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Abstract
We present a formal framework for the description of order-
ing information on directed linear structures like trajectories
of moving objects. The foundation of this approach is an
axiomatic characterization of oriented curves. They provide
a generalized notion of direction. The proposed geometric
framework allows a qualitative characterization of oriented
curves without commitment to concepts of measurement.
The geometry of oriented curves is applied to reasoning
about the possibility of meeting of objects that move along
intersecting trajectories. To determine the possibility of
meeting is part of planning and scheduling tasks, e.g.
concerning systems of transport vehicles, as well as in the
task of avoiding collision. We show that the reasoning
system proposed here needs only one purely temporal
notion, namely that of simultaneity.

Introduction
The representation of knowledge about space and time and
about spatial and temporal concepts is a central topic for
areas of knowledge representation that investigate how the
structure of the represented domain affects knowledge
representation and how the structure can be exploited in
reasoning. One can thereby focus on different structural
aspects such as topology, ordering and distance, and, when
studying concepts and representations of motion, also ex-
plore the interaction of both structures (cf. Galton 1997).

In this article, we propose a calculus of oriented curves
that can be embedded in the framework of ordering geome-
try (cf. Schlieder 1995, Eschenbach & Kulik 1997,
Eschenbach et al. 1998).1 Oriented curves are a general
geometric device that can represent a variety of entities that
are both linear (i.e., contain no cycles and do not branch)
and directed (i.e., distinguish between start and end). Since
oriented curves need not to be straight, they capture the
idea of a generalized notion of direction.

Oriented curves can be defined in a geometric frame-
work without considering, e.g., mappings from time to
space. Therefore, they are basically atemporal. But as will
become clear, they allow non-temporal as well as temporal
interpretations. Oriented curves can, e.g., be taken as the
geometric specification of arrows in maps or diagrams, or
                                                          
1 The proofs of the theorems mentioned here are omitted
in this article (cf. Kulik & Eschenbach 1999).

any other linear and directed device in diagrammatic
reasoning.

The application of oriented curves discussed in this
paper is a temporal one, namely, the course of motion or
trajectory of an object. An oriented curve represents both
the collection of the positions occupied by the moving
object and the order of occupation of these places.
Although time is not represented explicitly, the effects of
temporal order on space can be captured. As will be
shown, the only purely temporal notion that is needed in
order to reason about the possibilities of meeting of
moving objects is the notion of simultaneity.

Representations of Courses of Motion
To represent time is to represent change and the order of
changes around us. Measurement of time is neither basic
for the notion of change nor for notions such as repetition
or periodicity. The formal framework introduced in this
article is accordingly not depending on concepts of meas-
urement of time and neither of space. It thereby fits in the
area of qualitative spatial reasoning (cf. Cohn 1997). The
results obtained on this basis are general, since they also
hold when the framework is enriched by information about
distance or angle.

Trajectories of moving objects exhibit several spatial
properties: They are connected, have shape, do not branch
and are directed. Furthermore, the individual positions
successively occupied by an object in the course of its
motion are represented as points, i.e., as spatial entities that
do not exhibit an internal spatial structure. Of course, this
assumption is a considerable restriction, since many natural
ways of movement—such as walking in contrast to running
and the rolling of a ball—are not captured in all respects by
this restriction. However, for many purposes like route
planning, one can abstract from these complexities as is
done by Mohnhaupt & Neumann (1989), Habel (1990),
Eisenkolb et al. (1998) as well, or represent the movement
of a spatially extended object by several (synchronized)
trajectories. Thus, the approach presented here comple-
ments the work in the area of qualitative kinematics that
focuses on the relative motion of extended object parts.

Representations of trajectories of moving objects are
traditionally based on mappings from time to space. In
contrast to this, Mohnhaupt and Neumann (1989) use
chains of coordinates, while Eisenkolb et al. (1998) pro-
pose a qualitative language to specify vector chains. The
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proposal of specifying trajectories on a geometric level as
oriented curves generalizes the approaches of Habel (1990)
and of Mohnhaupt and Neumann in that it does not require
an explicit representation of time. Oriented curves
generalize the idea of vector chains since they allow for
smoothly bent courses as well as abrupt changes in direc-
tion. However, the representation proposed here does not
include any notion of velocity as the ones of Mohnhaupt
and Neumann (1989) and of Eisenkolb et al. (1998) do.

