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Abstract
Validation of human behavioral models, such as those used
to represent hostile and/or friendly forces in training
simulations is an issue that is gaining importance, as the
military depends on such training methods more and more.
However, this introduces new difficulties because of the
dynamic nature of these models and the need to use experts
to judge their validity.  As a result, this paper discusses some
conceptual approaches to carry out this task.  These are
based on comparing the behavior of the model to that of an
expert, while the latter behaves normally in a simulated
environment, under the same conditions seen by the model.

1    Introduction
The field of intelligent systems has matured to the point
where significant research is now being focused on
modeling human behavior.  Earlier research work, mostly
in the form of expert systems, concentrated on developing
means of representing and manipulating deep but narrow
and specialized knowledge efficiently and effectively.
Their objective was to provide expert advice in the process
of solving difficult and specialized problems.  This
objective has generally been met successfully, with
research in expert systems currently having shifted to more
efficient means of knowledge acquisition, and system
validation and verification.

Much of the current non-expert system research effort
has centered on developing intelligent systems that can
display human-like behavior, either as robots in the
physical world, or as computer generated entities in a
simulation of the real world.  The latter are most often used
to assist in simulation-based training, but have applications
in entertainment and control.  We focus on the latter.

Modeling human behavior at the procedural level has
shown significant promise.  Through introspection, humans
can and have been able to identify several high level
techniques used to solve some problems, especially that of
interacting with our environment in order to live, thrive and
survive in it.  Certainly, solving problems in the same high
level way as humans do is a step in the right direction.

Research in simulated intelligent entities has focused on
modeling a higher level of behavior, such as that used in
tactical behavior modeling.  This different focus is largely a
________________
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result of the need for displaying tactically correct behavior
in a battlefield simulation.  While route planning and
obstacle avoidance have been areas of intensive work,
learning has not been a major issue up until recently.  More
of interest has been to develop efficient and effective
models that truly represent tactical behavior at a minimum
of cost to develop as well as to execute.

Human behavioral models, known in the military
simulation and training community as Computer Generated
Forces (CGF), have been successfully incorporated in
several significant simulation training systems.  See below.
However, there is a serious need on the part of these users
to be able to validate the behaviors demonstrated in order to
ensure a sound training process.  But such validations are
not easy.  This paper provides an insight into the type of
procedures that would be required to adequately validate
these human behavioral models.  However, prior to that
discussion, a review of the most common and popular
means of representing CGF systems would be appropriate
as a way to set up the discussion on their validation.

2    CGF Implementation Techniques
When a human tactical expert is asked what he would do
under certain circumstances, the response is typically
framed as a conditional.  “If this was green and that was
blue, then I would turn left”.  Thus, the most intuitive as
well as popular means of representing tactical human
behavior is through the use of rules.  However, rules have
the drawback that they are quite myopic in scope.  To
develop a system with any kind of tactical realism, a large
number of rules need to be developed and executed, as the
numerous conditions resulting from the many variations can
translate into an explosive number of rules for even
relatively simple tasks.  This is not efficient.  Furthermore,
gaps in the behavior can be easily left uncovered.  Whereas
these gaps can be easily filled with new rules, it is a
makeshift process that does not have natural closure.
Experts systems suffer from the same deficiency.  But the
domain of expert systems, being more limited and the
inputs more predictable, can easily tolerate the situation.

Because of its intuition and popularity, most of the early
systems that implemented CGF’s were based on rules.
Golovcsenko [1987] discusses some Air Force prototype
systems that exhibit certain amount of autonomy in the
simulated agents.  One in particular, a special version of the
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Air Force's TEMPO force planning war game system, uses
rule-based techniques to replace one of the human teams
involved in the game.

One notable CGF system is the State Operator and
Results system (SOAR) [Laird 1987; Tambe 1995].  SOAR
takes a goal-oriented approach in which goals and sub-
goals are generated and plans to reach them are formulated
and executed.  These plans are in effect until the goals are
reached, at which point they are replaced by new goals that
address the situation.  However, SOAR is based on the rule-
based paradigm, which has many disadvantages.

