondition as a machine'staznknowledge. fires in OBSERVER, it is not fired in WISER

WISER (Tae and Cook 1996) is an operator learning Finally, let's showhow WISER can solve the previous
system running on top of PRODIGY and actually learns a Inconsistency problem after learning a negative
negative precondition. Note that while a state is described ~Precondition. Suppose the inconsistent state is supplied to
by a two-valued logic, an operator is described by a an agentby noisy SENSOors. Holding boxll), (arm-empty),
three-valued logic. Ip is not in the preconditions of an (next-to robot bOXl.)’. (carr_|able bojl Given the expert-

) . .) generated preconditions pitku andputdown, ifthe goal
operatorpin a state is irrelevant in applying the operator. ; .

, . is { ~arm-empty, PRODIGY generates a plar{pickup

If p should not |h0|d 'na st.a.tap must explicily pea i box1),and if the goal is {- (holding box3}, it generates
as an opgrators precondition. To learn sgch a negative 4 other plan, (putdown box1). The plan execution
precondition from a state, we need t describe a state by a gometimes succeeds and sometimes fails dueto a perceptual
three-valued logic. For that purpose, we first transform gjias (Benson 1995). Using the above algorithm, WISER
the state into its closure by releasing CWA. successfully generates more constrained preconditions of
Let PRED* represent the space of all the predicates known picku : {(~holding box), (arm-empty), (next-to robot box),
to WISER. LetS be a positive state,P be the set of (carriable box)}
predicates true i§, andN the set of predicates not trueSin
Since{PRED* - P} represents the set of predicates which
are not true by CWA, it corresponds kb Releasing CWA,
Stransits to its closure$* = P + Neg({PRED* - P}) where

L earning Opposite Concepts

Neg(X)means the negated valueXfS is identical toS In the previous section, we observed that a human possesses
but it provides a more comprehensive description of the knowledge that is unknown to a machine and he/she can
same state by comprising negative liter&sconstitutes an jmmediately detect an inconsistent state. To mechine-learn

overly-specific definition for inducing preconditions in this type of knowledge, we suggest a Inoet to generate
WISER. WISER generalizes overly-specific preconditions opposite operators from a graph in a domain theory and
by eliminating irrelevant literals through experimentation extract opposite propositions througiperimenting the
by adopting a bottom-up search generalization method operators. The learned concept simplifies an operator b
(Craven and Shavlik 1994). While the poeditions are removing redundant negative preconditions while
overly-specific, WISER negates each literal in the initial preventing inconsistency We show that this opposite

concept is a mutex in Graphplan.

Machine andImplicit Human Knowledge

Using a negative precondition raises a question of wh
explicitt encoding control knowledge is necessary to a
machine while iti unnecessaryto a human. Suppose a stat
descriptionS, includes two predicatpsandg. IfaruleR: p

— qis known for systemA, another state descripti@is
obtained by removing from S. S and S, are equivalent

operates in a noiseless domain, this causes a problem in a
complex domain. Building a system with an erroneous
assumption that the system understands human concept s
can cause unexpected serious problems.

Finding Opposite Operators

eAn operator corresponds to an action routine of a robot
(Fikes, Hart, and Nilsson 1972). Since each routine can be
processed independently from other routines, each operato
is also an independent module in the domain theory.

with respect to the rule. On the other hand, suppose the ruleHowever, even though the operators are unrelated to each

is not known to another systeB1 SinceB cannot inferq
from p, S is not equivalent t&, and not encoding in S,

other on the surface, they can be closely related in a deep
structure of human percept. For example,apen-drand

may cause a problem. For instance, suppose a simple ruleclose-droperators are conceptually seen as opposite. We

(dr-open dr)— ~(dr-closed dr)js known to a human. Then,
S, - {(dr-open dr), ~(dr-closed dr), (next-to robot drand
S,_{(dr-open dr), (next-to robot frare equivalent, and-
(dr-closed dr) in $is redundant. On the other hand, if the
rule is not known to a planning system, the negative literal
is not known to the system 8.

