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Abstract

The efficiency of algorithms for probabilistic inference
in Bayesian networks can be improved by exploiting
independence of causal influence. The factorized rep-
resentation of independence of causal influence offers
a factorized decomposition of certain independence of
causal influence models. We describe how lazy prop-
agation - a junction tree based inference algorithm -
easily can be extended to take advantage of the decom-
position offered by the factorized representation. We
introduce two extensions to the factorized representa-
tion easing the knowledge acquisition task and reduc-
ing the space complexity of the representation expo-
nentially in the state space size of the effect variable
of an independence of causal influence model. Finally,
we describe how the factorized representation can be
used to solve tasks such as calculating the maximum
a posteriori hypothesis, the maximum expected utility:
and the most probable configuration.

Introduction

Bayesian networks is an increasingly popular knowledge
representation framework for reasoning under uncer-
tainty. The most. common task performed on a Bayesian
network is calculation of the posterior marginal distri-
bution for all remaining variables given a set of evi-
dence. The complexity of inference in Bayesian net-
works is, however, known to be J~fT~-hard (Cooper
1987). A number of different approaches for reduc-
ing the impact of this limitation has been proposed.
One approach to decrease the complexity of inference
is to exploit structure within the conditional probabil-
ity distributions. The structure we want to exploit is
present when the parents of a common child interact on
the child independently. This is referred to as indepen-
dence o] causal influence (ICI), see eg. (Srinivas 1993;
Heckerman & Breese 1994; Zhang & Poole 1996).

Lazy propagation (Madsen & Jensen 1998) is one 
the latest arlvanccs in junction tree based inference "al-
gorithms. We describe how lazy propagation easily can
bc extended to take ad~mtage of the decomposition of
ICI models offered by the factorized representation.
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We also introduce extensions to the factorized repre-
sentation of ICI easing the l~mwledge acquisition task
and reducing the space complexity of the representation
exponentially in the state space size of the effect vari-
able of the ICI model, l~lrthermore, we describe how
the factorized decomposition can be used to solve tasks
such as calculating the maximum a posteriori hypoth-
esis, maximum expected utility, and the most probable
configuration.

Lazy Propagation

A Bayesian network consists of a directed acyclic graph
= (~: ,4) and a probability distribution P. V is the

set of variables in G and ,4 is a set of directed edges
each connecting a pair of variables in l~. P is assumed
to factorize according to the graph G such that:

P= H P(Vlpa(V))’
vEv

where pa(V) is the set of parent variables of V.
A junction tree representation 7- of G is constructed

by moralization and triangulation of G. The nodes of
7- are cliques (maximal, complete subgraphs) of the tri-
angulated graph. Cliques are connected by separators
such that the intersection between two cliques, Ci and
Cj, is a subset of all cliques and separators on the path
between C~ and Cj. Each probability distribution P of

is associated with a clique C such that the domain of
P is a subset of C.

In the lazy propagation architecture potentials asso-
ciated with a clique of 7- are not combined to form the
clique potential. Instead a decomposition of each clique
and separator potential is maintained and potentials are
only combined when necessary.

Inference in T is based on message passing. Two mes-
sages are sent along each separator of T (one in each
direction). A message consists of a set of potcntials with
domains that are subsets of the separator. A message
from Ci to Cj over 3 is computed from a subset ~-s of the
potentials associated with Ci. ~-s consists of the poten-
tials relevant for calculating the joint of S. All variables
in potentials of ~rs but not in S are eliminated one at a
time by marginalization. The factorized dccomposition
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of clique and separator potentials and the use of direct
computation to calculate separator messages makes it
possible to take advantage of barren variables and in-
dependences induced by evidence during inference.

Independence of Causal Influence
The efficiency of lazy propagation can be improved by
exploiting independence of causal influence. Defini-
tion I below is similar to the definitions given in (Zhang
& Poole 1996) and (Rish & Dechter 1998).
Definition 1
The parent cause variables Cx,..., Cn of a common

child effect variable E are causally independent wrt. E if
there exists a set of contribution variables Ecl,..., EC.
with the same domain as E such that:

¯ Vi,j=x ..... .^i~jE c’ ± Cj,E cj and
¯ there exists a commutative and associative binary op-

erator ¯ such that E = Ecl * Ec2 * ¯ .- * Ec".
With definition 1, P(EICI,... , C,) can be expressed

as a sum over the product of a set of usually much
simpler probability distributions:

P(EIpa(E)) 
n

II P(sq, ,c,)
{EOl ..... EChO=Eel ,...,EC, } i=I

For each cause variable in an ICI model some state
is designated to be distinguished. For most real-world
models this state will be the one bearing no effect on
the effect variable (Heckerman & Breese 1994).