Another popular technique used in CGF systems has
been Finite State Machines (FSMs).  FSM’s have been used
to implement goals or desired states in the behavior of the
AIP [Dean 1996].  These states are represented as C-
Language functions.  Three major FSM-based CGF systems
are the Close Combat Tactical Trainer (CCTT) [Ourston
1995], ModSAF [Calder 1993], and IST-SAF [Smith 1992].
These systems all employ FSM’s as the representational
paradigm.  The knowledge found on FSM’s does not
necessarily aggregate all the related tasks, actions, and
things to look out for in a self-contained module.  This
makes their formalization somewhat difficult from the
conceptual standpoint.  Some FSM-based systems allow for
the control of one entity by more than one FSM at the same
time.  This can be dangerous in that an incorrect behavior
can be easily displayed.

Other, less popular, alternative representation and
reasoning paradigms such as model-based, constraint-based
or case-based reasoning, although promising in some
respects, (see [Borning, 1977; Castillo, 1991; Catsimpoolas,
1992]) are not "natural" for this form of knowledge since
they do not easily capture the heuristics involved in tactical
behavior representation.

Another common approach to the AIP problem has been
to use blackboard architectures to represent and organize
the knowledge.  One implementation [Chu 1986] uses
separate knowledge sources to carry out tasks such as
situation assessment, planning, formulation of objectives,
and execution of the plan.  The system uses a modified
version of Petri Nets to represent instructional knowledge.
Work carried out in the form of maneuver decision aids at
the Naval Undersea Warfare Center [Benjamin 1993] has
also employed a blackboard architecture.  The objective of
this research is to assist the submarine approach officer in
determining the most appropriate maneuver to carry out to
counter an existing threat, or to accomplish a mission.

Yet another approach has come from cognitive science
researchers [Wieland 1992; Zubritsky 1989; Zachary 1989].
These efforts do not directly address AIP's, but rather, the
closely related problem of cognitive modeling of the human
decision-making process.  Their efforts also make use of a
blackboard architecture.  The COGNET representation
language [Zachary 1992] uses a task-based approach based
on the GOMS concept [Card 1983; Olsen 1990], in an
opportunistic reasoning system.  In this approach, all

actions are defined as tasks to be performed by the AIP.
The definition of each task includes a trigger condition that
indicates the situation that must be present for that task to
compete for activation with other similarly triggered tasks.
The use of blackboard system, however, introduces a high
overhead and much added complexity.

As can be seen, there are several means of representing
the knowledge required to model human behavior as it
applies to tactics.  The problem remains how to validate the
behavior models in a way that makes all the different
representational paradigms transparent.  The next section
discusses some conceptual approaches to the problem.

3    Potential Validation Techniques for
Human Behavior Models

Since by definition these models are designed to simulate
human behavior, it becomes clear that they must be
compared to actual human behavior.  Validation of the
more traditional expert systems is really no different, as
these attempt to model the problem solving ability of
human experts.  Expert systems have traditionally been
validated using a suite of test cases whose solution by
human domain experts is known ahead of time.  However,
these tests are generally static in nature – provide the
system with a set of inputs and obtain its response, then
check it against the expert’s response to the same inputs.
Time is typically not part of the equation, unless it is
already implicitly incorporated into the inputs (i.e., one
input could represent a compilation of the history of one
input variable). The techniques suggested by Abel [1997]
provide effective and efficient means of generating good
test cases based on the validation criteria specified for the
intelligent system. The Turing Test approach proposed by
Knauf [1998] is a promising way to incorporate the expert’s
opinion in a methodical fashion for time-independent
problems and their time-independent solutions.

Validating human behavioral models, on the other hand,
requires that time be explicitly included in the expression of
the tactical behavior.  Such behavior not only has to be
correct, but also timely.  Reacting to inputs correctly, but
belatedly can result in the decision-maker’s destruction in a
battlefield.  Furthermore, tactical behavior is usually
composed of a sequence of decisions that are made as the
situation develops interactively.  Such developments are
generally unpredictable and, therefore, it becomes nearly
impossible to provide test inputs for them dynamically.

