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Abstract

This paper introduces statistical pattern recogni-
tion techniques, applied to the monitoring of dy-
namic systems. Usually, distance rejection options
enable to deal with incomplete knowledge about
classes. A new technique, which extends the pos-
sibilities of distance rejection, is presented in order
to detect partially unknown classes. These tech-
niques have been applied in this paper to a very
important legislative problem : the monitoring of
car catalytic converters.

Introduction

Pattern recognition aims at classifying patterns.
It can be easily applied to the monitoring of dynamic
systems where the goal is to detect and identify the cur-
rent operating mode. When a learning set representing
all the classes is available, the classification problem is
rather simple. It can be achieved using statistical tests
(Fukunaga 1990).

Some new operating modes, which cannot be
learnt off-line, could appear on-line. They are usually
detected using distance rejection options (Dubuisson
1990), (Dubuisson & Masson 1993). Sometimes, some
classes are partially unknown : no training set is avail-
able but the location in the feature space is approx-
imately known. However, ordinary distance rejection
does not enable to distinguish patterns of this kind of
classes. Therefore, we propose local distance rejection
in order to be able to discriminate patterns into such
classes.

Firstly, one of the most usual decision rule,
Bayes’ test, will be quickly reminded to the reader.
Then, our local distance rejection technique will be pre-
sented. This study has been initiated as part of our re-
searchs on On-Board Diagnosis (OBD) of car emission
critical components. In this paper, we will concentrate
on the real-time monitoring of car catalytic converters.
Finally, on-board diagnosis of car catalytic converters
will be presented as an example of statistical pattern
recognition with incomplete learning set.
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Diagnosis of dynamic systems using

pattern recognition

Bayes’ decision rule

Let us suppose we have to decide between M classes
o~1, w2,..., WM in a d-dimensional feature space. The
patterns _x (the observable measurements x_ E ~d) Can
be interpreted as a realization of a d-dimensional ran-
dom vector X. The decision function d(x_) is set to 
if x_ is classified into the class v~. Let us define a cost
function C(x) 

M
C(z) = ~ O~,(~/~, P(wd=) (1)

{=1

where Ow~/~ is the cost of deciding to classify x_ into
uJj when z belongs in fact to w{ (i = 1,...,M; j 
I .... ,M) and P(~ilx_) is the posterior probability.
P(~ilx__) can be computed using the bayes’ rule

/(zl~,)P(w,)
(2)P(~,I~ = ~"~f=l/(~-I°JJ)P(~J)"

The mean cost C is the expectation of C(x_) 

~, C(x_) / (x__)dx, (3)

where f(~ -- ~-~M1 f(x_lwi)P(wi ) is the mixture den-
sity. If no decision is more important than another one,
one chooses the {0, 1} costs

C,~,/,~, = 0 i = 1,..., M (4)

C~,/~ = 1 i,j = 1,...,M i ~ j (5)

Then, C(x_) becomes

M

C(x_) = ~ P(ali[x_) = 1 - P(OJd(z__)[~) (6)
i.=l,d(x_)~i

The Bayes’ decision rule minimizes the mean cost
C (C* is the minimum of C and is called the Bayes’ cost
or the Bayes’ risk) of deciding to classify each pattern
z__ into a class wi (Fukunaga 1990), (Dubuisson 1990).
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C reaches its minimum C* when C(z) is also minimum
for every feature vector z :

C* (x_) = min C(z_) = 1 - max P(wj[z). 
d(ffi_) ,j=l ..... M --

Therefore, the optimum decision function is :

d*(~_)=i il P(wi[z)= max P(w,j[z_). 
j=I,...,M’

For instance, for M=2 and d=l, figure 1 shows
the gaussian classes wl and w2 decision area fll and
f/2. Bayes’ decision rule is optimum if/(z_[~1), f(z_[w2),
P(wl) and P(w2) are known.