Factorized Representation
The factorized representation introduced by (Takikawa
1998) makes it possible to represent ICI models with
certain properties in factored form. The factorized
representation can capture general ICI models such as
noisy-MAX and noisy-MIN interaction models.

Let Y%4 be noisy-MAX interaction model with vari-
ables E, Cx,..., (7,. One hidden variable with states
v and I is introduced for each state of E except the
highest one. Each hidden variable E<e corresponds to
a particular state e of E and E<-" represents the prob-

" <eability P(E < e). For each hidden variable E- one
potential G(E<-e [ Ci) is introduced (for i - 1,... ,n).
Each G(E<-elCi) specifies the contribution from C~ to
P(E < e) given all other cause variables in their distin-
guished state. A potential H(EI E<-el,... ,E-<e’s’-a)

specifying how the G potentials combine is also intro-
duced. The P(EC~ ]Ci) potentials specified in defini-
tion 1 contains all the information needed to construct
the H and G potentials.

If IEI = zn + 1, then a graphical interpretation of
the factorized representation of ~ can be depicted as
shown in figure 1.

Assume all variables of f14 has three states each,
say l, m, and h. The potentials required to repre-
sent ~t as a factorized decomposition are shown in ta-
ble 1 (where qE>elc=c is shorthand for P(E e lC=

Figure 1: A noisy-MAX interaction model where E has
m + 1 states.

c, Vc,e,,(E)\{c}C’ c) . Using th e potentials fr om ta
ble 1, P(E[ C1,... , (7,) can be reconstructed by elimi-
nating the hidden variables from the factorized decom-
position of Y%4:

P(EIpa(E))= H( EIE<i,E<- m)

E<J ,E<.,

II G(E<-’]C)G(E<-" ]C).
Cepa(E)

(1)
Equation 1 only uses marginalization of variables and

multiplication of potentials, no special operator is re-
quired. As a result the factorized representation does
not impose any restrictions on the elimination order or
the order in which potentials are combined.

The factorized representation reduces the complexity
of ICI model representation from exponential in n to
exponential in IEI. Note that the factorized decompo-
sition is only exploited during inference if some cause
variables are eliminated before E. As [E[ is usually
much smaller than n considerable reductions in infer-
ence complexity can be expected.

The H and G potentials do not have the usual prop-
erties of probability potentials. The H potential in-
cludes negative numbers and for some parent configu-
rations the distribution of E consists of all zeros. Both
the H and G potentials have the property that for a
given parent configuration the entries in the potential
do not necessarily sum to 1. This implies that marginal-
izing a head variable out of one of these potentials does
not result in a unity potential. This last point is im-
portant wrt. the lazy propagation inference algorithm.
With the last point in mind, lazy propagation is easily
extended to take advantage of the factorized decom-
position of P(EI C,,... , C,). Instead of associating
P(E[C1,... , Cn) with a clique C of the junction tree,
the H potential and the G potentials are associated
with C. This is basically the only extension needed to
make lazy propagation take advantage of the factorized
decomposition offered by the factorized representation.

In (Madsen & D’Ambrosio 1998) we report on ex-
perimental results obtained using the factorized repre-
sentation to exploit ICI to increase the efficiency of the
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C E<-1 C E<-m E<-z E<-m E
v I v I I m h

1 1 - qE>tlC=t 1 l 1 - qE>mlc=t 1 v v 0 0 0
m. 1 -- qE>l[C:=m 1 m I - qP:>,,,lC=-~ 1 v I 1 -I 0
h 1 - qE>qO=h 1 h 1 -- qE>m[C=h 1 I V 0 1 --1

I I 0 0 1
(A) (B) (C)

Table 1: Potentials for G(E<-l [C) (A), G(E<-m [C) (B), and H(E[E<-t,E<-m) (C) in the case of noisy-MAX.

lazy propagation algorithm. The results indicate that
substantial efficiency improvements can be expected.

Knowledge Acquisition

One of the main tasks faced when representing an ICI
model with the factorized representation is construction
of the G potentials.

