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Abstract

The concept of space underlying geographic informa-
tion systems is basically Euclideazl, requiring all sub-
jects to adhere to the same view of space. This makes
most attempts to deal with intprecise or uncertain geo-
graphic information difficult or sometimes even impos-
sible. In this paper, we describe a way of incorporating
imprecise qualitative spatial reasoning with quantita-
tive reasoning in geographic information systems that
is not restricted to Euclidean geometry. The idea is
to use fuzzy sets to model qualitative spatial relations
among objects, like The downtown shopping mall is
close to the harbor. The membership function of such
a fuzzy set defines a fuzzy distance operator, for which
a new algorithm is introduced in this paper.

Introduction
Although geographic information systems (GIS) have
been around for quite a while (Coppock & Rhind 1991),
there has been little change in the functionality of the
systems. In spite of their name, geographic informa-
tion systems have so far been mostly geometric in na-
ture, ignoring the thematic and temporal dimensions
of geographic features (Molenaar 1996; Sinton 1978;
Usery 1996). Various attempts to overcome these lim-
itations are documented in a number of disciplines.
(Frank 1992; Goodchiid 1992; Gupta, Weymouth, 
Jain 1991; Herring 1991; 1992; Raper & Maguire 1992)
deal with extensions of the data model, while Allen’s
work forms the basis for numerous temporal logic en-
deavors that deal with dynamic aspects of geographic
information (Egenhofer & Golledge 1997; Frank 1994:
Peuquet 1994). Applications of fuzzy techniques are
most commonly found in remote sensing literature
but (Altmann 1994; Brimicombe 1997; Molenaar 1996;
Plewe 1997) provide examples that the inherent fuzzi-
ness of geographic features becomes increasingly ac-
knowledged in geographic information science as well.

The way in which GIS perform spatial reasoning, i.e.,
the extraction of new information from stored spatial
data, has been quantitative in nature. On the other
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hand, humans ohen prefer a qualitative analysis over a
quantitative one, as this is more adequate in many cases
from the cognitive point of view (Clemcntini, Di Felice,
& Hern,4.ndez 1997). In the following, we will look at 
new way of expressing spatial proximity in a qualitative
way.

The notion of qualitative reasoning stems originally
from artificial intelligence and has been applied to
spatial phenomena for about a decade (Freksa 1990;
Guesgen 1989: Hernfindez 1991; Mukerjee & Joe 1990).
It has become well established with conference series
such as COSIT and the European research initiative
SPACENET. The notion of proxitnity as introduced
in this paper builds on well-established concepts from
qualitative spatial reasoning, in particular the applica-
tion of filzzy sets. In the following, we will briefly review
these concepts.

Quantitative vs. Qualitative Reasoning

We assume the reader to be familiar with the traditional
form of spatial reasoning as it underlies every GIS-based
analysis. In essence, it uses map overlay to compute
new maps from existing ones. For example, if we want
to find a suitable location for a new city dump given
certain constraining factors like The dump must be at
least 500 meters from any water, we would select all
areas of water, buffer these areas by 500 meters, and
overlay the resulting map with maps corresponding to
other constraints.

This form of quantitative spatial reasoning delivers
precise results, but is often too rigid and therefore not
applicable to scenarios like the city dump scenario. The
reason is that quantitative statements like All locations
that are more than 500 meters from water may eventu-
ally result in all empty map, as they restrict the search
space too dramatically by excluding any areas, for ex-
ample, which are 490 meters from water. Such an area,
however, might be the best choice available and there-
fore perfectly acceptable.

This probleln can be solved by using qualitative spa-
tial statements rather than quantitative ones. Instead
of All locations that are more than 500 meters from wa-
ter, we wouhl employ the restriction All locations that
are far from water. The system would then analyze
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the qualitative relation .far ‘from that is used in this
restriction and would find the areas that best match
this restriction and that are compatible with the other
restrictions.

To achieve this goal, we interpret spatial relations
among objects as restrictions on linguistic variables
which represent spatial information about the objects.1

Consider, for example, the position xn of some object
A in the city. A qualitative approach would specify ZA
in terms of qualitative values like near church, at har-
bor, downtown, etc. This approach can be translated
directly into an approach using linguistic variables.

Informally, a linguistic variable is a variable whose
values are words or phrases in a natural or artifi-
cial language. The values of a linguistic variable
are called linguistic values. For example, the po-
sition of A can be represented by a linguistic vari-
able XA whose linguistic values are from the domain
L(XA) = {downtown, near church, at harbor .... }. To
express spatial information, we introduce restrictions
on the values of the linguistic variables that repre-
sent these relations. For example, if A is either down-
town or at the harbor, we restrict the value of xa to
R(X A) = {downtown, at harbor}.