One more critical restriction of the approach presented
here has to be mentioned. Oriented curves do not have
internal cycles and, thus, the simple trajectories represented
by them do not allow a point or sub-curve to be passed
through more than once. However standstill in one place
can be accounted for. More complex trajectories of objects
that pass through a point more than once can be repre-
sented as chains of simple trajectories. The individuation
and order of simple trajectories in a chain that constitutes a
complex trajectory is not generally describable on the basis
of spatial order and, thus, has to be expressed by additional
means.

A Geometry of Oriented Curves
The presented framework provides a geometric characteri-
zation for curves and ordering information on them. Since
one objective is to identify general characteristics of linear
structures in space, we develop a description of curves that
does not make any particular assumptions about the prop-
erties of curves, that is to say, whether they are smoothly
bent, have vertices, are rectifiable, etc. The main require-
ment is that they are linear in the sense that they can be
supplied with a total ordering structure. However, the
specification of the spatial embedding of curves is
unnecessary for our purpose. Therefore, only the necessary
part of the geometric framework is presented here (cf.
Eschenbach et al., 1998, Eschenbach & Kulik, 1997).

The formal framework is many sorted predicate logic
with identity. The geometric structure introduces three
types of entities and two primitive relations. The entities
are points (denoted by P, Q, P', P1, …), curves (c, c1, …),
and oriented curves (o, o1, …). The primitive relations are
the binary relation of incidence (denoted by ι) and the
ternary relation of precedence with respect to oriented
curves (%). We first give the characterization of curves
(that represent the collection of positions an object moves
through), then show how betweenness can be defined on
curves, and finally introduce oriented curves such that
every curve can be oriented in exactly two ways.

A Geometry of Simple Curves
A collection of definitions supply abbreviations of more
complex formulae in the following. A curve c' is part of
another curve c or its sub-curve (in symbols c' Ã c), if all
points of c' are incident with c. A curve c that has exactly
the points of curves c1 and c2 (see axioms (C8) and (C9)) is
called their sum c1 z c2.

c' ÃÃ c ⇔def ∀P [P ι c' ⇒ P ι c]

c = c1 z c2 ⇔def ∀Q [Q ι c ⇔ (Q ι c1 ∨ Q ι c2)]
Remark. Sum (z) is a partial operation: Two curves need
not have a curve as their sum since curves are connected
and do not branch. From this it follows, e.g. that curves
without a common point do not form a sum.

An inner point of a curve c is a point that is on two sub-
curves of c such that none of them is part of the other. An
endpoint of a curve is on the curve and not an inner point.
If a curve c does not have an endpoint, then it is closed.
Otherwise, it is open. Two curves c, c' meet at point P,
symbolized by meet(P, c, c'), if P is a common point of
them and all their common points are endpoints.

ipt(P, c) ⇔def ∃c1 c2 [c1 Ã c ∧ c2 Ã c ∧ P ι c1 ∧
P ι c2 ∧ ¬c1 Ã c2 ∧ ¬c2 Ã c1]

ept(P, c) ⇔def P ι c ∧ ¬ipt(P, c)

cl(c) ⇔def ¬∃P [ept(P, c)]

op(c) ⇔def ∃P [ept(P, c)]

meet(P, c, c') ⇔def P ι c ∧ P ι c' ∧ ∀Q [Q ι c ∧ Q ι c' 
⇒ ept(Q, c) ∧ ept(Q, c')]

Remark. This definition allows two curves to meet at both
ends.

Curves are strictly linear in that they do not include
internal cycles and do not branch. More precisely, accord-
ing to (C1) every proper sub-curve of a given curve is
open, and if three sub-curves of a given curve have one
endpoint in common, then one of the three sub-curves is
included in one of the others (C2).
(C1) ∀c c' [c' Ã c ∧ c' ≠ c ⇒ op(c')]

