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Abstract

Often a rule-based system is tested by checking its
performance on a number of test cases with known
solutions, modii~’ing the system until it gives the cor-
rect results ibr all or a sufficiently high proportion of
the test cases. However, the performance on the test
cases may not accurately predict performance of the
system in actual use. In this paper we discuss why
this testing method does not give all accurate reliabil-
ity prediction. We then propose a method for reliabil-
ity prediction based on coverage data, attained during
testing, and aa operational profile of the expert sys-
tem. This extension of software reliability engineering
methods into the expert systems realm can lead to
better systems as well as a more accurate prediction
of system behavior in actual use.

Introduction

Giw.~n a rule-base and a set of test cases with expected
results, we execute the test cases. Tim rule-ba.~ gives
a correct answer for 80% of the test cases. What kind
of performance carl we predict from the rule-base in ac-
tual use? In general, we are interested in the question
of how" the performance of a system during testing can
be used as a predictor of its performance in actual use
in the intended problem domain.

Generally the rule-base testing process leads to a
statistic indicating the percentage of the test cases for
which the system performed correctly. These perfor-
mance statistics are then presented as if they apply
to the entire rule-base, rather than just to the tested
sections, which can lead to false predictions of system
reliability in ax:tual use. In reality the system reliabil-
ity indicated by a comparison of actual and expected
results is relevant only for the tested sections, while re-
liability of the untested sections and overall reliability
of the system under conditions of general use cannot
be predicted by this testing method.
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The fundamental weakness of this kind of functional
testing is that it does not guarantee that all parts of
the system are actually tested. We, in fact, have no in-
h)rmation about a section of the rule-base that is not
exercised during the functional test and whether it is
correct or contains errors. Furthermore, many reliabil-
ity problems for rule-bases are the result of unforeseen
interactions betwecn rules (O’Keefe & O’Leary 1993).
A test suite of known cases may never trigger these
interactions, though it is important that they be iden-
tiffed in order to correct them before a system is put
into actual use.

Accurate reliability prediction must take into ac-
count several factors:

¯ identification of the portions of the rule-base which
are actually exercised, or covered, during the testing
process;

¯ the behavior of the system on the test cases;

¯ the likelihood that each kind of test case will occur
in actual use (the operational profile with occurrence
probabilities (Lyu 1996));

¯ a measure of how representative the test set is of the
operational profile.

In this paper we briefly discuss a testing approach
which tracks rule-base coverage, and then discuss how
the different factors cited above can be used to produce
a quantitative reliability prediction value for the sys-
tem under test when used in its intended application
domain.

Testing with Rule-Base Coverage

Identification of an-exercised portions of a rule-base
can be accomplished by enhancing the functional anal-
ysis of the rule-based system with a rule-base coverage
assessment. This determines how extensively possible
combinations of inference relations are exercised during
test data evaluation. In the trivial case, with a correct
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rule-base and a complete test suite, the test data would
completely cover the rule-base, all actual results would
agree with expected results, and we could predict that
the system would be completely reliable in actual use.
In the more usual situation there are errors and in-
completeness in the rule-base, as well as inadequacies
in the test data. If we judge the system based only
on a comparison of actual and expected results, the
rule-base could perform weU on test data, but contain
errors which are not identified due to incompleteness
of the test data. This could lead to a incorrect predic-
tion of high reliability in actual use, when in fact this
approach does not allow us to make any accurate pre-
diction about the reliability of the rule-base in those
areas for which there is an absence of test data.

Frequently, when testing classification systems, a
large population of cases is available. However, many
of these cases may represent situations which are easy
to classify and similar to each other, l~lrthermore,
running all available cases may be extremely time con-
suming for a large classification system. A random
selection of test cases may give statistical confirmation
that the system works properly for the tested situa-
tions, but may not, cover all types of situations.

Our approach carries out structural analysis of the
rule-base using five rule-base coverage measures to
identify sections not exercised by the test data. This
testing approach allows for clear identification of both
incompleteness in the test data and potential errors in
the rule-base through identification of sections of the
rule-base that have not been exercised during func-
tional test and may not be necessary or are incorrect.
An incomplete test set can be supplemented with ad-
(litional cases chosen from the available population,
guided by a series of heuristics and the cow;rage analy-
sis information (Barr 1997). This makes it possible to
improve completeness of the test suite, thereby increas-
ing the kinds of cases on which the rule-base has been
tested. Alternatively, if there is no test data which
covers certain parts of the system, it is possible that
those sections should not remain a part of the system
at all.

