
Probabilistic Reasoning Through Genetic Algorithms and
Reinforcement Learning

Xiaomin Zhong and Eugene Santos Jr.
Department of Computer Science and Engineering

University of Connecticut
Storrs,CT 06269-3155

zhongx@cse.uconn.edu and eugene’~cse.uconn.edu

Abstract
In this paper, we develop an efficient approach for in-
ferencing over Bayesian networks by using a reinforce-
ment learning controller to direct a genetic algorithm.
The random variables of a Bayesian network can be
grouped into several sets reflecting the strong proba-
bilistic correlations between random variables in the
group. We build a reinforcement learning controller
to identify these groups and recommend the use of
"group" crossover and "group" mutation for the genetic
algorithm based on these groupings. The system then
evaluates the performance of the genetic algorithm and
continues with reinforcement learning to further tune
the controller to search for a better grouping.

Introduction
Bayesian Networks (Pearl 1988a) are one of the most
popular models for uncertainty. Knowledge is orga-
nized in a hierarchical fashion providing easy visual-
ization of the reasoning domain. Such networks consist
of directed acyclic graphs of nodes, each representing
a random variable(rv) with a finite domain. The di-
rected arcs between the nodes represent probabilistic
conditional dependencies. The joint probability over
the random variables can be computed via the chain
rule and the given conditional independence assump-
tion. Bayesian networks have been applied to various
domains such as story comprehension, planning, circuit
fault detection and medical diagnoses.

There are two types of computations performed with
Bayesian networks: belief updating and belief revi-
sion(Pearl 1988b). Belief updating concerns the com-
putation of probabilities over random variables, while
belief revision concerns finding the maximally probable
global assignment. However, both tasks are known to
be NP-hard (Shimony 1994). In this paper, we demon-
strate how a kind of genetic algorithms directed by a
reinforcement learning controller can be effectively used
in belief revision.

A Genetic Algorithm(GA) is an evolutionary compu-
tation technique inspired from the principles of natural
selection to search a solution space. Most researches
modified their implementation of GA either by us-
ing non-standard chromosome representation or by de-
signing problem specific genetic operations(Michalewizs

1996) to accommodate the problem to be solved, thus
building efficient evolution programs. In this paper,
we employ "group" crossover and "group" mutation
based on grouping random variables of a Bayesian Net-
work(BN).

Experimental results show that different groupings
effect the performance of the GA. We use a Reinforce-
ment Learning(RL) controller to adaptively determine
the elements in each group. This method investigates
the impact of using domain knowledge during the re-
combination and mutation phases of the GA.

Bayesian Networks and Belief Revision

Belief revision is the process of determining the most
probable instantiation of the random variables (rvs)in
a network given some evidence. More formally, if W is
the set of all rvs in the given Bayesian network and e is
the evidence (that is, e represents a set of instantiations
made on subset of W), any complete instazltiations to
all the rvs in W that is consistent with e is called an ex-
planation on interpretation of e. The problem is to find
an explanation w* such that: p(w*) = maxwew p(wle)
Intuitively, we can think of the non-evidence rvs in W
as possible hypotheses for e.

With a small network, a valid solution method is
to simply tabulate all the possible values of the rvs
and then calculate the probabilities. Once the network
gets larger and more complex, this method is obviously
unacceptable and more efficient method must be em-
ployed.

Several people have used GAs to perform belief revi-
sion over Bayesian network, but only superficially con-
sidered the topological structure of BN (Rojas-Guzman
& Kramer 1993; Santos, Shimony, & Williams 1997;
Santos & Shimony 1998; Welch 1996). From experimen-
tal results, we know that even the topological structure
will effect the performance of GA (Williams, Santos, 
Shimony 1997; Jitnall & A.E.Nicholson 1996).

So we use reinforcement learning to continuously
learn and identify the problem-specific attributes of
the BN, and employ this in the GA through "group"
crossover and "group" mutations for the search process.
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Genetic Algorithm Approach

Genetic algorithms are search and optimization algo-
rithms based on the principles of natural evolution. To
apply GA, one generally expresses the t)roblem in such
a way that potential solution caa~ be coded in a gene-
like bit sequence and a population of those sequence is
prepared. An optimal solution is searched for by evo-
lutionary operations including selection, crossover mtd
mutation. Most researchers modified their implemen-
tations of GA either by using nonstandard chronmsome
representation or by designing problem specific genetic
operations to accommodate the problem to bc solved in
order to build efficient evolution prograins.