(C2) ∀c c1 c2 c3 [c1 Ã c ∧ c2 Ã c ∧ c3 Ã c ∧
∃P [ept(P, c1) ∧ ept(P, c2) ∧ ept(P, c3)] ⇒ c2 Ã c3 ∨

c3 Ã c2 ∨ c1 Ã c2 ∨ c2 Ã c1 ∨ c1 Ã c3 ∨ c3 Ã c1]
Every curve has at least one inner point, i.e. a point which
is not an endpoint of this curve (C3). Axiom (C4) states
that every inner point P of a curve divides the curve into
two sub-curves meeting at P.
(C3) ∀c ∃P [ ipt(P, c)]

(C4) ∀c P [ ipt(P, c) ⇒
∃c1 c2 [meet(P, c1, c2) ∧ c = c1 z c2]]

Curves have at most two endpoints (C5) and, if a curve has
one endpoint, then it has another one (C6). On the other
hand, if two curves meet and constitute a closed curve,
then they meet at all their endpoints (C7).
(C5) ∀c P Q R [ept(P, c) ∧ ept(Q, c) ∧ ept(R, c) ⇒

(P = Q ∨ P = R ∨ Q = R)]

(C6) ∀c P [ept(P, c) ⇒ ∃Q [ept(Q, c) ∧ P ≠ Q]]

(C7) ∀c c1 c2 P [cl(c) ∧ meet(P, c1, c2) ∧ c = c1 z c2 ⇒
∀Q [ept(Q, c1) ⇒ meet(Q, c1, c2)]]

If two curves meet at one endpoint, then there is a curve
that has exactly the points of the two given curves (C8).
Curves differ in the points they are incident with (C9).
Therefore, curves can be represented as sets of points,
although such a representation will not be employed here.



(C8) ∀c1 c2 [∃P [meet(P, c1, c2)] ⇒ ∃c [c = c1 z c2]]

(C9) ∀c c' [∀P [P ι c ⇔ P ι c'] ⇒ c = c']
The axioms given yield the following consequences. The
sub-curve relation is an order relation, and sum is mono-
tone with respect to it. Every open curve has exactly two
endpoints. If an endpoint of a given curve lies on a sub-
curve then it is also an endpoint of this sub-curve. Conse-
quently, inner points of sub-curves of any curve are inner
points of the curve. If two curves meet and their sum is
open, then the only point they have in common is their
meeting-point and the endpoints of the two curves that are
not the meeting-points are also the endpoints of the sum of
these curves.

Three theorems are especially important for the follow-
ing: (T1) For any two points on a curve there is a sub-curve
that connects these points, i.e. these points are the
endpoints of the sub-curve. (T2) Every proper sub-curve of
an open curve that has a common endpoint with the open
curve can be complemented by another curve so that their
sum constitutes the open curve. (T3) If two sub-curves of a
given open curve have a common endpoint, then the sub-
curves meet or one of them is included in the other.
(T1) ∀P Q c [P ι c ∧ Q ι c ⇒

∃c' [c' Ã c ∧ ept(P, c') ∧ ept(Q, c')]]

(T2) ∀c c1 P [c1 Ã c ∧ c1 ≠ c ∧ op(c) ∧ ept(P, c1) ∧
ept(P, c) ⇒ ∃Q c2 [meet(Q, c1, c2) ∧ c = c1 z c2]]

(T3) ∀c c1 c2 P [ept(P, c1) ∧ ept(P, c2) ∧ c1 Ã c ∧ c2 Ã c ∧
op(c) ⇒ (meet(P, c1, c2) ∨ c1 Ã c2 ∨ c2 Ã c1)]

Betweenness and Ordering on Simple Curves
The main idea for the definition of betweenness on curves
is that a point Q is between two other points with respect to
a curve if there is a sub-curve that connects the two points
and has Q as an inner point:

β(c, P, Q, R) ⇔def P ≠ R ∧ ∃c' [c' Ã c ∧ ept(P, c') ∧
ept(R, c') ∧ ipt(Q, c')]

A simple consequence is that endpoints of curves are not
between any point of this curve (wrt. this curve). The next
theorems show that all fundamental properties of orderings
on linear structures are satisfied for betweenness on open
curves (cf. Huntington 1938, Eschenbach et al. 1998). Let c
denote a curve and P, Q and R points: (T4) If Q is between
P and R wrt. c, then P, Q and R are incident with c and are
distinct. (T5) If Q is between P and R wrt. c, then Q is
between R and P wrt. c. (T6) If c is open and Q is between
P and R wrt. c, then P is not between Q and R wrt. c. (T7)
If P, Q and R are distinct and on c then one of the points is
between the others wrt. c. Finally, (T8) if Q is between P
and R wrt. c and Q' another point distinct from Q and lying
on c then Q is either between P and Q' or between Q' and R
wrt. c.
(T4) ∀c P Q R [β(c, P, Q, R) ⇒