Figure 2: Knowledge acquisition representation.

Consider the G(E<-I[C) potential shown in part (A)
of table 1. The entries in the leftmost column repre-
sents accumulated probabilities. Instead of computing
the entries from the P(Ec I C) potentials specified in
definition 1, the contribution variables can be made ex-
plicit in the factorized representation as shown in fig-
ure 2. This representation can be used both during
knowledge acquisition and inference. The representa-
tion can be used explicitly in the Bayesian network, or
it can be used to compute the G potentials in the orig-
inal, more compact version of the representation.

The H and G potentials in the knowledge acquisi-
tion representation include only rs, -l’s, and O’s. The
P(C) and P(E ° [C) potentials are the only potentials
nontrivial to specify, but these two sets of potentials are
exactly the potentials specified for the cause and contri-
bution variables in definition 1. Hence, the knowledge
acquisition representation eases both the knowledge ac.-
quisition and the model construction task considerably.
Space Reduction

The factorized representation of ICI introduces a num-
ber of hidden variables to reduce the model representa-
tion space complexity from exponential in the number
of parent causes n to exponential in the state space size

of the effect variable E as one hidden variable is intro-
duced for each state of E except one.

H(E[E1,..., EIE[_I) is the only potential with a do-
main larger than two variables. The size of H is expo-
nential in IE[ as [HI -- [E[2[~[-1. tel will almost always
be considerable smaller than n. If IE[, however, is large,
then it is possible to reduce the space complexity of the
factorized representation with parent divorcing (01esen
et al. 1989).

Figure 3: Representation with improved space effi-
ciency.

As an example assume that ]El = 7 ([HI = 7 * s =
448). By divorcing the six parents of E into two equally
sized sets using two intermediate variables, A and B
say, the space efficiency is improved. Variables A and
B each have four states: one state for the configura-
tion where all parents are in state I and one state for
each of the configurations where exactly one parent is in
state v. The introduction of variables A and B requires
three potentials F(A[Et, E2, Es), F(B lea, Es, Es),
and F(E[ A, B) (see figure 3). The total size of the
three potentials is only 4 * 2"~ + 4 * 23 + 42 * 7 = 176.

In general, the space reduction increases exponen-
tially as the state space size of E increases.
Maximum a Posteriori Hypothesis
The maximum a posteriori hypothesis (MAP) of a set 
variables PV in a Bayesian network ~ = (’d, 6) is defined
as:

P(X= arg max 2_~ 11
WO4)

v~-v\w xo)

Consider the Bayesian network shown in figure 4. As-
sume the relationship between variable E and variables
C1,..., Cn is all ICI model. Assume also that n = 3
and [E[ = 3, then ~. can be calculated as:
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= argInEax E P(EICI’C~’Cs)P(CI)P(C2)P(Cs)
c,,c2,cs

C1 C= Cs

P(EIC~,G,C3)

C2 Ca
2 3

E H(EIEI’E2)H~IO( Ejlci)
El ,E2 j=l i=1

2

= argmF~ax E H(E] El, E2) P(C,) H G(Ej ]C
E1 ,E2 C1 /=1

2 2

PCc ) l-I ccEj IC2) PCCs) 1-I ecE IC.).
j=l Ca j=l

The set of equations shown above shows that it is
possible to reduce the computational complexity of cal-
culating the maximum a posteriori hypothesis by rear-
ranging the marginalizations of variables C1, C2, C3,
El, and E2. Nothing can be gained from rearranging
the marginalizations of the hidden ~riables El and E2
relative to each other as they share the same set of chil-
dren and parents. In the example this might seem like
a serious limitation, but in many real life ICI models
the number of parents of E is much larger than IE[.

Figure 4: Bayesian network used to illustrate the cal-
culation of MAP and MPC.

Maximum Expected Utility
The maximum expected utility (MEU) of a decision sce-
nario represented as an influence diagram can be cal-
culated using strong junction trees or a direct compu-
tation ’algorithm extended to handle decision variables
and a utility function. The task of computing the max-
imum expected utility of a decision is solved by per-
forming a series of eliminations using maximization as
the marginalization operator for decision variables and
summation as the marginalization operator for chance
variables. A partial order on the elimination sequence
is induced by the order in which variables are observed.