Figure 1: fll and f12 decision area for M=2, d=l

In practice, the probability distributions are un-
known, but are estimated by generative (parametric or
non-parametric density function estimation) or discrim-
inative models (Smyth 1994a).

The diagnosis technique of a dynamic system
presented here is local : the decision relies on only one
pattern presented at an instant t. Most of the time, it
is valuable, when the observation is sequential, to use
patterns sequences for diagnosis purpose : more and
more information become available as time proceeds. It
is particularly true when the dynamic system operat-
ing modes evolve slowly, comparatively to the features
sampling period. Sequential diagnosis can be achieved
using, for instance, sequential statistical tests (Fuku-
naga 1990) or hidden Markov models (Smyth 1994b),
(Smyth 1994a).

Rejection options

Ambiguity and distance rejection options were already
detailed in (Dubuisson 1990), (Dubuisson & Masson
1993), (Fukunaga 1990) and (Denoeux, Masson, 
Dubuisson 1997). This section will sum up ordinary
techniques and will introduce a way of defining distance
rejection in only one area of the feature space.

Ambiguity rejection Ambiguity rejection, as de-
fined by Chow (Chow 1957), consists in taking no deci-
sion if the cost of deciding C* (z) is bigger than a reject
cost Cr which is an arbitrarily set threshold. When am-
biguity rejection is decided, the pattern x_ is classified
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into a class ~o (d(z_) = 0). Bayes’ decision rule becomes

PCw/l_x) = max, j=, ..... M PCwA~ (9)= i if
-~ 1 - Cr

d(z_) 0 if 1 - C,. _> max P(wjlz_). (10)
.q=l,..,,M

In order to enable ambiguity rejection, because
maxj=l ..... M P(wj[z_) belongs to the interval [1/M;1],
C~ must satisfy the constraint :

1
0 _< C, <_ I M" (11)

It means that if the reject cost Cr is too high, there is
no more ambiguity rejection because it costs too much.

Thus, when equation (11) is true, the ambiguity
rejection rule introduces a new class w0 between the
other classes ~i, w2, ̄  ̄  ¯, WM.

For instance, for M=2 and d=l, figure 2 shows
the w0 decision area fl0.

Distance rejection Bayes’ decision rule with am-
biguity rejection does not enable to detect unknown
classes and to deal with incomplete learning set. Dis-
tance rejection (ilL)) occurs when the mixture density
/(x_) is lower than a threshold CD.

~/D = {z_: f(z_) <: CD} (12)
For M=2 and d=l, figure 2 shows the rejected

patterns area f/D.

I I I I
I I I I
l I l I

e(~il) f(x--l~l) I P(w~)l(al~2)

Figure 2: flo and tip rejection areas for M=2, d=l

To deal with an incomplete learning set, one can
check (on-line or off-line) if the distance rejected pat-
terns can be organized into classes, for instance using
clustering algorithms. Thus new classes can be learnt,
but it is no longer our business here.

Local distance rejection Distance rejection sets up
boundaries around the classes. However, it makes no
difference in which direction the rejection occurs. We
propose to define an area in the feature space where
we can detect distance rejected patterns. This area is
defined as a new class with an uniform distribution.
Here, only one area is defined as a local distance re-
jection class. However, more than one area can be de-
fined, as long as they do not overlap each other. The



~i, ~2,..., a)M classes define a class w{1 ..... M) for which
the probability density can be written

M

f(~lw{1 ..... M}) = E f(~lw3)P(wJ)" 
i--1

The local distance rejection area is defined as a new
class OJM+1. Its probability distribution is uniform over
a volume V :

1/V if z__ e V
(14)f(27[OJM+l) -- 0 otherwise

Comparatively to the distance rejection option, local
distance rejection area can be defined as follows :

f/M+, = {x_:/(=_Iw,,....M) < CO, and I(x_IwM+X) > 
(15)