P ι c ∧ Q ι c ∧ R ι c ∧ P ≠ Q ∧ Q ≠ R ∧ P ≠ R]

(T5) ∀c P Q R [β(c, P, Q, R) ⇒ β(c, R, Q, P)]

(T6) ∀c P Q R [op(c) ∧ β(c, P, Q, R) ⇒ ¬β(c, Q, P, R)]

(T7) ∀c P Q R [P ι c ∧ Q ι c ∧ R ι c ∧ P ≠ Q ∧ Q ≠ R 
∧ P ≠ R ⇒
β(c, P, Q, R) ∨ β(c, Q, P, R) ∨ β(c, P, R, Q)]

(T8) ∀c P Q R Q' [β(c, P, Q, R) ∧ Q' ι c ∧ Q ≠ Q' ⇒
(β(c, P, Q, Q') ∨ β(c, Q', Q, R))]

The last result worth mentioning here is that on closed
curves every point is between any pair of different points.
Therefore, the development of oriented curves is based on
open curves only.

Oriented Curves and Precedence
The axioms for oriented curves and the precedence struc-
ture are closely related to the axioms of ordering for ori-
ented straight lines in Eschenbach & Kulik (1997). Ori-
ented curves constitute a more general way than oriented
straight lines of describing directions in space. The descrip-
tion of oriented curves is given on the basis of a primitive
ternary relation of precedence (%) that distinguishes the
order of points on an oriented curve and is compatible with
the relation of betweenness as defined above.

A point is between two other points on an oriented curve
if and only if one of them precedes it and the other one is
preceded by it. A starting point of an oriented curve
precedes any other point on it.

βo(o, P, Q, R) ⇔def %(o, P, Q) ∧ %(o, Q, R) ∨
%(o, R, Q) ∧ %(o, Q, P)

stpt(P, o) ⇔def ∀Q [P ≠ Q ∧ Q ι o ⇒ %(o, P, Q)]
Points that are ordered by an oriented curve are incident
with the curve (O1). Since the basic spatial structure of the
oriented curves shall correspond to the structure of open
curves, every oriented curve coincides with an open curve
in all points (O2), and betweenness on an oriented curve is
compatible with betweenness on the underlying curve
(O3). Additionally, every oriented curve has a starting
point (O4). For every open curve and any two points on it
there is an oriented curve that coincides with the curve at
all points and orders the two points in a predefined way
(O5). Finally, oriented curves are identical if they totally
agree in the ordering of points (O6).
(O1) ∀o P Q [%(o, P, Q) ⇒ P ι o ∧ Q ι o]

(O2) ∀o ∃c [op(c) ∧ ∀P [P ι o ⇔ P ι c]]

(O3) ∀P Q R o [βo(o, P, Q, R) ⇔
∃c [∀P [P ι o ⇔ P ι c] ∧ β(c, P, Q, R)]]

(O4) ∀o ∃P [stpt(P, o)]

(O5) ∀P Q c [op(c) ∧ P ≠ Q ∧ P ι c ∧ Q ι c ⇒
∃o [∀R [R ι o ⇔ R ι c] ∧ %(o, P, Q)]]

(O6) ∀o1 o2 [∀P Q [%(o1, P, Q) ⇔ %(o2, P, Q)]
⇒ o1 = o2]

Precedence on oriented curves is a total ordering relation.
Since theorem (T9) holds, incidence on oriented curves
could also be defined in terms of precedence, replacing
(O1) and (O4).



