
Function Modeling Based on

Interactions of Mass, Energy and Information

Yang Bo and Filippo A. Salustri

Industrial and Manufacturing Systems Engineering
The University of Windsor, Windsor, Ontario, N9B 3P4, Canada

yang2@uwindsor.ca
salustri@uwindsor.ca

Abstract
The authors are working towards a universal product model
theory that captures essential aspects of designed product rep-
resentation. In a previous paper, Salustri established the basis
of a theory of function modeling that could be integrated into
the universal product model theory. The current paper ex-
pands on that work by establishing a small set of primitive
function types in terms of basic interactions between mass, en-
ergy, and information. It is found that function is intimately
coupled to many other aspects of product modeling, including
ontology, mereology, and context logic. The authors believe it
can represent most (perhaps all) product functions. Some im-
plications of the framework for knowledge representation and
for product modeling are discussed.

Introduction

The ultimate goal of the authors’ research is to develop
an integrated, logically rigorous knowledge representation
for engineering design, including taxonomic and ontologic
structure, function representation, and contexts of usage.
This framework, called the Axiomatic Information Model
for Design (AIM-D), is discussed in detail elsewhere [Sal-
ustri 1996]. AIM-D is intended to be useful at any stage of
any design process. Therefore, knowledge about product
function must be represented within the framework.

Many other researchers have identified the importance
and relevance of function modeling, but a well-defined and
universally accepted definition of the term function does
not yet exist.

The current work builds on a function modeling frame-
work proposed in [Salustri 1998]. The authors propose
that function is an interaction between three fundamental
kinds of entities: mass, energy, and information. This for-
mulation leads to a small, arguably complete taxonomy of
primitive functions, from which arbitrarily complex func-
tion descriptions can be developed. The authors’ approach
has yet to be formalized within the general logical frame-
work of AIM-D. However, the outline presented here
clearly defines the range and scope of the representation,
and appears to be sufficient to represent many functions.

 Copyright  1999, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

The rest of this paper is organized as follows. First, a
brief discussion of the background work by Salustri is
given. Then, a new definition of function intended to mo-
tivate our model of product function is introduced. The
model itself is then presented, with comparisons to some
other approaches found in the literature. Various reasoning
tasks to which our model may be applied are then de-
scribed, as well as the interrelations between function and
other aspects of product modeling. Finally, concluding
remarks and directions of future work are presented.

Background

This paper builds on the work presented in [Salustri
1998]. In that work, function and behavior are not seen as
fundamental characteristics of real-world objects, but as
descriptions of those characteristics that are dependent on
the reference frame of the user of that information. From
this observation, it is shown that a function in one context
can be a behavior in another context, leading the author to
propose that function and behavior are different views of
the same thing, and thus should be uniformly represented
in knowledge-based systems (KBSs).

Furthermore, [Salustri 1998] provides the basis of a rep-
resentational form for so-called predicative descriptions
(i.e. function or behavior). A verb-object pair (VOP) is
suggested for this purpose. The verb part is intended to
capture the active, dynamic part of the function, and the
object part is intended to capture some notion of the entity
upon which the function acts. It is then shown that ab-
straction can occur on both the verb and the object parts.
While this kind of coupling makes some reasoning tasks
(like subsumption) much more complex, it also provides a
very rich expressive form for function and behavior.

[Salustri 1998] only sketches the model in preliminary
terms. In the current paper, those ideas are pursued fur-
ther, with particular emphasis on the identification of fun-
damental function types.

Function Definition

There are various, often conflicting, definitions of func-
tion in the literature; no universally accepted definition is

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

currently known. A brief review of some of these defini-
tions is germane to the later sections of this paper.

Definitions from the Dictionary
Dictionaries can provide naïve, but useful, definitions.

With respect to products, function is defined as (1) “a natu-
ral or usual purpose (of a thing)” and (2) “the way in which
something works” [Longman 1987]. A purpose implies
some intention or goal on the part of a designer or user;
some researchers (e.g. [Prabhakar and Goel 1997]) have
used this aspect in their work. The second definition sug-
gests an explanation of a product’s operation; though rare
in the function modeling literature, this too has been used
(e.g. [Salustri 1998]).

