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Abstract

This paper investigates how the rules of System P
might be used in order to construct proofs for default
rules which take into account the bounds on the prob-
abilities of the consequents of the defaults. The paper
defines a proof system, shows that it is sound: and then
discusses at length the completeness of the system, and
the kind of proofs that it can generate.

Introduction

Default reasoning has been widely studied in artificial
intelligence. One of the the most influential piece of
work within this area is that of Kraus et al. (1990).
Kraus et al. investigated the properties of different
sets of Gentzen-style proof rules for non-molmtonic con-
sequence relations, and related these sets of rules to
the model-theoretic properties of the associated logics.
Their major result was that a particular set of proof
rules generated the same set of consequences as a logic
in which there is a preference order over models. This
system of proof rules was termed System P by Kraus
et al.. the P standing for "preferential". System P has
been the subject of much research, and is now widely
accepted as ttm weakest interesting non-monotonic sys-
tem; it sanctions the smallest acceptable set of conclu-
sions from a set of default statements.

The reason that we are interested in the rules of Sys-
tem P is that: in axldition to a semantics in terms of a
preference order over models, they also have a seman-
tics in terms of infinitesimal probabilities (Adams 1975;
Pearl 1988). This semantics can be extended to deal
with finite probabilities (Bourne & Parsons 1998), 
extension which promises to make System P more use-
ful in practice. However, the use of finite probabilities
raises a ~mv,- problem. In order to keep track of the
probability attached to each default, it is necessary to
establish a new mechanism for inferring new defaults
along with their probabilities, and this is the subject of
this paper.

Copyright (~)1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Entailment in System P
System P is concerned with conditional assertions of the
form a b" ft. In this context a and [3 are well-formed for-
mulae of classical propositional logic, and ~-, is a binary
relation between pairs of formulae. The probabilistic
semantics for System P assumes that the propositional
variables are the basis of a joint probability distribution
which is constrained by the assertions. Each assertion
states that the conditional probability of its consequent
given its antecedent is greater than or equal to 1 - e for
any e > 0. Thus:

Definition 1 The conditional assertion a ~ .~ denotes
the fac.t that Pr(iJ[a) > 1 - e for all ¯ > O.

Probabilistic consistency is defined as the existence of at
least one probability distribution which satisfies these
constraints (Adams 1975); probabilistic entailment of 
further conditional is defined as probabilistic inconsis-
tency of its counterpart, that is:

Definition 2 a ~i~ is p-entailed by A iff A U
{a ~-~i3} is not p-consistent.

This implies that all probability distributions that sat-
isfy A also satisfy a ~-- ;~. However this result may only
he achieved by using infinitesimai analysis so that the
derived conditional will be constrained to be greater
than 1 - ~ for may ~ > 0 if the e of the original condi-
tionals is made small enough. This can be paraphrased
as saying that System P allows us to make our con-
clusions as close to certainty as we like, provided the
conditional probabilities associated with the initial as-
sertions are sufficiently close to certainty.

Using this interpretation of the rules thus means ms-
sunting ttmt we are able to give the conditional asser-
tions arbitrarily high conditional probabilities. Often
we have less reliable information, and so e is not in-
finitesimal. When such a set of conditional assertions
are used to derive new assertions and these new asser-
tions are themselves used as the basis for new deduc-
tions, then some e ~lues will be far from infinitesimal
and it is not possible to assess the impact of these non-
infinitesimal values on the strength of the new asser-
tions.

Because of this concern, we investigated (Bourne 
Parsons 1998) the impact of non-infinitesimal ¯ values
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Figure 1: Rules with associated bounds
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in the context of a set of rules of inference for System
P given I)y Kr;tus et el, showing how e values are prc)t)-
agated. The resuh.s of this investigation arc, th(, rules
in Figure I. The rules are written in the ustud Gentzen
style, with antecedents above the line m~d consequents
below it. Thus the rule ’And’ says that if it is possible
to derive a ~ B such that Pr(fl [ t~.) > 1 -et and a ~-, 
such that Pr(q, [ (,) >_ 1 -e~.. then it is possible to derive
a ~,dA~ such that Pr(i3A-~ [t~) _> 1- (~1 +e2).

While this work solved the problem of deterndning
the impact of the non-infinitesimal values, it fell short
of providing a practical reasoning system. The I)rob-
lem is that although in System P we can tell whether
or not o ~--fl fi)llows from the initial set of defaults.
the procedures for determining this do not pernfit the
propagation of the e values. Thus we can tell if ~ ~-, i3
follows, and so we can find out if a proof exists, but we
can’t determine the associated ¯ value. What we need
is a proof theory which allows the ¯ values to be prop-
agated through the proof so that every inferred default
has its ¯ value determined, and providing such a proof
theory is the subject of this paI)er.