Knowledge acquisition is mapping of expert knowledge to a

machine. However, after mapping, the expert may possess

some knowledge not captured in a planning system

(desJardins 1992). If an expert wrongly assumes that a

planning system knows the rule a®&ndS, are equivalent
states to the system, the domain theorythat he/she build
may cause an inconsistency problem as shown prglyio
A type of incompleteness in a domain theory may occur due
to certain types of expert knowledge which a machine does

not possess after knowledge mapping, but which the expert
assumes that th machine possesses. This type of exper

knowledge is calledmplicit knowledge. Since we are not
yet at the level of scientifically understanding how the
human mind works, especiall at the level of
unconsciousness, it is difficult to analyze the complicated
structure of an expert's implicit knowledge and make it
explicit for a machine. But, as afirst step, we will focus on a
somewhat simple problem of understany an opposite
concept. Note that an opposite concept can be used to infer
negative fact from a positive fact. For example, if a door is
open, it can be inferred that the doomdgclosed. An expert
can initially encode an opposite concept into the domain
theory as an inference rule (Minton 1988) or as an axiom
(Knoblock 1994). However, itis overwhelming tomall
encode all the related opposite concepts in a complex
domain. Thus, an adaptive intelligent agdriwdd be able

to lear an opposite concept autonomousl in a new
situation.

Suppose that a domairpert does not encodeposite
concepts into the domain theorygsown in PRODIGY.

Then, while the expert unconsciously uses an opposite

concept, a system cannot infer a negative literal. Fo
example, if a door is open, the expemderstads that the
door is not closed, and if a state includes hagbr-open
anddoor-closedhe knows that the state is inconsistent . But
a current symbolic planning system like PRODIGY, which
does not understand opposite concepts, cannot detect al
inconsistent state. While PRODIGY's simple theory

suggest a technique to find opposite relation s existing
between special type of emtors and to simplify them
syntactically by removing redundant negative
preconditions

The set of operators in a domain theory can be divided into
two congruent groups based onaperator's effects on its
target objecttemporaryand destructiveoperator groups.
When an operator is applied to a target objbet stateS of

the object may change. If the operator’s effect on the object
is not permanent, then the operator is classified as
temporary Applying a series of other operators can restore
S.Thus, the same operator can be applied to the same object
again. On the other hand, if an operator's effect on the target
object is permanent and the original state cannot be restored,
the operator is classified as destructive. Note thatif a
temporary operator is to be repeatedly applied to the same
object, some other temporary operators must restore the
operator's preconditions satisfied at the original state. In fact,
the other operators undo the effect of the dpen the
object. If they do not exist in the domain, the effects of the
operator on the target object may remain permanent and this
domain is useless.

For example, let a domain theory be composed of two
temporary operatorspen-drandclose-drand a destructive
aoperator,drill. Whenopen-dris applied to open a closed
door, the original state of the door can be restoredb
applyingclose-dr Thus,open-drcan be applied again to the
door. Note thatlose-drrestores the preconditions @pen-

dr by undoing the effects afpen-dt On the other hand, for

a destructive operatodrill, the change to the state on the
target object is designed to be permanent, and other
operators must not undo the effects.

To investigate some interesting relationship between two
temporary operators, P and Q, such that P undoes the effects
of Q on a target object as well as it restores the
preconditions of Q, we generate a dependency graph
between the effects of an operator and the preconditions of
another operator. For an operatap, let prestate(oppe a
state which satisfigsre(op),the preconditions abp, and let
poststate(ophbe the state occurring after applyiog at
prestate(op) poststate(op)s calculated by the operation:
prestate(op) + add(op) - del(op) The domain theory is

r]structurally represented as a directed graphs (V, E),

whereV = {op,, ..., o} andE={ey, ..., §}. An edgey; & E
connects one operatoop to another operatoop if

poststate(op satisfiespre(op). g; indicates thabp can be
always applied immediately aftep was applied.

Let's consider a set of operatoopen-dr, close-dr, lock-dr,
and unlock-dr. There is an arc fronopen-drto close-dr
because applying close-dmalys satisfies the prendition

of open-dr, and we can always open the door immediately
afterclose-dris applied. Since there is an arc frapen-dr

to close-dras well, there is a cycle composedabse-dr
andopen-dr Similarly, there is a cycle composed dbck-

dr andunlock-dr.However, there is no arc frocfose-drto

What does it mean th&ual(op)adds whabp deleted and
deletes whabp added? Since the adding and deleting of a
literal to a state is the opposite operatiop,andDual(op)
constitute theoppositefunction. Two operators are defined
as opposite operatoi the add list of one operator is the
same as the delete list of the other operator and the delete
list of one operator is the same as the add list of the other
operator. The opposite operators undo the effects of each
other. For exampleadd(Open-dr)is {door-opey and
del(Open-dr) is {door-closedl, while add(Close-dr) is

lock-dr because if a robot does not hold a key yet, it needs to{door-closed} and del(Close-dr) is {door-open} Thus,

subgoal tgpick-upa key before it locks the door.