Spatial relations between objects can be represented
by restrictions on composite linguistic variables. For ex-
ample, the spatial relation between two objects A and
B can be represented by introducing a binary compos-
ite variable (xa, xB), the values of which are from the
domain L(XA,XB) = L(XA) x L(xn), and a restriction
R(zA, XB) C_C_ L(ZA) L(xB) onthevalues of ( XA,xn).
In other terms, a spatial relation is a relation on lin-
guistic variables representing spatial information.

Linguistic variables provide us with a convenient
means to express qualitative spatial relations. However,
they alone aren’t sufficient to integrate qualitative and
quantitative spatial reasoning. Only when combined
with fuzzy sets, they allow us to add quantitative as-
pects to the qualitative ones. The next section will
discuss this issue.

Fuzzy Sets

Fuzzy spatial reasoning is a method for handling differ-
ent types of uncertainty inherent in almost all spatial
data. Most often, it is employed for dealing with clas-
sification errors (Chrisman 1991; Goodchild & Gopal
1989) and the imprecision of boundaries (Leung 1987;
Plewe 1997), although as early as 1985, (Robinson,
Thongs, & Blaze 1985) introduced a representation lan-
guage based on fuzzy logic to process natural language
queries on geographic data. A fuzzy subset /~ of a
domain D is a set of ordered pairs, (d, ph(d)), where
d E D and #h : D -+ [0, 1] is the membership function

1This step is just a shift in terminology rather than an
introduction to a new reasoning method. The motivation
for this step is the attempt to stay within the terminology
used in fuzzy set theory.

of R. The membership function replaces the character-
istic function of a classical subset R C D, which maps
the set D to {0, 1} and thereby indicating whether an
element belongs to R (indicated by 1) or not (indicated
by 0). If the range of/JR is {0, 1}, /~ is nonfuzzy and
ph(d) is identical with the characteristic function of 
nonfuzzy set.

Fuzzy sets can be used to associate quantitative in-
formation with qualitative one. Consider, for exam-
pie, a linguistic value like downtown. We can associate
this qualitative value with a fuzzy set that characterizes
for each coordinate on some given street map to which
extend this coordinate represents some location down-
town. Assuming that D represents the possible coor-
dinate (usually a set of character-digit combinations),
downtown may be represented by a fuzzy set such as
the following:

[¢ = { (M5, 1), (M4,0.8), (L5,0.8) .... (L4,0.7),...}

In other words, each location on the city map is consid-
ered to be more or less downtown. If its membership
value equals 1, the location is definitely downtown. If
it equals O, then it isn’t downtown at all. If it doesn’t
cause any confusion, we denote a fuzzy set as follows:

h = ~ (d, I~h(d))
dED

In general, the fuzzy set corresponding to a spa-
tial linguistic value may be a continuous rather than
a countable or even finite set. For example, the spatial
linguistic value illuminated, which specifies that an ob-
ject is near some light source, may be associated with
a fuzzy set R in the domain of real numbers, R. An
element d G ~ then indicates the distance of the object
to the light source. If the distance is O, then the object
is definitely considered to be illuminated. The greater
(the square of) the distance to the light source, the less
we consider the object to be illuminated. Since/~ is a
continuous set, we denote it as follows, assuming that
ph(d) = 1/(1 + d2):

Using the inference rules of fuzzy set theory, we are
now able to deal with a new type of GIS query. Instead
of producing map overlays in the traditional way, we
compute the intersection, union, and negation of filzzy
sets. This allows queries like the following:
¯ Name two neighboring places, at least one of which

offers good job opportunities while the other one has
superb recreational properties.

¯ Name combinations of work and residence locations
offer good shopping opportunities on an acceptable
commuting route.

Distance and Proximity Measures
There are numerous studies over a wide range of dif-
ferent data domains, including geographical space, of
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how humans make subjective judgements regarding dis-
tances. According to (Gahegan 1995), the human per-
ception of closeness or proximity is influenced by the
following:

1. In the absence of other objects, humans reason about
proximity in a geometric fashion, b~lrthermore, the
relationship between distance and proximity can be
approximated by a simple linear relationship.

2. When other objects of the same type are introduced,
proximity is judged in part by relative distance, i.e.,
the distance between a primary object and a reference
object.

3. Distance is affected by the size of the area being con-
sidered, i.e., the frame of reference.

Proximity measures in spatial reasoning nmst behave in
a way that follows the human perception of proximity.
Otherwise, the result of the GIS is counterintuitive and
therefore unreliable.