Though insufficient for our technical purposes, even a
dictionary definition can provide some clues of what is
most commonly held to be the meaning of function.

Definitions from the Technical Literature
The authors have found that definitions in the technical

literature can be grouped coarsely into three categories.
The first category typified by [Prabhakar and Goel

1997a], has already been mentioned: function deals with
the purpose of a product as intended by the designer. The
problem here is that such definitions are cognitive rather
than physical. While work in the cognitive aspects of de-
sign is very important, the current authors are more inter-
ested in establishing a basis for function rooted in reality
rather than in our perceptions of it.

The second category of work treats product function as
an effect on the environment of the product (e.g. [Chandra-
sekaran and Kaindl 1996].

The third category, exemplified by [Qian and Gero
1996], defines function as relationships between inputs and
outputs of energy, mass, and information, or as changes in
the fluxes thereof. This category is most closely related to
the definition used by the current authors.

Clearly, each of these definitions has some aspects of
worth, yet none are comprehensive enough to capture the
fullness of definition that is desired.

A New Model of Function

The authors’ research is working towards a more com-
prehensive and formal definition of function. Our current
working definition is as follows:

A function is any mechanism by which transformations
from one basic element - mass (M), energy (E), or in-
formation (I) - to another occurs in an entity, in re-
sponse to environmental stimuli.

That is, the function of a product describes all possible
interactions between a product and its operational envi-
ronment. Clearly, aspects of other definitions are present
here.

The notion of identifying mass, energy, and information
as basic elements has been very popular since it was first
proposed [Rodenacker, 1971], and has withstood great
scrutiny by many researchers. Its stability in this regard
makes it very attractive to the authors, especially as the
foundational layer of our emerging structure.

Function Types
If functions only occur between the basic elements, then

there are only nine basic types of product functions. These
types are enumerated in Table 1, where each row repre-
sents an initial state, each column represents a final state,
and a cell describes a typical transforming function type.
Each type is identified with a descriptor (in bold) and an
example. Many different functions may fit into one cell.
For example, the function in the M-M cell represents the
movement of a mass, but M-M functions also include those
that change the amount of mass in an entity (e.g. to fill or
to empty or, more generally, to store).

The organization of each function type in Table 1 is a
matter of on-going research. The selection of descriptors is
itself problematic; for example, to store could be a valid
descriptor for a M-M function, as described above, or for
an I-I function such as storing information in a program. A
more fundamental open issue in this regard is whether the
use of the same descriptor for functions of different type
(such as to store) indicates a true similarity of the functions
or rather a cognitive or even linguistic artifact.

Another point of interest is the difference between func-
tion types that lie on the diagonal in Table 1 and those that
lie off it. The diagonal types appear to be those that affect
the characteristics of a thing without affecting its basic
identity (e.g. mass remains mass). The function types off
the diagonal seem to be those that can change both char-
acteristics and basic identity. The implications of this ob-
servation are not clear at this time, but will be investigated.

Comparison to Other Approaches
Here we briefly compare our approach to function types

to the some other approaches in the literature.
[Achinstein 1983] recognized three types of functions:

design functions, usage functions, and service functions.
This categorization is rooted in the cognitive roles played
by designers and users, and as such falls outside the scope
of the current authors’ work, which focuses on inherent
product function.

[Lind 1994] divided functions into two types:
• Mass and Energy function: There are six sub-type func-

tions within this catalog. They are “source”, “sink”,
“storage”, “balance”, “transport” and “barrier”.

• Action function: There are four sub-type functions
within this catalog. They are “maintain,” “destroy,”
“produce,” and “suppress.”

The authors question the necessity of having sources and
sinks, which are concepts taken from systems engineering.
From an engineering perspective, the universe is a closed
system. Sources and sinks are convenient approximations

that mark system boundaries, but we do not believe they
are fundamental function types in any physical sense.
Sources and sinks will be dealt with by other modeling
constructs in the overall product model theory (AIM-D) of
which the current work is a part. In addition, Lind’s ap-
proach does not account for the inherent coupling between
function and the object(s) upon which the function acts.