Certainly the test scenarios could be “discretized” by de-
composing them into highly limited situations that would
take the time out of the equation.  However, several of these
would have to be strung together in sequence in order to
make the entire test scenario meaningful.  This would be
artificial, and the expert may have difficulty in visualizing
the actual situation when presented thusly.  Furthermore,
interaction would not be possible.  Therefore, I do not
believe this would be acceptable as a mainstream solution.



One alternative would be to observe the expert or expert
team while he/they display tactical behavior, either in the
real world, or in a simulation specially instrumented to
obtain behavioral data.  Certainly, using a simulation would
make the task of data collection and interpretation much
easier, at the cost of having to build a simulation.
However, since the models are to be used in a simulation, it
is likely that such an environment already exists.

Conceptually speaking, validation can be executed for
these types of models by comparing the performance of the
expert with that of the system while being subjected to the
same initial inputs.  The performance of can be represented
as a sequence of data points for the observable variables
over a period of time.  Overlaying one on top of the other
may provide some indication of validity for the system’s
performance.

A complete match between the expert’s performance and
the model’s behavior would certainly justify validation of
the model.  Realistically, however, a significant amount of
deviation may exist between the two performance records.
While some deviations may be indicative of a serious
discrepancy in behaviors, others may simply be a different
and equally appropriate way of achieving the same goal.
Thus, expert input may be necessary to determine what is
correct and what is not correct.  Alternatively, an intelligent
system could be developed to perform this task of
determining what is an acceptable deviation and what is
not, but it would also ultimately have to be validated itself,
and that would ultimately require human expertise.

Furthermore, due to the interactive nature of the model
and the domain, the system being validated may make a
different decision from what was made by the validating
expert which, although correct, progresses into a different
scenario.  Consequently, the two performance records could
no longer be adequately compared, as their situations may
have diverged significantly enough to make them not
relevant to each other.

In reality, none of the above techniques provide us with
an effective and efficient means to validate the performance
of human behavioral models.  To solve this, we take into
consideration how the model was built in the first place.

Building the model in the traditional way – interviewing
the subject matter experts (SME’s) and building the model
by hand from their response to the numerous queries made
in these interviews, would in fact place us in this quandary.
There would be little relationship between the means of
model development and that of validation.  However, by
tying the means of building the model with the validation
process, some of the obstacles described above may be
overcome.  This is described in the next section.

4    Learning by Observation of Expert
Performance in a Simulation

Humans have the uncanny ability to learn certain tasks
through mere observation of the task being performed by

others.  While physical tasks that involve motor skills do
not fit under this definition (e.g., riding a bicycle, hitting a
golf ball), cognitively intensive, or procedural tasks can be
relatively easily learned in this way.  Very often we hear
people asking for examples of how to perform a task so
they can see how it is done.  If such is the case for humans,
certainly machines can be made to do the same type of
learning.

This idea was seized by Sidani [1994], who developed a
system that learns how to drive an automobile by simply
observing expert drivers operate a simulated automobile.
The system observed the behavior of an expert when faced
with a traffic light transition from red to green.  It also
observed the behavior when a pedestrian attempted to cross
the street.  Furthermore, it was able to correctly infer a
behavior it had not previously seen when faced with both, a
traffic light and a pedestrian on the road.  Sidani
compartmentalized the behaviors by training a set of neural
network, each  of which was called to control the system
under specific circumstances.  A symbolic reasoning
system was used to determine which neural network was
the one applicable for the specific situation.