A proof theory for System P
Normally in generating a proof theory for some logical
system the procedure (Gabbay 1996) is to establish two
rules for each connective in the underlying language.
One rule relates to introducing the connective into a
formula: and one relates to eliminating the connective
from a formula. The set of rules then define all the
legal transformations between formulae, and thus define
what may be proved from some initial set of formulae.
The process of defining a proof theory thus proceeds
from the underlying language to the proof rules.

The situation here is a little different. System P al-
ready has a set of proof rules defined. However: these
rules do not include introduction mid elimination rules
for all the connectives in the underlying language, and
so do not support a conventional proof theory. However,
it is possihle to use the existing rules to define a proof
theory for a significant part of the underlying language
of System P, and this is th(, approach we adopt.

The proof system
We start with a set of proposit ions S, a set of connec-
tives, {-~, A, V, --r, ¢-~, =~.}, and the following rules fi)r

tmilding well-fornmd fi)rmulae in this language:

1. Ira E S. then o is a basic well-formed formula (bwff).

2. If o and A are bu:ffs then --~¢~. t~ A i3, () V .3, a --4 /3,
t~ ~/3 are bwffs.

3. If ~, and 5 are bwffs, then -~" =~¢ ti is a default well-
formed fornmla (dwff).

¯ t. Nothing else is a bwffor a duff.

Together all these formulae constitute a language/:x-
The denotation of hasic well-fi)rmed fi)rmulae is as 
prol)ositional logic’, wttile the meaning of dwffs is the
following:

Definition 3 The default ", ~ 6 is taken to mean
er(6[~)> 1-e.
Comparing Definitions 1 and 3 it is clear that the de-
faults of/:s are exactly the conditional assertions of
System P for a particular finite e, and any set of con-
ditioual a.ssertions A = Ui{ai ~ f3i} will have a corre-
sponding set of dwffs A’ = Ui{ai ~+~ ’3i}. We say that
A’ is the default dual of A, and A is the assertion dual
of A’. We apply the same terminology to single dwffs
mad conditional assertions. The reason for writing the
defaults in this way is to distinguish between the condi-
tional assertions themselves, and the consequence rela-
tion which defines what may be inferred from them--a
distinction which is not always clear in work on System
P. Assuming that we have a knowledge base A which
consists of a set. of dwffs, we can then define the valid
set of conclusions which may be drawn from A as those
sanctioned by the consequence relation ~-,,p defined in
Figure 2~.

The proof rules that define ~r, may need a little ex-
t)lanation. The rule Ax is a form of "bootstrap" rule
which s~’s that if some default, a =),, .’3 is in A, then
were a added to A.. it would be possible to infer fl with
probability not less than 1 - e. The rule And says that
if adding a to A makes it possible to infer B with prob-
ability no less than 1- e~ and ")" with probability no less
than 1 - ¯._,. then ’adding a to A makes it possible to
infer ~;) A 7 with probability no less than 1 - (el + ¯~).
Thus the denotation of the consequence:

A, a h" (;i. ¯)

~Note that this includes the two rules Cut and S which
can l)e derived from the basic set of rules.
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is that on the basis of what is given in A, we can infer
er(Bla)_> l-e.

The rules RW azld LLE are a little unusual in that
both have antecedents which involve I-, which stands
for the consequence relation of standard propositional
calculus. Thus RW says that you can replace any ira-
ference made by ~p with any logical consequence, and
LLE says that you can replace anything on the lefthand
side of ~p with something that is logically equivalent
to it.

This proof system we will call 87) . As with any proof
system we are interested in the soundness and complete-
ness of the conclusions which may be drawn using ~q’P.
We define:

Definition 4 A default base is a set of default well-
formed formulae.
Definition 5 A basic well-formed formula ~ is a p-
consequence of a default base A, conditional on a, iff:

A, c~ ~,, (~, ~)
The value e is known as the strength of the consequence.
With these definitions, suitable soundness results are
easy to obtain. The first relates what can be inferred
using ~p to System P:
Theorem 6 For every p-consequence/], conditional on

of a default base A, a ~ ~ is p-entailed by the set of
assertions A’ which is the assertion dual of A.
Proof: 8P has a set of proof rules which mirror
those of System P, and anything that may be proved
using these rules is a p-consequence. Since in (Krans,
Lehmann, & Magidor 1990) it is shown that anything
proved using the rules of System P from a given set of
conditional assertions A’ is p-entailed by that set.. it
follows that an)" p-consequence of A, the default dual
of A’, is p-entailed by A*.