[Keuneke 1991] classified functions into four types: to
make, to control, to maintain and to prevent. [Sasajima et
al. 1995] uses the same form but add a new to enable type.
Though substantially different from others, this approach,
like Lind’s, still does not recognize the coupling between
functions and objects. Furthermore, due to their relatively
abstract nature, it is difficult to use induction to argue that
the list is complete: Sasajima et al. found it necessary to
add a new function type four years after Keuneke’s origi-
nal work.

Overall, the authors believe a reasonable argument can
be made for the completeness of our approach. Our read-
ing of the literature suggests that categorizations of func-
tion in other research have been constructed in an inductive
fashion, on the premise that it is impossible to enumerate
a-priori all possible functions. In our approach, all the
primitive functions arise out of a very small, very stable set
of primitive entity types (i.e. mass, energy, and informa-
tion). We find it hard to imagine a fourth entity type being
suddenly discovered. Though this certainly does not mean
our model if verifiably complete, it does suggest that its
completeness is more likely than other approaches.

Table 1: Types of Product Functions
M E I

M

To move: mo-
tion of one
gear causes
another gear to
move.

To power:
burning fuel
gives off energy.

To activate:
closing a
switch sends
a signal.

E

To energize:
the volume of
a heated fluid
increases.

To convert: a
wire carrying a
current radiates
heat.

To detect: a
photocell re-
sponds to
light with a
signal.

I

To actuate:
controller sig-
nals a robot to
move.

To regulate:
Amplifier output
is controlled by
received signal.

To transfer:
digital to
analog con-
version.

Representing Product Function
The application of the product function model to KBSs

for design is a fundamental aspect of the authors’ work.
To that end, we now consider one possible KB scheme for
our function model.

A function specification (FS) has six attributes:

• Function descriptor – a specification, in the form of a
verb, of the type of function (bold terms in Table 1);

• Input descriptor – the name of an object or type of ob-

ject typical of the input used by the function or the
initial state necessary for the function to occur;

• Output descriptor – similar to the input descriptor, but
typical of the output or final state;

• How link – a reference to another FS describing the sub-
functions needed to obtain the given one.

• Why link – the inverse of the how link.
• Value – the magnitude and direction of the function.

Each descriptor is represented by a term denoting a
knowledge item. The terms’ denotations are retrievable by
an appropriate query engine. The FS itself would be
named by a term. This scheme is easily implemented in
many kinds of systems, including object-oriented systems
like Java and description logic languages like CLASSIC.

The how and why links are used to connect function
specifications into a function/behavior tree. This aspect is
taken directly from [Salustri 1998].

The knowledge items denoted by terms would be ar-
ranged to form a specialization hierarchy. In order to re-
main consistent with our model, per Table 1, that taxon-
omy would have to contain “primitives” for mass, energy,
and information, that represent the most general descrip-
tions of things that provide functions.

The terms denoted by the function descriptors would be
arranged in a specialization hierarchy also. However, this
hierarchy is based on verbs or actions rather than nouns or
things. It is unclear at this point what abstraction mecha-
nism(s) are best suited for development of this taxonomy.

The representation shown here would couple the hierar-
chies of objects/things and actions/verbs, providing a link-
age for reasoning engines to perform a variety of tasks,
some of which are discussed briefly in the next section.

Potentially Supported Reasoning Tasks
The goal of any knowledge representation is to enable

and facilitate automated and semi-automated reasoning
processes. In this section, we introduce some of the rea-
soning tasks that the authors eventually intend to imple-
ment using our function model. This is not an inclusive
list, but it does indicate the potentially broad application of
our function model. For the sake of this presentation, we
assume there exists an ontology of functions and objects
for some particular application domain. Though the devel-
opment of such an ontology is clearly problematic, it is be-
yond the scope of the authors’ current work.

Function retrieval. Given some product that has been
described in structural terms (i.e. in terms of parts and
properties), we envision an automated system to “extract”
functions. The system would match patterns of connec-
tivity of parts in the structural description to the ontology
relating object terms in the function specifications. It
would then extract the functions provided by those patterns
and suggest them as possible functions of the initial prod-
uct. Such a system could be used to extract function in-
formation from “legacy” product models, or to verify that a
product provides all the functions it is supposed to provide.