Rule-base testing with coverage measures is based
on a graph representation of the rule-base, using a di-
rected acyclic graph (DAG) representation. During
construction of the DAG, pair-wise redundant rules,
pair-wise simple contradictory rules and potential con-
tradictions (ambiguities) are identified. After the DAG
is constructed, static analysis reports dangling condi-
tions, useless conclusions, and cycles in the rule-base.
The rule-base can then be modified to eliminate or cor-
rect any static problems.

Next dynamic analysis of the rule-base is done using

test cases. As test cases are processed, one or more of
several rule-base coverage measures (RBCMs) can 
applied in order to determine the quality of the test
data supplied. Additional information about the rule-
base and its testing can also be used by the system
tester to guide the selection of additional test data.
The tester would start by providing sufficient test data
to satisfy the simplest functional measure (conclude
each class of the system) and proceed to the more dif-
ficult structural measures. Finally, if the user is not
able to provide sufficient data to attain the desired de-
gree of rule-base coverage (according to the selected
criterion), the tester can use the DAG representation
to synthesize data, which can then be reviewed by an
expert to determine if the data represents a valid case
in the problem domain.

This testing approach, described more fully in (Barr
1996), has been implemented in the TRUBAC tool
(Testing with RUle-BAse Coverage) (Barr 1996; 1995).

A Metric for Rule-Based Systems
The graph representation employed serves as a suit-
able foundation for a path metric to measure the com-
plexity of the system and the success of the testing
process. The graph imposes no particular execution
order on the rules, and it represents all the logical re-
lations that are inherent within the rule-base. How-
ever, graph-based metrics such as McCabe’s cyclomatic
complexity metric (McCabe 1976) cannot adequately
determine the mlmber of execution paths in a rule-
base. The actual number of execution paths is based
on the logical relationships in the rule-base (full details
can be found in (Barr 1999)).

The total number of execution paths represents the
maximum number of test cases needed for complete
coverage of the rule-base according to the strongest
rule-base coverage measure (All-edges). However,
usually the actual number of data sets needed will
be less than the number of execution paths, since of-
ten, particularly in diagnosis systems, one test set may
cover a number of execution paths to different goals.
For reliability prediction, the path metric allows us to
quantify how much of the system has and has not been
covered during the testing process.

Reliability Prediction
Reliability prediction for a rule-based system nmst be
based on

¯ the behavior of the system on test cases,

¯ a measure of how well the test data covers the rule-
base, based on the coverage analysis and the path
metric
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¯ the likelihood that each kind of test case will occur
in actual use (this is a subset of the operational pro-
file (Lyu 1996) for the system, with the occurrence
probability of each operation)

¯ how representative the test set is of the operational
profile

Assumptions

In order to clarify, we first make some assumptions
about the system under test, the test data, and the
general population. We distinguish between

¯ I, the input space which represents the entire popu-
lation for which tile rule-base might be run

¯ ID, the pool of data that is available as potential
test cases

¯ TT, the set of test cases that are actually run through
tile system during testing

Note that IT C Ii), where ID is generally large mid
repetitive, so ttlat it is not fe;Lsiblc to use all the cases
hi /D as test data. We then assume that

1. it is possible to group the cases in ID into operations
such that each operation contains one kind of case,
and all cases in an operation will execute the smnc
inference path within the rulc-basc. (Here we use the
term operation in the reliability engineering sense,
meaning a grouping of runs that have identical input
states, so that only one run of the type is sufficient
to test the corresponding portion of the system (Lyu
1996)).

2. IT is created by selecting one test case from cach of
the operations found in II)

3. Therefore, each test case in IT corresponds to pre-
cisely one path in the rule-base.

We note that the third assumption implies that if the
rule-base incorporates logic for all possible scenarios in
the general population, thcn thc degree of representa-
tiveness of the test data and the degree of coverage of
the rule-base should be the same.

We also will use the following notation

¯ 0 represents tile percentage of distinct types of op-
erations in I which are represented in Ij9 and IT

¯ B represents the performance of the rule-base on the
test data (percentage correct behavior)

¯ R represents the reliability predicted, which quan-
tifies the percentage of correct runs that will be
achieved in actual use of the system

¯ C represents the degree of path coverage achieved
by the test data (in percentage of paths covered)
relative to the path metric

¯ t~ represents the i th test case

¯ l~ represents the likelihood of occurrence in I (i.c. in
the general population) of an operation that will use
the same inference chain (execution path) as is used
by test case ti

General Problem

Consider the situation in which we run N test cases
through a rule-base with the following results:

¯ the test cases achieve 100% coverage of the rule-base
(C=I00%)

¯ the actual results generate(! by the rule-base are 80%
correct (B=80%).