Thus S’P allows us to infer exactly the same things as
System P. We also need to show the soundness of the
mechanism for propagating the strength of the conse-
quences. This is given by the following:

Theorem 7 The strengths of the p-consequences of a
default base are those justified by probability theory.

Proof: The soundness of the propagation of e values
with respect to probability theory is proved in (Bourne
& Parsons 1998).

Together these two results guarantee that SP is
sound--it will generate conclusions sanctioned by Sys-
tem P with probabilistically correct strengths. Since
Kraus et al. silow that the rules of System P are suf-
ficient to infer all rhe consequences of System P, the
following completeness result is immediate:

Theorem 8 For every o. ~ /3 which is p-entailed by a
set of conditional assertions A,/~ is a p-consequence of
the default dual of A conditional on r~.
What this theorem guarantees is an), conditional asser-
tion which is p-entailed by a given set of defaults will,
when those defaults are translated into the language of
8P, be a consequence of the corresponding set of dwffs.
However, this result gives no clue as to the kinds of con-
clusions we can draw from a given set of dwffs. It does
not tell us if a particular p-consequence will be found,
it just says that it will be found if its assertion dual is
p-entailed.

What we would also like are results which say exactly
what kind of conclusions we caz~ infer from some initial
set of defaults, which therefore give us some idea of
what it is reasonable to establish from some initial set
of values, and that is what we consider in the remainder
of the paper.

Defining the scope of $7~

We start by considering that we have a set of simple
defaults of the form ~ ~, -fi which all have the same
antecedent. These form a simple default base:

Definition 9 A simple default base for a language £s
is a default base:

i=l.....,n
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where, a and the % are bwffs in Es.

We can think of the (’onsequents of this set of defaults
forming a set G. In general, we have:

Definition 10 The consequent set of a simple default
base A is the set G such that:

G = {?"il{~ ~,, 9i} e A}

and this set G has what we will call an associated con-
junction F which is a conjunction of all the "b in G.
Now, applying Ax and CM to n =~, ~ % and a ~,. ",2.
we obtain:

A,(~ A~.,i ’t’q’ 2"’.1-- .I

Using the same rules on ~.~. ~, t 51 and ~ =~,.~ ~,.~ gives:

A,(~ ̂  ~.~ ~p ",3, (2)

and combining the latter with fl) will give:

(A..n.A?j A-.,._, b’P %’ I -el -e.,

If we imagine repeating this process it is clear that given
A we can recursively apply CM tt) obtain, for some e:

A, r~ A B’ ~t, (’.,i, e)

for any ~.’i E G, and h)r any B’ which is the associated
conjunction of a set B’ such that B’ C_ G. Since And
makes it. possible to build up conjunctions on the con-
sequent side, similar reasoning makes it obvious that
recursively applying the And rule to the same initial
set of defanlts will give:

A,a ~p (r’,e’)

where F’ is the associated conjunction of a set G~ and
G’ C G. Clearly, then, if we use both rules together,
we can derive conclusions of the form:

A, a A B’ ~o (r’, e")

where B’ and F’ are the associated conjunctions of sets
B’ and G~ such that B’ C 12 and G~ C G. Note it is
possible that B~ A G’ ~ {~. Thus we have:

Theorem 11 Given a .simple default base with an-
tecedent c~ and consequent set G, the consequence ~-
lation ~r, will generate all consequences:

A, a ̂  B’ h’ (r’, ~)

for some e, where. B’ and r’ are the associated conjunc-
tions of sets B’ and G’ .such that B’ C_ G and G’ C_ G.

Proof: This follows directly from the above discus-
sion.

This result characterises the kind of consequences we
(’azl prove using C.X.I and And on a set. of simple defaults.
It is possible to generalise these results to wider sets
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of defaults. Consider that instead of a set of simple
defaults, we have, instead, a general set of conjunctive
defaults of the form ct A B~ =~,~ Fi where a, as before..
is a single proposition and Bi and Fi are conjunctions
of propositions. This set of defaults is a conjunctive
default base:

Definition 12 A conjunctive default base for a lan-
guage £s is a default base:

a = [.J A B, r,}
i=1 ~...Jz

where, a is a bwff in £s, and the Bi and ri are con-
junctions of sue.h bwffs.