When using GA to implement the process of belief
revision on BN, we develop "group" operations for this
particular problem. The GA used in our method is
based on the GENESIS(Grefenstettc 1990) fi’amework.
In this section, we will describes the representation and
operations employed in our GA.
Representation For the belief revision problem do-
main, we represent a solution or individual which is a
complete assignment t.o tile underlying BN as an ar-
ray of integers (the gene). Each position in the array
(chromosome) corresponds to one random variable 
belief network. Each element of the array caal takc a
number of values from a finite discrete integers and cor-
responds to the ,mmber of the random vm’iabh,s iu BN.
The genetic operations ,naafipulate each individual by
changing the value of each element iu the array. The
fitness evaluation is simply our solution quality calcu-
lation. In this case, it is the joint probability of the
solution.
Selection The selection operation is the standard
"roulette wheel" selection approach based on the rauk-
lug of the iudividuals within the population instead of
the absolute performance. Ranking helps prevent pre-
mature convergeuce by preventing "super" individuals
from taking over the population within a few genera-
tions.
Crossover The crossover operation performs a
"group" crossover. We partition the raaadom variables
of BN into several groups based initially on the topolog-
ical connectivity (see RL later). Each group is a subset
of the random variables that forms a "conuected’" sub-
graph of the BN. We hope a rv will be in the same group
with its parents and children. In this paper, a reinfor(’~
ment learning controller is used to identi~" grouping.

The mechanism of the "group" crossover is ex-
plained by the following examples. Assume there
is a BN with 12 random variables. The 12 rau-
dona variables have been appropriately divided into
3 groups:groupl={1,2,8,12}, group2={3,6,7,9}, and
group3={4,5,10.11}. Each group represent a sub-
graph. Assunm.. there are two selected parents Pl =
(123311223213) and P2 = (221313113211). For 
graph Gt (groupl), subgraph G~ (group2) and 
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graph G3, the subsolution can be calculated:

p(G1) = H p(xl_~lTr(xx_.i))
i

p(Gu) = II p(x]-jl,-r(x.,-~))

(1)

(2)

(3)
J

p(G3) = p(xl-k I~ (x3-k))
k

where ~( ) is the set of instantiations to the parents 
the random variables.

For p], using the above fornmlas, we get subso-
lution p(C]), p(a~), p(G~). For p.~, we get p(G’Zl),
p(G~), p(e’~). We then compare p(G]) with p(G~),
p(V~) with p(G~), and p(e~) with p(G.]). Let’s assume
p(G~) > p(G~), p(G~) > p(G~) t) <p(G]). We
can get two children p~ and p~ by combining the good
subsolutions together:

#

P(Pl ) = p(G] )p(G~)p(G~) (4)

and a
= p(Gt )p(G.l )p(Gz) (5)

t t
where Pl = (123311223213) and P2 = (223311213211).

Mutation There are two kinds of mutation operation
employed in our method. One is standard mutation and
the other is called "group" mutation. Standard mu-
tation rando,nly selccts a chromosome to modify and
then randomly choose a new value for that chromo-
some. "Group" mutation randomly select a chromo-
some to update the group it belongs to. These nmta-
tion operations helps the GA to maintain diversity in
the population to avoid premature convergence.

Reinforcement Learning System for
Grouping Identification

As described above, we use GAs to implement the task
of belief revision. In order to improve performance, we
introduced "group" crossover and "group" mutation.
RL is used to identi~" the elements of each group. In
this section, we introduce the structure and learning
algorithms of RL employed in our system.

Reinforcement Learning

Reinforcement learning is different from supervised
learning. At each time step in supervised learning,
a teacher provides the desired control objective to
the learning system. In reinforcement learning, the
teacher’s response is not as direct and informative as in
supervised learning and it serves nmre to evaluate the
state of the system. In general, reinforcement learn-
ing is more widely applicable than supervised learning,
since inany control problems require selecting control
actions whose consequences emerge over uncertain peri-
ods for which input-output training data are not readily
available.

In the reinforcement learning scheme, inputs describ-
ing the environment is given to the learning systein.
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FIG. 0.1. Reinforcement Learning

The system then makes a decision according to these
inputs, thereby causing the environment to deliver a re-
inforcement to the system. The reinforcement measures
the decision made by the system. In some system, the
system receives reinforcement "after each decision, that
is, a complete evaluation of an action becomes a~-ailable
before the system needs to perform the next action. In
some systems, however, reinforcement is often tempo-
rally delayed. The reinforcement learning algorithlns
employed in our system is similar to the method pro-
posed by (Santharam & Sastry 1997).