For ann-cycle a cycle composed of operators, an ae;
@+modn TOri =1, ..., n connect®p to 0P .1y man The arc
represents thaioststate(op satisfies the preconditions of
OP 1) mod » THUS, poststate(op obviously becomes

prestate(0R1) mod -

Theorem:A temporary operator bahgs to am-cycle

Proof) Let op be a temporary operator. Given
prestate(op) poststate(op)s obtained by applyingp to
prestate(op)If pre(op)still holds after applyingp, then
pre(op) C poststate(op). Thuspoststate(op)becomes
prestate(op)and there is an arc fromp to itself as a
vacuous self-loop. On the other hand pife(op)does not
hold after applyingp,thenpre(op) poststate(ofpet P =
{p1, ..., B} be the literals that existed iprestate(op)but
which disappear irpoststate(oplafter applyingop. To
apply op, a temporary operator, again to the object,
prestate(op) must be restored. Hence, there exists a
sequence of operatoog, ..., op that establisheB, where
op immediately followsop. Thus, there is a path fromp to
op.. Sinceop can be applied immediately after the sequence
of operators are appliedpoststate(of) must satisf
prestate(op)and there is an arc framp, to opo

As a special case of ancycle, a 2-cycle, composed of two
operators, forms a bipartite complete graph. For any two
operators forming a cycle, |IBual for an operator be the
function that returns the other operator in the paimpland

op form a cycle, Dual(op) is op and Dual(op) is op.
Dual(op) establishes thpreconditions thadp has deleted.
Restoring the preconditions is done by undoing the effects
of op, that is, by deleting what were added &dd(op)and
adding again what were deleted del(op) Recursively,
Dual(Dual(op)) which is actually op, restores the
preconditions of Dual(op) by undoing the effects of
Dual(op) Note that prestate(op) is the same as
poststate(Dual(op))andprestate(Dual(op))s the same as
poststate(op)We ca easily show that the add list of one
operator is the same as the delete list of its dual operator.
From the formulapoststate(op) = prestate(op) + add(op) -
del(op),we deducerestate(op) = poststate(opadd(op) +
del(op) which is the same gwestate(Dual(op)) - add(op)

+ del(op).Note that- add(op)functions as the delete list of
Dual(op) while '+ del(op)' functions as the add list of
Dual(op). Thus, we showed thatdd(op) = del(Dual(op)

anddel(op) = addDual(op).

Open-drandClose-drconstitute the opposite operators.
Note that two opposite operators are closely related to a
binary mutual exclusion relation (mutex) used in Graphplan.
Two actions in Graphplan (operators in our discussion) at
the same level are mutex if either 1) the effect of one action
is the negation of another action’s effect or 2) one action
deletes the precondition of another, or 3) the actions have
preconditions that are mutually exclusive. We conjecture
that if any two operators satisfy all three conditions, the
form opposite operators.

Using Opposite Literal for Simplificatio

We will show how to extract opposite literals from
opposite operators using an experimentation method and
use them to remove redundant negative preconditions.

Let op andop be opposite operatowrdd(op) is opposite to
add(op), andadd(op) = {p,, ..., B} contains a literal whic

is opposite to another literal Bdd(op) = {d,, ...,a. If &
literal p, € add(op) is the opposite concept to alitegpl—
add(op), a state{p, ~qg is feasible, buf{p;, q} is
inconsistent and it is not feasible as a state. To find the
opposite literals through experimentation, an initial sEate
is set agp;} in{p,, ..., p} one at atime, foreadh=1, ..., n

and then we insert int®each literal, from{qy, ...,q} one
atatime, fork = 1, ..., mWhen attempting to inseckto S

if {p;, g} is not possible and causes the state to charige
~p, resulting a unexpected stdtg, ~p}, theng, andp

are the opposite literals, andp, can be inferred frong,,
thus creating a rulg, — ~p. For example, supposeack-

dr andunlock-drare the opposite operators. Ladd(lock-

dr) be {locked}, andadd(unlock-dr)be {unlocked} If S =
{locked} is the initial state, addingnlockto S, {locked,
unlocked}is not possible and the state changes to a new
state {unlocked, ~locked} thus a ruleunlocked - ~
locke is learned by experiments.