However, as COM+X can be interpreted as a uniform dis-
tribution, rM+l can be written :

f/M+1 = {z_: P(~M+II=_) _> e(~l ..... MI=--)}. (16)
The posterior probabilities can be computed using the
Bayes’ rule. The boundary is set up by the prior prob-
abilities P(a~(1 ..... M}) and P(OJM+I). According to 
first definition of f/M+1 (see equation (15)):

Co
P(WM+I) -- 1IV+Co’ (17)

P(cOl ..... M) = 1 -- P(tOM+I). (18)

It is still a rejection rule because there is no learn-
ing set for this class. Moreover, we have got here an
insight into the spatial location of the distance rejec-
tion area. Therefore, the difference with the distance
rejection rule is that we have defined a location where
patterns are rejected.

For M=2 and d=l, figure 3 shows how an area
f/s, where patterns are locally distance rejected, can be
defined.

Figure 3: f/s local distance rejection area for M=2, d=l

This technique presents some limitations : a vol-
ume shape for the class WM+1 has to be chosen in or-
der to define its uniform distribution. It is easier to
choose an analytical definition of the volume (like 
hypercube). However, it becomes difficult to set the
volume when the dimension of the feature space is
high. Moreover, by choosing a uniform distribution, we

have no "fuzziness" for this class. Finally, by defining
f(x_l~M+l) as an uniform distribution, we have made a
wrong assumption on the shape of the COM+l probabil-
ity distribution. The best thing to do, when patterns
are locally distance rejected, is to learn the new class
probability distribution.

Monitoring of car catalytic converters
These techniques have been applied to the monitoring
of three way car catalytic converters. This function is
mandatory on all cars since 1994 in north America and
will be mandatory after 2000 in Europe. We aim at
showing how pattern recognition based methods can be
implemented to solve this real life problem. The con-
version efficiency of the catalytic converter is monitored
by measuring the oxygen storage capacity of the cat-
alyst using the dual oxygen sensors method (Koupal,
Sabourin, & Clemmens 1991), (Clemmens, Sabourin,
& Rao 1990), (Hepburn & Gandhi 1992), (Hepburn 
others 1994), (Koltsakis & Stamatelos 1995).

The aim is to detect an aged catalyst which
would lead to exceed an emission threshold. The learn-
ing set is composed of patterns acquired on a vehicle
during a reference driving cycle (ECE+EUDC cycle in
Europe, FTP cycle in north America), for two reference
catalysts :

¯ a fresh catalyst,

¯ an aged catalyst which corresponds to the emission
threshold.

This is a typical case of incomplete knowledge about
classes : only two reference catalysts patterns are avail
able. More catalysts would be needed to learn the entire
aging process. Nevertheless, this would be too expen-
sive because aged catalysts can only be obtained after
long aging cycles on engine benchs.

0.5-

0
IB

%

Figure 4: Principal Components Analysis of the learn-
ing set

Signals from the engine control unit and from
the catalyst oxygen sensors are computed to build a
4-dimensional feature space. A Principal Components
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Analysis of the learning set (see figure 4) shows that the
good and the bad catalysts patterns are well separated.

We have to deal with the unknown intermediate
aging states of catalysts. When a catalyst is aged but
located between the two reference catalysts, it is still
a good catalyst (see figure 5). We cannot estimate the
probability distribution of these intermediate catalysts
because it would be too expensive to obtain a comple-
mentary learning set.

Modeling of intermediate catalysts

"Worst catalyst"

i~ :" Bad catalyst"

"Good catatlyst"

Incomplete learning set

Figure 5: Extension of the learning sets

Therefore, it is necessary to extend the "good catalyst"
class by setting the boundary just below the "bad cat-
alyst" class. This could be achieved with the Bayes’
decision rule by tuning the prior probabilities. How-
ever, an intermediate catalyst is in fact unknown and
has to be rejected. It is better to decide distance rejec-
tion than to classify it into the "good catalyst" class.
Here distance rejection means that the catalyst is un-
known, but makes no difference between a good or a bad
one. Local distance rejection enables to define the area
before the bad catalyst patterns as a "good catalFsts"
rejection area.