(T9) ∀o P [P ι o ⇔ ∃Q [%(o, P, Q) ∨ %(o, Q, P)]]
Theorem (T10) shows how the ordering of any pair of
points R and S on an oriented curve o can be determined on
the basis of a given pair of points P and Q using between-
ness and incidence only. Thus, the underlying curve and
one pair of points are sufficient for the ordering of the
points on the oriented curve.
(T10)∀o P Q [%(o, P, Q) ⇒

∀R S [%(o, R, S) ⇔ S ι o ∧ R ≠ S ∧
([(βo(o, R, P, Q) ∨ P = R) ∧ ¬βo(o, S, R, Q)]
∨ [βo(o, P, R, S) ∧ ¬βo(o, Q, P, R)])]]

If oriented curves have exactly the same points and order at
least two of them in the same way, then they are identical.
(T11)∀o1 o2[∀P [P ι o1 ⇔ P ι o2] ∧

∃P Q [%(o1, P, Q) ∧ %(o2, P, Q)] ⇒ o1 = o2]
Accordingly, for every curve there are exactly two oriented
curves that are coincident with the curve and order the
points in opposite manner. Similarly, the ordering can be
determined on the basis of the starting point and the under-
lying curve.

Motion, Trajectories and Time
The structure of oriented curves shall be tested on the task
of evaluating collections of intersecting trajectories with
respect to the question whether the common points can be
meeting points of the objects. This general setting has
many specific instances, especially in the planning of sys-
tems of transport vehicles (where meeting points represent
the option of exchange or connection) or the scheduling of
tracks (where meeting points represent collision). But since
the formal background is purely qualitative, the answers it
provides abstract from distance, duration and velocity.
Thus, the theorems mainly state under which condition
meeting is possible but not, whether and when it occurs.

This section presents the additional means for making
statements about changing positions of objects in space. It
specifies the postulates necessary for the newly introduced
terms and collects some inferences that can be obtained.
The formal system is augmented with an a train scenario,
depicted in Figure 1 below, similar to the one of Gerevini
(1997). It consists of four cities (C1, …, C4), four interme-
diary stations (S1, …, S4), and of four trains (l1, …, l4)
whose trajectory is represented by oriented curves. In con-
trast to Gerevini’s description we do not have to refer to
temporal entities and their ordering explicitly, since the
relevant ordering information is given by oriented curves.

The formalization can be used to derive conclusions that
correspond to common-sense knowledge about the possi-
bilities of meeting according to the geometrical properties
of the trajectories. For the case of the simple train scenario
this can be interpreted as common-sense reasoning about
direct train connections.

Simultaneity and Localization
Any propositional formalism that represents changes in the
world has to provide two kinds of expressions: Expressions

that stand for time-independent propositions, i.e., expres-
sions that can be true or false without any additional
anchoring in time and expressions that stand for states, i.e.,
whose truth or falsity depends on time. Time-independent
expressions can be used to represent atemporal statements
such as the statements of mathematics or statements that
are completely anchored in time. In the context provided
here geometric statements such as ‘point P is on the tra-
jectory of x’ or ‘point P precedes point Q with respect to
the trajectory of x’ belong to this class.

The mapping of objects to their trajectories is also con-
sidered time-independent. Since any object under
consideration shall have exactly one trajectory that is an
oriented curve, ‘t(x)’ is used to refer to the trajectory of x.
Therefore the expression ‘P ι t(x)’ states that a point P is on
the trajectory of x, i.e. x passes through P.

Expressions whose truth depends on time are, e.g., ‘ob-
ject x is at position P’ or ‘x occupies P.’ It expresses a state
that is classified by Galton (1990) as a ‘state of position.’
This expression is subsequently symbolized by ‘at(x, P).’
Time-dependent expressions need not be true at any time
(under consideration). That such an expression A is true at
least once, is symbolized by ‘once(A)’. Therefore
‘once(at(x, P))’ means that x is at some time at P. This ex-
pression is completely anchored in time. Thus, the operator
‘once’ combined with time-dependent expressions yields
time-independent ones. In this function it is comparable to
operators such as occurs, holds or holds-in in the calculi of
McDermott (1982), Allen (1984) or Galton (1990).

Time-independent expressions can be combined by
truth-functional operators of propositional logic. The
operator ‘&’ for time-dependent expressions is comparable
to conjunction. It combines two expressions yielding an
expression that is true exactly at those times when both of
the sub-expressions are true. Thus, simultaneity can be ex-
pressed via ‘once’ and ‘&’. once(A & B) means that A and B
are at some time both true. Therefore ‘once(at(x1, P1) &
at(x2, P2))’ represents a proposition that states that at some
time when x1 is at P1, x2 is at P2.