In Graphplan (Brum and Furdi997), two propositions ar
mutex if one is negation of the other, or if achieving the
preconditions are pair-wise mutex. Note that if anytw
propositions satisfy both of the conditions, they form
opposite literals. Learning the opposite concept as a rule
simplifies an operator definition because a negative literal
can be inferred from a positive literal. For the noise-proof
preconditions of pickup {(arm-empty), ~(holding x),
(next-to robot box), (carriable box), a rule (arm-empty)

— ~(holding x) is learned, WISER can generate more
simplified preconditions ofpickup {(arm-empty), (next-to

robot box), (carriable box)} When applied as a Ourston D. and Mooney, R. J., Theory Refinement
preprocesso to anincomplete domain theory, this approach Combining Analytical and Empirical Mebds, inArtificial

of learning rules simplifies the domain theory as well a Intelligence,66, 1994.

makes the theory more complete. Pearson, D. J. Learning Procedural Planning Knowledge in
Complex Environment$h. D. Dissertation, University of
Michigan, Ann Arbor, Ml, 1996.

Smith, D.and Weld, D., Conformant Graphplan, in

. _ Proceedings of 15th Nat. Conf.,A998.

A planning domain theory represents an agent's knowledgeTge, K. S., and Cook, D. J. Experimental Knowledge
about the task domain. We presented a method to learn aAcquisition for Planning, inProceedings of the 13th
negative precondition to detect a problem in which |nternational Conference on Machine Learnin§96.
inconsistent operators candgplied tothe same state. Next, Tae, K. S., Cook, D. J., andHolder, L. B
from observing that a human can immediately detects an Experimentation-Driven Knowledge Acquisition fo
inconsistent state, we investigate a type of implicit human pjanning, to appear irComputational Intelligencel5(3),
knowledge, called opposite concept. First, weegate a 1999.

graph composed of two operator where one operator wang, X. 1995 Learning by Observation aPrhctice: An
deletes the other Operator’s preconditions and eﬁeCtS, and|ncrementa| Approach for P|anning Operator Acquisition,
then we show how to extract opposite propositions through in Proceedings of the 12th International Conference on
experimentation. The opposite operators and propositions Machine Learning1995.

are a special type of mutex used in Graphplan’s algorithm. weld, D. Recent Advances in Al Planning, to appeaklin
While mutex is a procedural inference and current systems Magazine 1999.

cannot understand the conceptradt, we conjecture that

understanding an opposite conceptuisdamental for an

agent to survive in the real world. We will implement and

test opposite concept as the next step and our human-

oriented system will become more intelligent.

Further Research and Conclusion

References

Benson, S. Inductive Learning of Reactive Action Models,
in Proceedings of the 12th International Conference on
Machine Learning1995

Brum, A. L. and Furst, ML., Fast Planning through
Planning Graph Analysis, in Artificial Intelligence 90(1-2):
281-300,1997.

Carbonell, J. G., Blythe, J., Etzioni, O., Gil, Y., Knoblock,
C., Minton, S., Perez, A., and Wang, X. PRODIGY:4 he
Manual and TutorialTechnical Report CMU-CS-92-150
Carnegie Mellon University, Pittsburgh, PA, 1992.

Craven, M. W. and Shavlik, J. W. Using Sampling and
Queries to Extract Rules from Trained Neural Networks, in
Proceedings of the 11th International Conference on
Machine Learning1994.

DesJardin , M. Knowledge Development Methods for
Planning Systems, iMAAI-94 Fall Symposium Series:
Planning and Learning: On to Real Applicatiork994.

Fikes, R. E., Hart, P. E., and Nilsson, N. J. Learning and
Executing Generalized Robot Plans, iArtificial
Intelligence3, 1972.

Gil, Y. 1992. Acquiring Domain Knowledge for Planning
by Experimentation. Ph.D. Dissertation., Carnegie Mellon
Univ.

Knoblock, C. A. Automatically Generating Abstractions fo
Planning, inArtificial Intelligence,68, 1994.

Minton, S. Learning Search Control Knowledge: An
Explanation-Based Approach, Kluwer Academic
Publishers, Boston, MA, 1988.