Architecture Figure 0.1 shows the architecture of
our prolmsed learning system:

The system has two major parts: the controller and
the adaptive critic. The controller makes a stocho~stic
choice of rv groupings in each state based on its in-
ternal paranmter. This parameter is updated at each
instant, using a scalar reinforcement signal supplied by
the adaptive critic network. The adaptive critic net-
work maintains estimates of state-action values (San-
tharam & Sastry 1997) and supplies a reinforcement for
the colttroller. Here the state of a rv descrihes which
group the rv belongs to. For example, if a rv’s st ate is
j, the rv belongs to group j. The action k acting on a
rv means chaa~ging the rv’s state to group k. For a rv
i and action k, the state-action value q~k is defined ,’~s
the expected infinite horizon total discounted payoff if
action k is performed and an optimal policy is followed
thereafter.

Controller network The structure of the controller
is as follows: It has one unit corresponding to each rv
of Bayesian network. Each unit is a learning automata.
Figure 0.2 show the structure of the kth unit:

The kth unit of the controller has a weight vector
U’k = (Wkl,...,Wkn). gki E G, G = {1,2 ..... n}
is the group state set. The unit generates an group
output yk E G stochastically according to the law:
yk = i with probability Pki and

f(u.:~igkl) (6)

where f : R --4 R is the activation hmction given by
f(x) = 1 From the above fornmla it follows thati +-VT-~"
each value of parameter wk determines a specific sta-
tionary random grouping.

reinforcement

gkl~

gk2-
iwk2 -t )

gkn

FIG. 0.2. Structure of kth Controller Unit

Adaptive Critic Network The function of the
adaptive critic network is to update the estimates of the
state-action values after observing the state and payoff.
It has one unit corresponding to each rv of BN. There
are two tasks are implemented in each unit. First, ac-
cording to the immediate payoff value, estimate each
current state-action value qki. Second, choose the max-
imum state-action value among the all state-action val-
ues.

Learning Algorithm The learning algorithm is as
follow:

1. For k = 1 to n (n is the number of rvs in BN) the
kth controller unit generates an action Yk using equa-
tion 6.

2. For k=l to n
(a) the reinforcement r’ to the kth controller unit from

the kth adaptive critic will be:

1 qki = maXmEGqkm
r’ = 0 otherwise

(b) update the kth controller weights:

A u,~i = ~(r’ - Y(w~i)) - ~lv~i (7)
where ,3 is the learning rate, 6 is the weight decay
rate. The weight decay is to prevent converging
prematurely.

(c) update the state-action value:

Aqki = B(r(n) qki + OLma~_ qk,~) (8)
met.3

where ~ is the learning rate, t~ is the discount fac-
tor: and r(n) is the payoff at instant n.

The above steps are repeated at each time instant.

Combining GA with RL
As stated above, the GA is used to implement belief re-
vision, and the RL is used to identify groupings for the
GA. The system proceeded in two steps: initial group-
ing selection and run-time control. The goal of initial
grouping selection is to learn the structure of the BN
through RL and identify crossover groupings. In run-
time (’ontrol, the GA interacts with the RL controller
in order to tune the GA performance and find a better
grouping that results in improved GA performance.

UNCERTAIN REASONING 479



Initial grouping selection

For initial grouping, we desire that a rv will bc in the
same group with its parents and children. For instant
n, we use a ratio Ei (’n) to evaluate the grouping result
produced by the RL controller:

number of good rv
E, = (9)

number of all rv in BN

A good rv means that the rv is in the same group with
its parenls and chil(lren. After the RL controlh’r gen-
erates a grouping, E1 is computed, and payoff:

El (n)
r(,,) - El(,,- (10)

is sent back to the RL controller to change the param-
eters of IlL controller.

Run-time Control

In this phase: the GA interarts with the RL controller,
and tunes each other. The RL controller sends its
grouping resuhs based on initial grouping selection to
the GA. The GA implements its operation (selection.
crossover and mutatkm) to find a solutiom A payoff is
produced to tune the RL controller. The payoff r(n)
must ’also consider the performance of the GA. Based
on the grouping, for each group we COmlmte subsoht-
tion of the best individual of the population: and use
the best subsolution E2 to determine tt,e performance
of the GA. At instant n, we use the following to com-
Irate the payoff:

El (n.) E.., (.n)
r(n) = Wl El (n - + i v2E.~ (.n - I) (I

From our experiments, we have found that values of
uq = 0.1 and u’2 = 0.9 to be ideal.