The relation of simultaneous collocation (connect) is an
abbreviation based on ‘once’, ‘ at’ and ‘&’. It is fundamental
for the train scenario—with the interpretation of
‘immediate connection between trains at a station’.

connect(x, y, P) ⇔def once(at(x, P) & at(y, P))
The interaction of the symbols ‘once’ and ‘&’ is formalized
using the axioms (A1)–(A4). They state that—in the con-
text of once—& is commutative, associative, idempotent
and if a combined expression is true at one time, then the
sub-expression are true at some time as well.
(A1) ∀A B [once(A & B) ⇔ once(B & A)]

(A2) ∀A B C [once((A &  B) &  C) ⇔ once(A &  (B &  C))]

(A3) ∀A [once(A) ⇒ once(A & A)]

(A4) ∀A B [once(A & B) ⇒ once(A) ∧ once(B)]
The axioms for once have as a consequence that connect is
symmetric with respect to the first and second argument.
(T12)∀ x y P [connect(x, y, P) ⇔ connect(y, x, P)]



On the other hand, transitivity of immediate connections is
not deducible. l1 may wait for l4 at station S3 while l2 leaves.

Trajectories are meant to subsume the positions an
object passes through in the course of motion. Therefore,
any position that is occupied by the object at some time be-
longs to its trajectory and vice versa (A5). That trajectories
are oriented curves is expressed by axiom (A6), assuming
that the sorted logic accounts for the sorting of the vari-
ables. The order on the trajectories represents the temporal
order. Consequently, an additional principle (A7) has to
account for the interaction of simultaneity and the direction
on different oriented curves. In addition, all objects under
consideration have to behave homogeneously with respect
to time, i.e., all such entities are permanently localized.
Since we cannot access temporal indices directly, this is
expressed by assuming that if some time-dependent expres-
sion is true at some time, then every object is localized at
some time when this expression is true (A8).
(A5) ∀x P [once(at(x, P)) ⇔ P ι t(x)]

(A6) ∀x ∃o [t(x) = o]

(A7) ∀P1 P2 Q1 Q2 x y [once(at(x, P1) & at(y, P2)) ∧
once(at(x, Q1) & at(y, Q2)) ⇒
¬(%(t(x), P1, Q1) ∧ %(t(y), Q2, P2))]

(A8) ∀A [once(A) ⇒ ∀x ∃P [once(A & at(x, P))]]

l1
C1

C2

C3

S1
S2

C4

S3

S4

l2

l2

l3

l4

Figure 1. Layout of a simple train system

Valid Inferences about Meeting of Objects
Based on the axioms several theorems can be derived. The
ones presented correspond to common-sense knowledge
about the possibilities of meeting according to the purely
geometrical properties of the trajectories.

The application of (A5) yields that meeting is only pos-
sible, if the trajectories have a position in common.
(T13)∀P x y [connect(x, y, P) ⇒P ι t(x) ∧ P ι t(y)]
I.e., two trains can have a connection only if there is a
station or city, which belongs to the trajectory of both
trains.

A simple transformation of (A7) is that a point can only
be a meeting point of two moving objects if it is not the
case that one object (y) already passed through it when the
other object was still moving towards it (T14). Similarly,
since trajectories are assumed to be oriented curves, two
objects can meet at two points only if they are ordered in
the same way on both trajectories (T15).

(T14)∀P x y [connect(x, y, P) ⇒
∀Q1 Q2 [%(t(y), Q2, P) ∧ %(t(x), P, Q1) ⇒

¬once(at(x, Q1) & at(y, Q2))]]

(T15)∀P Q x y [connect(x, y, P) ∧ connect(x, y, Q) ∧
%(t(x), P, Q) ⇒ %(t(y), P, Q)]

The common-sense knowledge corresponding to theorem
(T14) can successfully be used in reasoning about train
connections.

connect(l1, l2, S1) ⇒ ¬connect(l1, l2, S3)
If l 1 and l2 meet at S1, then they cannot be at S3 at the same
time. Since any journey from C1 to S2 has to leave S3 using
l2, (T14) corresponds to the knowledge that if l1 and l2 meet
at S1, then S2 cannot be arrived anymore.

connect(l1, l3, S1) ∧ connect(l1, l2, S3) ⇒
¬∃S [connect(l2, l3, S)]

Correspondingly there is no connection of the trains l2 and
l3, if l 1 and l2 meet at S2 and l2 and l2 meet at S2. I.e., the
connection at S1—relevant for the journey from C4 to C1—
does not exist.