The most intuitive form of reasoning about proximity
is based on the absolute (or physical) distance between
objects. Absolute distance is the major factor that af-
fects proximity. It is commonly defined by a symmetric
Euclidean distance matrix, in which an entry 6(A, B)
specifies the distance between an object ,4 with coordi-
nates (XA,YA) and B with coordinates (xu,yn):

6(A,B) = V/(xa - XB)~" + (YA -- YB)2

Euclidean distance can be used to calculate a degree
of proximity between any primary object C with coor-
dinates (xc,Yc) and a given reference object A with
coordinates (xA,YA). This degree can then be used 
define a fuzzy set/SA of primary objects that are in the
proximity of A:2

In (Guesgen & Pooh 1997), it is shown how this ap-
proach can be extended to queries referring to a class of
reference objects rather than a particular object, like a
place close to a waste dump as opposed to a place close
to the town hall. This type of query is commonly found
in applications like resource planning and allocation.

Proximity without Euclidean Distance
So far we have assumed that the Euclidean distance
is used as the basis for calculating fuzzy membership
grades. This assumption is unnecessary, as any other
distance measure can serve the same purpose. More
than that, we can define proximity without any distance
measure at all by using the notion of fuzzy sets. Given a
set of primary objects {Bl, B2, ¯ .., Bn} and a reference

2The membership function used here is very similar to
the nearness function introduced hy Worboys (Worboys
1906).

414 GUESGEN

Figure 1: Proximity illustrated as set of neighborhoods.

object A, the proximity of A is a fuzzy set /~A over

{B1, B2 .... , B.}:

/5"4= Z (B" ~/’a (B’))

For example, given a reference object A and a set of pri-
mary objects {B, C, D, E, F, G, H}, then the proximity
of A may be defined as follows:

PA = iV, l) + <B,o.8) + (E,0.8)+
(C, 0.6) + <F, 0.4) + <D, 0.4) + (H, 

PA defines a set of neighborhoods, each neighborhood
containing the primary objects that have a fuzzy mem-
bership grade of at least a, where a E {0.4, 0.6, 0.8, 1}.a

Figure 1 shows the neighborhoods for the example
graphically.

Since membership grades are ranging over real num-
bers (in the interal [0,1]), we can perform a simple form
of reasoning about the proximity of objects without ad-
ditional requirements:

If

B is closer to A than C and
C is closer to A than D

then

#pa(B) </~$,~(C) and ~a(C) < 
which implies

/~@A (B) < #PA (D)
which means that

B is closer to A than D

This form of reasoning stays within the scope of a sin-
gle reference object. Even more useful, however, might
be reasoning involving several reference objects. In this

Sin the fuzzy set literature, these neighborhoods are usu-
ally called a-level sets.
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Figure 2: Classes of proximities.

case, we might want to ensure that the reasoning pro-
cess does not lead to contradictions. In particular, we
might want to require that, for any three objects A, B,
and C, the proximities of these objects are consistent
with each other. One way to guarantee such co,sis-
tency is by imposing the following transitivity rule oll
any objects A, B, and C:

If

P[’A (B) < #PA (C) and P/’8 (C) < PPB (A)

then

~pc (B) < upc (A)
If the proximities are defined by using a distance mea-

sure, then this rule holds for any three objects A, B,
and C. In other cases, the transitivity rule might not
be applicable in general. For example, determining the
distance of a location on the basis of what it costs to
make a long-distance phone call to that location might
differ from reference point to reference point, as differ-
ent countries and phone companies have different rates.

A sufficient (but not necessary) condition for the ap-
plicability of the transitivity rule is the symmetry of
proximity:

For all objects A, B: #PA (B) = p/,~ (A)

If proximity is symmetric, we can easily show that the
right-hand side of the transitivity rule holds whenever
the left-hand side is true:

~c (B) = ~B (C) < u~ (A) 
PPA (B) PkA (C) = PPc (A

Figure 2 summarizes how proximities might be re-
lated with each other by introducing a hierarchy of
classes. The largest class in this hierarchy represents
the most general case, in which we cannot make any as-
sumptions about the relationships among proximities.
The next class requires tile transitivity rule to be appli-
cable. This can be achieved by using symmetric prox-
imities, which leads us to an even tighter class in the
hierarchy. Within this class, we can find the proximities
that are defined on the basis of a distance measure.

Summary

Qualitative reasoning is reasoning in terms of linguis-
tic values, whereas quantitative reasoning is reasoning
based on numerical values such as measurements. Both
qualitative and quantitative reasoning are used by hu-
mans to deduce new information from given one. How-
ever, it is believed that there is a preference towards
qualitative reasoning, and that often some sort of trans-
lation takes place from quantitative to qualitative infor-
mation.

In this paper, we introduced a scheme of representing
qualitative spatial information by associating qualita-
tive relations with fuzzy sets. We extended the concept
of absolute distance to non-metric notions of proximity.
We proved that qualitative spatial reasoning is possible
in any form of space, and that symmetry of proxim-
ity is a sufficient condition for reasoning with several
reference objects to be consistent.
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