Experiments

We tested our approach on several Bayesian networks.
Four of these, which we called trace1, trace2, trace3 and
trace4, were generated by the Andes (Gertner, Conati,
& VazlLehn 1998) system. The others were randomly
generated with different network topologies anti distri-
butions. We ran both tlm staadard GA and our GA
through 600 iterations. In cases where possible, we de-
termined the optimal solution through brute force corn-
put ations.

Table 0.1 shows performance comparison of truce net-
works, and Figure 0.3 shows the results running our GA
mad tim standard GA on these trace networks.

Table 0.2 shows the results on BNs generated ran-
domly with different probability distributions and con-
nective density, where expl has exponential probabil-
ity distribution and a dense connectkm, exp2 has ex-
ponential probability distributkm mad a sparse com~ec-
tion, flat1 has fiat probability distribution and a dense
connection, aad flat2 has fiat probability distrilmtion
aad a sparse connection. The last network spike-flat
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FIG. 0.4. Performance on BN with exponential dis-
tributkm

has a mix of exponential aad fiat. distribution nodes.
Figure 0.4 depicts the performance of our GA and the
standard GA on just the exponential BNs.

Finally, Table 0.3 shows the results on BNs generated
randomly with different numbers of nodes but with sim-
ilar exponential probability distributions aa,d connec-
tive density.

From our experiments, we can see that our new GA
with group crossover aad mutation performs signifi-
cantly over the staadard GA approach. Intuitively, our
approach to capture groups of highly correlated random
variables can be seen in the networks with exponen-
t.ial distributions (near 0-1 probabilities). However, 
the last experiment indicated, there are still limitations
with the approarh as the search space becomes explo-

i B.~ .an*v i Node Optimal solution Standard GA O.r GA
BN1 lf)0 2.650e-01 0 2.65e-01
BN2 200 3.601e-02 0 1.3(J5-05
BN3 300 8.13e-0.1 0 1.7fi7e-04
BN4 400 n/a 0 0

TABLE 0.3. Performar, ce Comparison of BN with
different node number



BN name Node Optimal solution Standard GA Time (CPU Sees) Our OA ’Time (CPU Sees)
trace| 103 4.032e-11 6.548e-16 58.5 2.199e-13 117,91
tr&ce2 158 9.186e-12 0.0 n/a 1,207e-14 192,27
trace3 166 7.026e-18 ?,089e-26 141.62 1.467e-24 238.38
trace4 ] 96 0.0 n/a 1.912e-20 257.90

TABIAd 0.1. Performance Comparison on trace BNs.

~N nazne Node Optimal solution St~ndffird GA Time (CPU Sees) Our GA Time (CPU Sees)
expl 100 8.463e-02 ].610e-40 59.85 5,396e-06 118.45
exp2 100 1.960e-01 1.565e-35 55.33 4.938e-04 110.71

~atl lO0 5.948e-23 3.362e-25 62.00 5.445e-24 112.38
flat2 100 8.037e-26 8.783e-27 56.66 1.654e-27 108.20

spike-fiat 60 2.172e-12 9.166e-20 29.57 7.538e-18 67.2

TABLE 0.2. Performance Comparison of BN with different distribution

sive. In general, we have traded additional computa-
tional overhead in our method for orders of magnitude
improvement in our solution.

Conclusion

For large nmltiply connected networks, exact inferenc-
ing may not be feasible, making approximate algo-
rithms an attractive alternative. We have proposed
a new GA with "group" crossover and "group" mu-
tation for inferencing over BN. A reinforcement learn-
ing controller is used to identify- the grouping. Dur-
ing inferencing, the controller interacts with the GA.
With this interaction, the GA emd the controller tune
each other to find good solutions. This method inves-
tigates the impact of using domain knowledge during
the recombination and mutation phases of GA. Pre-
liminary results have show that. our proposed method
constitute a promising approach to perform inference in
multiply connected complex system. This method can
yields sub-optimal solution in tractable times. In gen-
eral, we have traded additional computational overhead
in our method for orders of magnitude improvement in
our solution. While the approach has limitations such
as actually determining the optimal solution, the sub-
optimal solution can be used in cooperation with other
algorithms to improve their performance by taking a
portfolio-based approach to problem solving (Williazns,
Santos, & Shimony 1997).
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