¯ given our assumption of a 1-1 relationship between
test cases a~d paths in the rule-base, this implies
that 20% of the rule-base handles cases incorrectly.

However, this situation does not allow us to predict
8{}(7o correct performance of the system in actual use.
The fitl] path coverage implies that the test data was
hilly representative of the actual population. However,
we still must consider the likelihood of occurrence in
the population of the cases that. were handled correctly
by the rule-base and those that were handled incor-
rectly.

If 95% of cases in the actual population will be hazl-
died by the part of the system that works correctly,
then we could predict reliability which will be better
than the 80% accuracy achieved by the test data. On
the other hand, if only 50% of cases in the actual pop-
ulation will be handled by the part of tile system that
works correctly, then we could predict reliability that
will be much worse ttlan the 80% accuracy achieved by"
the test data.

In general we expect that, while we will not achieve
complete coverage of the system, the section that is
covered will corrcspond to thc most likely situations in
the population. The portions of the system that. are
not covered during testing will generally correspond to
the lea.st likely situations in tim population precisely
because it is much more difficult to find test data for
cases which are rare in the general population.

Next we consider a somewhat more complicated
case. Assume we still have 80% correct performance
of the system on the test data (B=80%). However the
test data covers only 75% of the paths in the rule-base
(C=75%, 0=75%). However, those cases are likely to
occur 90% of the time in the general population. (That
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is to say, our test cases represent 75% of the distinct
situations in the operational profile. However, if you
selected 100 random cases from the general popula-
tion, 90% of them would correspond to the operations
represented by our test cases). This implies that, in
actual use, 10% of the cases that will be presented to
the system are from the pool of possible cases (25%
of the possible cases) that were not represented by our
test data. If we want to generate a safe lower bound on
expected reliability, then we have to assume that these
cases will operate incorrectly in actual use of the sys-
tem, since the system was never tested on them. We
would like to be able to generate a reliability predic-
tion for this kind of situation, which will be a function
of the behavior on the test data, the coverage of the
rule-base, the representativeness of the test data and
the likelihood of the cases represented by the test data.

Total Path Coverage

We return to the simple situation, with B = 80% cor-
rect behavior, C -- 100% coverage of the rule-base,
and O --- 100% of the kinds of cases in I represented
by the test data. If we assume that each operation has
the same occurrence probability in Z then we predict
reliability in actual use that will be the same as the
behavior of the system on the test data.

If we instead assume that the test cases do not have
the same occurrence probability, then the reliability
prediction changes. Assume there are 10 test cases
(tl ... tl0), of which 8 are handled correctly by the sys-
tem (B=80%). If tl and t2 have occurrence probability
of .15 each, t9 and h0 have occurrence probability of
.5 each, and all other cases have occurrence probabil-
ity of .10, we can compute the reliability prediction by
computing the sum

10

~ li * ci
i----1

where li is the occurrence probability of the ith test
case and c~ is 1 if the actual result agreed with the
expected result for the ith test case and is 0 otherwise.
If the system behaves incorrectly on t9 and ts0 then we
predict reliability of 90% although only 80% of the test
cases were handled correctly. However if the system’s
correct behavior is on all cases but tz and t2 then we
predict reliability of 70%, lower than the 80% correct
behavior on the test data.

The assumption of a one-to-one correspondence be-
tween operations and paths in the rule-base allows
us to shift the occurrence probability figures onto the
paths. Then, in the simple scenario in which all paths
are executed, we simply sum the occurrence probabil-
ity values for all paths for which the answer given by

the system was correct and use the resulting value as
the reliability prediction. Usually, however, we expect
that not all paths will be executed during testing.

Incomplete path coverage
If not all paths are executed by the test data, assume
that any path not executed during testing will give an
incorrect result in actual use of the system. Consider
a scenario in which IT represents 75% of the kinds of
cases possible in I (O = ?5%). Given the assumptions
above, we expect coverage of 75% of the paths dur-
ing testing (C=75%). Assume that the answers gen-
erated during testing are correct for 80% of the test
cases (B--80%)1. If all cases in IT have equal occur-
rence probability then we predict reliability of .6 (60%
correct behavior), since of 100 random cases selected
from I, 25 may be wrong because they use the untested
portion of the rule-base, and an additional 15 will be
wrong because they utilize the portion of the rule-base
which gave incorrect results during testing.