Function Decomposition. Functional analysis com-
monly proceeds by decomposing coarse-grained functional
requirements usually provided at the outset of a design
process into more fine-grained functional specifications.
This decomposition may be aided by way of our model.
For example, consider an automobile engine whose top-
level functional requirement is to convert fuel (mass) to
energy (i.e. a power function, per Table 1). There are three
function types able to provide mass on their outputs: move,
energize, and actuate functions. Furthermore, three func-
tion types use energy as inputs: energize, convert, and de-
tect functions. Therefore, the framework can provide
guidance for designers performing functional decomposi-
tion without placing unnecessary constraints upon them.

Case-based reasoning. An ontology of function speci-
fications provides the foundation for creating a case library
for a function-oriented case-based reasoning engine. This
engine would be able to advise designers about potential
structural descriptions of functionally stated design prob-
lems, based on similarities to cases in the library. This
kind of system could be used during the early, upstream
stages of a design process to suggest design concepts based
on past experience of an enterprise.

This is of particular importance for routine or variant de-
sign tasks. The cases matched by the reasoning engine
could represent alternative variations of existing designs,
where the variations are developed by attempting to recon-
cile differences between function specifications of the
given design problem with respect to cases in the library.

Top-down functional design. The KBS into which the
authors’ function model will be incorporated allows speci-
fication of partial knowledge (details to be presented in a
forthcoming paper). Being able to represent partial func-
tion descriptions means that top-down development of
functional specifications of products – again, very useful in
the early stages of a design process – is possible. This kind
of support can stimulate creative design by allowing de-
signers to focus on exploring functionality separate from
the structures that will provide those functions in a final
product.

Explicating Customer Requirements. It is often the
case that establishing customer requirements of a product
is an iterative process involving designers, manufacturers,
(representatives of) the client, and other specialists. The
authors believe that a KBS supporting fully integrated
function modeling could allow this process to occur in a
more timely and effective manner in two ways. Firstly, it
provides a framework for posing descriptions of functional
requirements. Secondly, it allows straightforward transla-
tion of those requirements into KB systems that can be
used to develop product models. We intend to pursue this
matter more fully, once the model has been more fully de-
veloped.

Other Relevant Concepts

One of the authors’ basic research goals is to develop an
integrated theory of all aspects of product models. It is
therefore necessary to examine the interrelations between
our function model and other aspects of product modeling
that are or will be incorporated into the overall theory.

Structure
Various methodologies are identified in the literature for

mapping function to structure. For example, [Keuneke,
1991] advocates a two-pass process. In the first pass, the
result of function decomposition is used to identify a com-
ponent for each lowest-level function to be provided. In
the second pass, these components are reorganized and in-
tegrated into the parts of the product. Based on our reading
of the literature, the authors believe any of these method-
ologies can be constructed around our model; that is, the
model is a representation that does not present unreason-
able constraints on processes that may use it.

Context
“The main motivation for studying formal contexts is to

resolve the problem of generality in AI. Context elimi-
nates certain ambiguities or multiple meanings in the mes-
sage.” [Akman and Surav, 1996].

Contexts are crucial in our model because they imple-
ment the mapping between terms used to name functions,
and the objects and types within function specifications.
When many designers work on the same design, there will
invariably be mismatches between what they know and the
names they use to identify those items of knowledge. This
is also true of software agents of every sort. By explicitly
incorporating context logic into our overall theory, the
authors are providing support for multiple definitions of
terms within the theory and, by extension, within KBSs
implementing the theory.

In particular, making the theory context-sensitive will
provide support for the arbitrary naming of functions and
components of function specifications, while ensuring that
the knowledge in those specifications can be transmitted
between agents (human or otherwise) in a reliable fashion.

Mereology
Mereology is the branch of logic dealing with the study

of part-whole relations. Insofar as parts and wholes are
fundamental concepts in engineering, mereology is an es-
sential aspect of product model theory. Function decom-
position requires a mereological relationship. Furthermore,
function defines the role that an object plays in a larger
system as well as the way that the physical structure of the
object responds to external stimuli. That is, function re-
lates an object’s physical structure (parts) to systems that
contain it (wholes). Thus, function and mereology are
tightly coupled concepts. Salustri and Lockledge (1999)
are currently working towards a formalization of mereol-
ogy that will be consistent with the current work herein on

function modeling.