Modeling of severely aged catalysts

When the catalyst conversion efficiency is worse than
this of the reference "bad catalyst", it can be useful
to detect it. As said in the previous section, ordinary
distance rejection does not make any difference between
a severely aged catalyst and an intermediate catalyst for
which no learning set wa~ available. Here again, local
distance rejection can be used : it enables to define an
area behind the "bad catalyst" class where the catalysts
are assumed to be worse.

Algorithm implementation, results and
discussion

Six classes have been defined :

¯ the "good catalyst" class (wz), which represents the
fresh catalyst,
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¯ the "bad catalyst" class (w2), which is the aged cat-
alyst that leads to exceed the emission threshold:

¯ the "unknown good catalyst" class (w:0 for which no
training set is available and that is a priori good,
represented by a local distance rejection area,

¯ the "worst catalyst" class (w4) defined by a local dis-
tance rejection area behind the "bad catalyst" class,

¯ the ambiguity rejection class (w0),

¯ the distance rejection class (wD).

The probability distribution of random patterns
X_ for classes Wl and w2 can be estimated from the learn-
ing set. At the moment, it has been done using Parzen
window estimators. However, for better on-board per-
formance, other estimators could be used.

Figure 6: Decision areas of catalyst classes with Cr =
0.3 and Co = 2.10-2

The figure 6 shows a 2-dimensional representa-
tion (first plan of a Principal Components Analysis) 
the decision areas fh, n2, fh and [h. The ambiguity
and distance rejection areas (f~0 and No) are also rep-
resented. In this example, the ambiguity reject cost is
set to 0.3 which means that a pattern is classified into
w, or w2 if the corresponding posterior probability is
greater than 0.7. If the density estimation f(z_l’~O,2})
is smaller than 2.10-~, the pattern is distance rejected :

¯ locally if the pattern is located into the f~3 or the ~’~4

volume,

¯ globally if the pattern is located outside the local
distance rejection areas.

Here, designing a local distance rejection area is
rather simple because the boundary is set by a straight
class. It could be more difficult if the class shape was
much more complex.

We have got some reference fresh catalyst and
aged catalyst patterns. The error probabilities for these
classes are well known (we have estimated the probabil-
ity distribution) and depends of the chosen threshold.
However, more tests are needed to measure the false
alarm rates and to draw some final conclusions. For



instance, some road and endurance tests will be nec-
essary to check the interest of the algorithm for a car
manufacturer.

Therefore, we have showed how the incomplete
training set problem can be bypassed. However, the di-
agnosis is still ~local" from a temporal point of view.
Because the aging states are stable during time (a cat-
alyst aging can go on more than 80000 kilometers),
it is sensible to take decisions from sequences of pat-
terns. Several possibilities like sequential tests (Fuku-
naga 1990) or hidden Markov models (Smyth 1994b),
(Smyth 1994a), will be tested on this practical isssue 
the near future.

Conclusion

This paper shows how a real life diagnostic applica-
tion with incomplete knowledge about classes can be
treated. Today, the in-car implementation of catalytic
converters monitoring functions is usually achieved
without pattern recognition. The advantages of the
pattern recognition methods described here for on-
board catalytic converters diagnosis are :

¯ to get optimum diagnosis,

¯ to achieve automatic calibration by using the learning
skills of pattern recognition algorithms.

Finally the pattern recognition techniques pre-
sented here should enable, in this context :

1. to lower the development costs,

2. to enhance performance : lower false alarm rate and
increased detection rate.

The second point is highly important, because
it means that the legislation requirements are fulfilled
(detection rate) as well as the customers’ demands for
high robustness.

The algorithm has been proposed in order to
monitor usual three way converters by using the dual
binary oxygen sensors. However, it can be adapted to
other catalyst and sensor technologies.

These techniques could probably be efficient for
other real examples, where the learning set cannot be
completed, but where one can get an insight into the
shape and the spatial location of the classes.
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