Further work in the area is currently being carried out by
Gonzalez, DeMara and Georgioupoulos [1998a, 1998b] in
the tank warfare domain.  Using a simulation as the
observation environment, behavior is observed and
modeled using Context-based reasoning (CxBR).  For an
explanation of CxBR, see [Gonzalez and Ahlers 1995].
Supported by the U. S. Army under the Inter-Vehicle
Embedded Simulation for Training (INVEST) Science and
Technology Objective, this project also extends the concept
of learning through observation by including an on-line
refinement option.  See Bahr and DeMara [1996] for further
information on the nature of the INVEST project.

4.1   On-Line Refinement and Validation
The concept of refinement involves improvement of an
intelligent system during or after initial validation.  The
model being developed by Gonzalez, DeMara and
Georgioupoulos (which was learned through observation) is
intended to predict the behavior of a human combatant in a
federated simulation.  This is rather different from
conventional CGFs that attempt to simply emulate actual
entities in a general way.  Prediction also carries a much
heavier burden when it is regularly and continuously
compared to actual behavior, as is the case in the
application of the resulting model.  However, it provides
the opportunity to implement validation relatively easily.

A predictive model is required because an accurate
prediction of actual human behavior would reduce the need
for real-time on-air communications of the position of an
actual vehicle in the field to all others in the simulation.
Each live vehicle in the simulated exercise must be aware
of the position of all other live, simulated and virtual
vehicles in the simulated environment, which may or may
not be the same as the physical environment where the



vehicle is physically located.  Rather than communicating
its whereabouts constantly (which is expensive due to the
small bandwidth available), each live vehicle has in its on-
board computer a model of all other live and simulated
vehicles.  If the other vehicles all behave as modeled, the
personnel in that vehicle can confidently predict its location
and would need no update on its position.  However, it is
unrealistic that a perfect model could be found, in spite of
the latest modeling and learning techniques.  Each vehicle
carries a model of itself in it on-board computer.  It
compares the actual position, speed and other observable
actions with those predicted by the model.  If in agreement,
no action is necessary.  However, if a discrepancy arises, all
other models of this vehicle resident in all the other
vehicles (called “clone” models) are not correctly
predicting its behavior.  Thus, some corrective action must
be initiated.  Such action can be: 1) discarding the model
and providing constant updates through communication, 2)
modifying context in which the model is on an on-line
basis, or 3) permanently changing the  model to reflect
reality.  This last step can be referred to as refinement.

Therefore, a means to detect deviations becomes
necessary.  As such, an arbiter system must be developed to
determine when the model no longer correctly predicts the
behavior so that a correction is initiated.  This arbiter,
called the Difference Analysis Engine (DAE), serves to
compare the behavior of the human with that of the model.

4.2   The DAE as a Validation Engine
The DAE is designed to ascertain when deviations between
the human and the model are significant enough to warrant
initiation of corrective action (i.e., communication
sequence).  However, it would be relatively easy to convert
the DAE into a validation engine instead.  The model and
the human expert could be reacting to the simulated
environment simultaneously, with the DAE continuously
monitoring them for discrepancies.  Upon discovering a
serious enough discrepancy, the DAE could note it and
either continue, or modify the model so that it agrees with
the human’s behavior.  Through the use of contexts as the
basic behavioral control paradigm, the requisite action
would merely be to suggest a context change in the model.
This new suggested context would agree with the expert’s
action and the validation exercise could continue in a
synchronized fashion.  While this would represent external
manipulation of the model, a team of experts could
afterwards, in an after-action review, determine whether the
model should be permanently modified to reflect that
change.

Alternatively, the change could simply be noted,
recorded and presented to the panel of experts at an after
action review.  The drawback to this is that unless rectified,
a discrepant decision by the model could serve to make the
rest of the validation exercise irrelevant, as the model may
be faced with situations different from that of the human.

5   Summary and Conclusion
It is clear that validation of human behavioral models
introduce a new level of difficulty in the validation of
intelligent systems.  Conventional validation techniques,
such as the ones used for expert systems, may not be
effective for such a task.  A promising alternative exists
with the concept of learning and refining a model through
observation of expert behavior.  While this concept is
relatively immature and requires further research, I feel that
it represents a very viable approach to this very difficult
problem of validating human behavior models.
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