The formula a’ is known as the base antecedent of the
conjunctive default base, and for eadl default.. Bi is the
conjunctive antecedent and I~ is the consequent. We
distinguish two subsets of A, the simple subset, which
is the set of all simple default rules in A. Applying the
rules Ax and S to any conjunctive default in A will give:

A.a’ ~p (Bi -~ Fi, ei)

Now. if we can obtain:

A,a. ~p (B.q)

Applying And will gives us

A.. ¢~ b’v (Bi A (Bi ~ ri), ei + 

Now, RW makes it possible to replace any p-
consequence with any of its logical consequences. This
makes it possible to obtain:

A,(~ b’p (Bi A ri:ei +ej)

and hence:
A,~ b’P (~i~ ,e~ + ej)

fi)r any ~i, ~ BiLJGi where Bi and Fi are the associated
conjunctions of Bi and Gi. This gives us:

Theorem 13 Given a conjunctive default base A with
base antecedent a, whose simple subset has consequent
set G, the consequence relation ~p will generate all the
consequences of the form:

A, O~ ~’~p (’[*, e)

for some e, where A contains a default a A Bi =~ ri,
ri and Bi are the associated conjunctions of Gi and Bi
respectively, ~,.* ~ B~ U Gi and Bi C_ G.
Proof: From the previous discussion the theorem fol-
lows provided that we can infer A,a ~p (Bi,ej). By
Theorem 11, this is possible if Bi C_ G.

What this tells us is that we can use the simple sub-
set of a set of defaults to effectively ~ break down more
complex defaults into simple defaults. VSe can then use
these to build up more complex p-consequences just as
in Theorem 11:

"We use the term "effectively" since we don’t obtain
new simple defaults, but p-consequences which we wmdd
get from simple defaults.



(i) A, linda ~.,p (steve, 0.1)
(ii) A, linda ~e (great, 0.01)
(iii) A, linda ^ steve ~,.p (great, O.Oll)
(iv) A linda ^ steve ~p (-"noisy, 0.05)
( v A, linda A steve h’ (great ^ -,noisy, 0.061)

Ax, 4
Ax, 2
CM, (i), (ii)
Ax, 5
And, (iii): (v)

Figure 3: The proof of a conservative consequence about Linda

Theorem 14 Given a conjunctive default base ..X with
base antecedent ca, whose simple subset has consequent
set G, the consequence relation ~,,p will generate all con-
sequences:

’̄.&, a A B- ~--,p (F+, e)

for some e where B+ and £- are the associated conjunc-
tions orB~- and G+ respectively, and both B+ C_ G and
G+CG.

Proof: Immediate by applying the same reasoning as
in Theorem 11 to Theorem 13.

We call these F+ the conservative consequences of A.
Thus the conservative consequences are all the F~

which are p-consequences of A conditional on a mad
l)ropositions which arc t.lmmselves the consequences of
simple defauhs.

Theorems 11 and 14 complement Theorem 8. The
latter says that anything provable will eventwally 1)e
proved. It therefore defines what is provable from
above. The former are a first step towards defining
what is provable from below--.-we can prove any con-
servative consequence, along with a set of other things
which follow fi’om the application of other rules. For
example we have:

Theorem 15 Given a conjunctive: default base ~ with
base antecedent (~" whose simple subset has consequent
set G, the con.sequence relation ~ p will generate all con-
sequences:

A,T t"e (¢,~)
for some e, where ̄  is the associated conjunction of a
set F such that F C {o}t.JG where G is the consequent
set of the simple subset of A.

Proof: From Theorem 11, we get A, o ~j, (~, e) pro-
vided that F _C G. Using LLE on this gives us ¯ A a
condition’,d on T and then applying RW will give us the
result.

We also have:

Theorem 16 Given a conjunctive default base A with
base antecedent o, the consequence relation ~,,p will gen-
erate all consequences:

-", ~ I"P (,I,, e)
for some e, where ~ = Aj ~PJ and:

i

where .~ = U,’{~ A Bi ~., ri}.

Proof: For every o A Bi :=~, ri we can apply Ax, S
and RW to get Act ~p (-"BiVFi, ei), and applying And
to all of these gives .~, c~ ~p (-"Bi V Fi, e), and applying
RW again gives the result.

Further results are possible when we consider proofs
which make use of defaults from more than one con-
julwtive default base. It is also possible to extend the
results here by computing bounds on the value, of e in
the theorems. Lack of space prevents us from giving
these additional results here, but the)’ may be found in
(Parsons & Bourne 1999).

An example
We now illustrate the use of the system on tile following,
inspired by examples given by Kraus et al. (Kraus,
LehmamL & Magidor 199{}}.