The factorized representation of ICI can be exploited
when solving influence diagrams. Consider the influ-
ence diagram shown in figure 5 where the relationship
between E and its parents is assumed to be an ICI
model (IEI = 3 is assumed). The maximum expected
utility fi of the decision scenario can be calculated as:

Figure 5: Influence diagram used to illustrate the cal-
culation of IvIEU.

fi= Emffc ~ P(E, C1,C~ID)U(E)
E,C.,

= E P(CI) mDax E P(C’2)P(EICI’ C2, D)U(E)
E,C2

= ~P(C~)mDax ~ P(C2) ~ H(EIEI,E2)
C, E,C2 El ,E2

2 2

H G(Ej ID) H G(Ej ]CilU(E)
j=l i=l

= EP(C*)mDaxEU(E) E H(EIEI’E’2)
E El ,E2

2 2

IX G(Ey [DIG(Ej [C~)~"~P(C2) II G(E~ ]C~).
c2 j=l

The set of equations shown above shows that it is
possible to reducc the computational complexity of cal-
culating MEU by rearranging the marginalizations of
variables 6’.,, El, and E2. Again we cannot expect to
gain anything from rearranging the marginalizations of
E1 and E2 relative to each other. We cannot rearrange
the marginalization of variables E and 6"1 relative to
each other as maximization and summation docs not in
general commute.
Most Probable Configuration
A most probable configuration (MPC) for a given
Bayesian network ~ -- (~,E) is by definition a con-
figuration T) of ~ with highest probability. A configura-
tion ~ with highest probability is the maximizing argu-
ments of the max-operator over P(~). Consider again
the Bayesian network shown in figure 4. Using the fac-
torized representation P(£,) can be calculated as:

P(#)= max P(E]Cl, .... C.)P(C1)...P(C.)
E,C, ,...C,~

= max P(CI).." max P(C,) mEax P(E[CI,... 
Cn

: max P(C1). ¯ ¯ maxP(C,) EC1 C, E
E, ,... ,EIE I_ ,

IEI-* .
H(E[E~,...,EIE[_I ) H IIG(Ej Ic,).

j=l i=*
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The ICI is exploited if it is possible to commute the
maximization over the Ci’s with the summation over
El,... ,E~i_x. In general, this is not possible, and it
is also not possible in the special case of the factorized
representation.

If negative evidence on E is present, then it is possible
to reduce the computational complexity of calculating
MPC using the factorized representation. Negative ev-
idence on E renders all lint one configuration of the
hidden variables in the H potential impossible. This
fact car, bc exploited during the computation of P(~):

/,(~) =
F~-],C1 .... C.

= max P(CI)"" max P(C,,)
C’t C,,

max P(E = f I CI,... , C~)
i,~-.f

= maxP(el)el ¯ ¯ ¯ max P(Cn) m=a~c. = 
Ez .....E~,I_I

H(E=fIE1 .... ’EIEl-l) IX II G(Ejl
j=l i=1

= max P(C1)"" maxP(C,)
(’71 C.

H(E= flEx =v, E2 =I .... EW.[_I =I)

IIG(E ="I c’) I-[ G(Ej=I[C,)
i=1 j=2

WI-*
= maxP(Ct)a(E, =vie,) II G(E.i=IIC’)

C1 j=2

IEI-t
""maxP(Cn)G(E’=vlC") II G(Ej=IIC")

C,,.
1=2

H(E= f lEt =v, E2 =I,..., EWI_I = I).

max P(E=IIC,,...,C,)P(C1)...P(C,)

Negative evidence on E can be exploited to reduce
the computational complexity when calculating MAP
and MEU in a way similar to how negative evidence is
exploited when calculating MPC as described above.

Conclusion
The factorized representation is shown to fit naturally
into the framework of the lazy propagation inference
algorithm. The lazy propagation inference algorithm
exploits a decomposition of clique and separator poten-
tials while the factorized representation offers a decom-
position of conditional probability distribution of the
effect variable in an ICI model.

Two extensions to the factorized representation is
proposed. The first extension eases the knowledge ac-
quisition task when constructing Bayesian networks us-
ing the factorized representation to exploit ICI and the
second extension reduces the space complexity of the
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original factorized representation exponentially in the
state space size of the effect variable.

Finally, a way to use the factorized representation to
take advantage of ICI when calculating the mmximum
a posteriori hypothesis in Bayesian networks, the maxi-
mum expected utility of decisions in influence diagrams,
and the nmst probable configuration in Bayesian net-
works is established.
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