(A5), (A6) and (A7) yield that the objects under consid-
eration cannot be at two different places simultaneously.
(T16)∀P Q x [once(at(x, P) & at(x, Q)) ⇒ P = Q]
All axioms interact in the proof of the theorem that if an
object is in a position before and after another object
moves, then it stays in this position while the other one
moves. This also shows that the formalization can cope
with standstill of objects and waiting trains. Of course, if
the place where x stays is on the trajectory of y in this
move, then the two objects meet at that place.
(T17)∀P Q1 Q2 Q3 x y[once(at(x, P) & at(y, Q1)) ∧

once(at(x, P) & at(y, Q3)) ∧ βo(t(x), Q1, Q2, Q3) ⇒
once(at(x, P) & at(y, Q2))]

Similarly, these axioms are sufficient to prove more com-
plicated interactions of trajectories as exemplified by the
last theorem. It says that if three objects meet in pairs such
that the meeting place of x and z precedes that of x and y on
the trajectory of x and the meeting place of x and y pre-
cedes that of y and z on t(y), then the meeting place of y
and z does not precede that of x and z on t(z). This result
can be generalized for any number of trajectories that meet
in pairs.
(T18)∀P Q R x y z [connect(x, z, P) ∧ connect(x, y, Q) ∧

connect(y, z, R) ∧ %(t(x), P, Q) ∧ %(t(y), Q, R) ⇒
¬%(t(z), R, P)]

This is also applicable in the scenario given.
connect(l2, l4, S4) ∧ connect(l1, l2, S1) ⇒

¬∃S [connect(l1, l4, S)]
If travelers want to know, whether it is possible to get an
immediate connection from C1 to C4, they have to reason
about the possible connections between l1 and l4. The rout-
ing of l1 and l4 gives C2 and S3 as candidates but theorem
(T18) rules out these possibilities due to the ordering of the
connection points of l2 with the two trains.

Some final remarks to the train scenario: The concept of



immediate connection is based on simultaneous colloca-
tion. Since the ordering is coded in the oriented curves,
reasoning about connections that incorporate the waiting of
the traveler at the stations can also be modeled. However,
measures of durations and exact dating is not in the scope
of this formalization that focuses on a qualitative basis of
reasoning about spatial change.

Conclusion
In this paper we presented a geometric formalization of
curves and oriented curves as general representatives for
linear structures that can be embedded in a higher-dimen-
sional context. While several approaches of formalizing
linear or serial orders exist especially in the area of the
formalization of time (cf. Huntington 1938, Hamblin 1971,
Needham 1981, van Benthem 1983, Allen & Hayes 1985,
Eschenbach & Heydrich 1995), these approaches do not
account for the possibility of embedding them in a more
comprehensive structure or the option of coping with sev-
eral such orderings at the same time. In the approach pre-
sented here curves and oriented curves are representatives
on the same levels as the other geometric entities (points,
lines, etc.) One consequence of this method is that they are
linear in a strict sense, since they do not include cycles and
do not branch, although they do not need to be straight.

As an application of oriented curves we considered the
problem of possible meetings of objects that move through
space. Assuming that their trajectories can be modeled as
oriented curves, we found that the representation of time
can be restricted to the representation of certain expres-
sions that depend on time, i.e., can have different truth
values at different times, and can be true simultaneously.
Based on means of modeling states developed in AI, this
can be done without using expressions that explicitly refer
to points or periods of time. The direction of time is im-
plicitly represented in the direction of the trajectories,
which can at the same time be seen as representing the
structural influence of time on space.

Of course, the graph-theoretic nature of the problems
and results presented in the previous section is evident.
This stems from at least two facts. On the one hand, graph
theory developed from problems of formalizing trajectories
as the Königsberg bridge problem. On the other hand, the
two types of curves can serve as geometric interpretations
of the two types of edges of graphs and as formalizations
of the graphical elements (lines and arrows) which are
commonly used to visualize graphs.
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