Brian and Liuda are two happy-go-hlcky people
who are normally tile life and soul of any party (so
if either go to a party it will normally be great).
Until recently Brian and Linda were married, but
then Liuda ran off with a mime artist, Steve. As
a result, if both Brian and Linda go to the same
party they will probably have a screaming row" and
ruin it (so it will not be great and it will be noisy}.
If Linda goes to a party she will probably take her
new 1)oyfriend Steve emd get him to entertain tile
guests with his marvellous miming. Thus if Linda
goes to a party, Steve will probably go to the same
party and if Linda and Ste’,~e go to a party together
it will normally not. be noisy because everyone will
be watching his miming. Normally parties that
great are noisy and those that are not noisy are
not great.

We represent this by the following default base A which
is made up of four separate default bases. It should
be understood that we are trying to ascertain the like-
lihood of rely given party having various attributes
(brian is present, it is noisy, and so on).

1. brian ~o.m great

2. linda =¢’0.0t great
3. brian A linda ~o.v, -.great A noisy

4. linda ~o.i steve
5. liuda A steve ~o.o5 -"noisy
6. great =~O.l noisy

7. -,noisy ~ o. t -~p, reat
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(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix.)
0")
O’i)
(.rii)

¯ X li71da A steve ~t, (-,noisy, 0.05)
~, linda b’p ( st.eve. O. 1)
A linda b’p (-,noisy, O. 15)
~, linda ~p (great, 0.(11)
¯ .X linda ~p (gtv.at A -,noisy,O.16)
~, T ^ gnda bq’ (great A ~noisy,O.16)
A, T ’p.p (-,linda V (g1~:at A --,noisy).O.16)
A, -,noisy b~p (-,gwat, 0.1)
¯ "~. T A "~noisy ~-,,p (-Lq~at. 0.1)
~. T ~p (--,!p~at V noisy. (I.1)
_X, T ~p ((-,.qreat V noisy) A (-,linda V (.q~w~t A -,noisy)),0.26)
A. T ~r, (-,linda, 0.26)

.4x, 4
.’Ix, 5
Cut. (i), (ii)
Ax, 2
And, (iii). (iv)
L LE, (v)
S, (vi)
Ax. 7
LLE(viii)
S, (i:r)
And, (vii), (x)
RH; (xi)

Figure 4: A non-ronservative consequence concerning Linda

As an ex,’m~ple of the generation of a conservative con-
sequence, ronsider the proof of Figure 3. As this proof
demonstrates, we can conch]de that. if both Linda and
Steve go to the party, then the probability that it will
be both great and not noisy is greater them 0.939 (1
minus the strength of the p-cimsequen(’e linda A ste’ve).

If we combine defaults from the different ronjmlc-
tive default bases in A, we can obtain additional ron-
clusions. Ft)r example, consider Figure 4 which gives
a proof for the p-consequence linda conditional on T.
This tells us that the probability of Linda going to any
particular party is at most 0.26. This last ~,xample
neatly illustrates two points.

The first is a property of System P. We have shown
that the probability of Linda going to any particular
party is quite low. IT certainly isn’t likely Pnough to be
a default conclusion. However. if we know that Linda
does go to a party--a fact which makes the party some-
what abnormal---then we can draw conclusions whi(’h
are very likely for such abnormal parties (they are very
likely to be great, for instance).

The second point is to do with the form of the
proof. As stated above, the proof of the p-consequence
-,linda involves the use of defaults from different con-
junctive default bases (in particular that with base an-
tecedent linda and the single default with base an-
tecedent -,noisy). This is possible through the use of
LLE and S to obtain p-consequences conditional on T
which may then be combined using And. This turns out
to be an important mechanism for combining defaults
from different default bases (Parsons & Bourne 1999).

Conclusion
This paper has presented some results concerned with
the use of System P for generating proofs of propo-
sitions. In particular we have defined a system 8P
for generating the. consequences of a set of defaults ex-
pressed using System P. We have shown that this sys-
tem is sound and comph~te, and have made a start at.
precisely characterising the kinds of consequences that
this system will generate. The result is that we have
identified a small but useful class of consequences of a

set of defaults which we know we can prove. Larger
classes of such consequences are given in a longer ver-
sion of this paper (Parsons &r Bourne 1999).

The information input into the proof process is a set
of lower bounds on conditional probabilities. Because
these x~dues are propagated through the proof, the out-
put is a set of probability statements similar to:

Pr((l’ A -,/3 J -~ A 

If the propositions -, and ?i are pieces of evidence (in
other words things which are known to have occurred).
this output information is sufficient to e.stablish the
probability of the state a A -,/L Thus the output of
S’P (’an be us(,d, along with information on the utility
of o A --3 as the basis of some decision making process,
and this is the direction that our research on the topic
of this t)aper is taking us.
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