Completeness versus Validity
The authors’ model of function is not yet formalized.

However, the authors offer an informal argument to sup-
port our contention that our representation is complete.
Our model enumerates completely the possible function
types based on binary combinations of the basic elements
(ternary and other combinations can be constructed from
these). All functions must be classifiable into one of the
nine types in Table 1. This argument assumes that there
are only three basic elements. Although the authors cannot
imagine others, this is not sufficient for a formal proof.
We hope to make headway in this regard in the near future.

Further Work

Substantial work remains to be done on this model. One
of the authors, Yang, is pursuing its development as a
graduate level thesis. Some important open issues include:

Canonicalization of Function Types. Some of the
open issues regarding the proposed representation of func-
tion types (Table 1) have already been discussed; these is-
sues indicate that some of the nine basic types could be de-
rived from others. Determining if this is indeed the case
will depend on further study of our domain of interest (en-
gineering design), and the kinds of ontological commit-
ments needed to integrate the function model into AIM-D.

Relations between Function Types. Clearly, relation-
ships exist between the function types in Table 1. For ex-
ample, move functions will typically require power func-
tions to provide the energy for motion. The authors intend
to seek a categorization of these relationships. This could
aid in the development of tools to support function-based
reasoning tasks (such as case-based reasoning).

Improving Computational Efficiency of KBSs. The
eventual goal of this work is to develop a KBS for design
engineers that will include function representation and rea-
soning facilities. In order to do this, however, various
computational issues (such as subsumption and decidabil-
ity) ought to be examined, to determine the limits of com-
putations that can be reasonably carried out in a system in-
corporating our function model.

Representing Intention/Purpose. It is typical of many
engineering disciplines to consider design intent as a sub-
set of product function. In keeping with this perspective,
we hope to study design intent after the function formalism
proposed herein has matured.

Acknowledgement

The authors gratefully acknowledge the National Sci-
ences and Engineering Research Council of Canada for

funding this work under grant number OGP0194236.

References

Achinstein, P. 1983. The nature of explanation. Oxford:
Oxford University Press.

Akman, V., and Surav, M. 1996. Steps toward formalizing
context. AI Magazine 17(3):55-72.

Chandrasekaran, B., and Josephson, J. R. 1996. Repre-
senting Function as Effects: Assigning Functions to Ob-
jects in Context and Out, AAAI Workshop on Modeling and
Reasoning with Function, pages 30-37.

Chandrasekaran, B., and Kaindl, H. 1996. Representing
Functional Requirements and User-system Interactions.
AAAI Workshop on Modeling and Reasoning about Func-
tion, pages 78-84.

Keuneke, A. 1991. Device Representation, IEEE Expert,
April, pages 22-25.

Lind, M. 1994. Modeling goals and functions of complex
industrial plants. Applied Artificial Intelligence 8:259-283.

Longman World Publishing Corp. 1987. Longman Dic-
tionary of Contemporary English.

Prabhakar, and Goel. 1997. Addressing Incompleteness of
Device Models by Adaptable Function Modeling of De-
vices for Operating Environments. To appear in Artificial
Intelligence in Engineering. Elsevier Applied Science.

Qian, L. and Gero, J.S. 1996. Function-behavior-structure
Paths and their role in analogy-based design. Artificial
Intelligence for Engineering Design, Analysis and Manu-
facturing 10:289-312.

Rodenacker, W. 1971. Methodisches Konstruieren. Berlin:
Springer-Verlag.

Salustri, F.A. 1996. A formal theory for knowledge-based
product model representation. In Knowledge-Intensive
CAD II: proceedings of the IFIP WG 5.2 workshop.
Chapman & Hall.

Salustri, F.A. 1998. Function Modeling for an Integrated
Framework: a Progress Report. Proc. FLAIRS-98.

Salustri, F. A. and Lockledge, J. C. 1999. Towards a For-
mal Theory of Products Including Mereology. To appear,
Proc. 12th Int’l Conf. on Engineering Design.

Sasajima, M., Kitamura, Y., Ikeda, M., and Mizoguchi, R.
1995. FBRL: Function and behavior representation lan-
guage. Proc. IJCAI-95, pages 1830-1836.