Next we consider that not all cases have equal oc-
currence probability. Assume that there are 100 oper-
ations (types of cases) in I, and a corresponding 100
paths in the rule-base. Further assume we have only
75 test cases representing 75 of these 100 operations2,

which have high occurrence probability and are found
in the population 95% of the time. That is, out of 100
random cases from I, 95 of them will fall into the 75
operations represented by our test cases, with multiple
cases falling into some operations. Only 5 of the 100
random cases will be examples of some of the remain-
ing 25 operations.

The rule-base is basically divided as follows:

¯ RBNC is the portion of the rule-base not covered
during testing. For safe reliability prediction, we
expect this portion to fail in actual use.

¯ RBc represents the portion of the rule-base that
handles cases that are included in the test set, di-
vided into:

- RBcc, the portion of the rule-base that behaves
correctly on a subset of the test cases

- RBcl, the portion of the rule-base that behaves
incorrectly on a subset of the test cases

Out of 100 cases drawn from I, 5 would be handled
by RBNc, and 95 would be handled by RBc. We as-
sume the existence of an oracle that determines if the

1Partial coverage with complete correctness within the
covered section is equivalent to complete coverage with par-
tial correctness.

2Information about the makeup of the population may
come from the expert, who may not be able to provide test
cases for all operations
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result given by the rule-base for a test case is correct or
that we have a priori knowledge of the expected result
for each test case. We also assume that we know the
occurrence probability value for each of the paths in
RBc (possibly provided by the expert). Given our as-
sumption of a 1-to-1 correspondence between test cases
and paths, this is really a probability li that each path
i will be executed. Therefore our reliability prediction
for RBc (and prediction of correct behavior overall by
the system) is

~C~8@8

E li*c~
i=1

where, as before, ci is 1 if the actual result equals the
expected result along path i and is 0 otherwise.

To demonstrate how this computes a reliability pre-
diction, we consider two scenarios.

Scenario 1 We first consider a situation in which
O=75%, C=75% and B=80%. l~lrthermore, we let the
total likelihood that a case will be handled by RBNc
be .5, with .95 likelihood that a case will be handled
by RBc. Assume that there are 100 paths total in the
rule-base and that one path represents an extremely
popular case, say 10% of the entire population. That
is, 10% of all cases run through the system will execute
this particular path. We also assume that the system
gives the correct answer for the popular case (it is in
RBc’c’).

Out. of 100 random cases from I, 5 run through
RBNcr (which contains 25 paths) and, presumably,
give a wrong answer. The remaining 95 cases run
through RBc (made up of 75 paths). The test cases
gave 80% correct, answers and were run only through
RBc. Given our assumption of a one-to-one corre-
spondence of test cases and paths, this nmans that, of
all paths in RBc,, 60 will give a correct answer (80% of
75 paths). Therefore, of the 95 random cases handled
by RBc, 77.85 will actually be handled correctly, and
we predict .7785 reliability for the rule-base in actual
use.

We can see this as follows: Thc 75 paths in RBc,
have a total occurrence probability of execution of 95%
of 100 test cases, of which 10% belongs to one path and
85% is divided equally among the 74 remaining paths.
So the likelihood of execution of each of the 74 paths
is .0115. Another way of viewing this is that, of the 60
paths that give a correct result during testing, one path
will handle 10% of cases during actual use and each
of the remaining 59 paths will handle 1.15% of cases.
Therefore, we expect a correct result in .0115 * 59 +
.10 * 1 cases, or 77.85 out of 100 cases, for a reliability
prediction of .7785.

Scenario 2 In this case we leave the above scenario
unchanged except that we assume that the popular
case is tested but is handled incorrectly by the rule-
base (the path for the popular case is in RBcl). There-
fore we predict correct performance along 60 paths,
each of which has a likelihood of execution of .0115,
for a reliability prediction of approximately .69, signif-
icantly lower than the .8 that might be inferred if we
simply looked at the 80% correct behavior on the test
cases.

Conclusions
The reliability we can cxpect from a rule-based sys-
tem in actual use can be significantly different than its
behavior on a set of test data. The method discussed
allows us to compute a reliability prediction without
running repetitive test cases, avoiding the approach of
running similar cases in order to get statistical con-
firmation. If a case executes correctly, then its oc-
currence probability in the operational profile of the
general population contributes to the performance pre-
diction figure. Using coverage information, number of
paths, and representativeness in the fashion described
allows us to use limited data from the population and
the system under test to compute a safe reliability pre-
diction figure.
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