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Abstract

Validation is the art of investigating whether or
not a given system is "the right one" according
to the users’ expectations and to the necessities
of the application domain. Researchers all over
the world are currently striving hard to transform
intelligent systems validation into a science.
The focus of the present paper is rather narrow.
It alms at a very little contribution to advance the
formal background of systems validation. The
authors hope that, even in case they do not com-
plete succeed in their efforts towards a science of
intelligent systems validation, their contribution
might advance the art a little.
The paper deals with problems concerning the
knowledge sources which have to be utilized in
systems validation. There is a particular focus on
knowledge about the system under inspection.
The key technical term of this publication is lest
case and the key computational process is the
reduction of sets of test cases to subsets of data
which axe still sufficiently expressive, but feasi-
ble. The crucial theoretical concept underlying
this approach is inheritance of validity and the
key perspective which is underlying the knowl-
edge processing approach is circumscribed by the
concept of a lattice o] knowledge.
As one cam usually build Boolean combinations of
knowledge units, i.e. one may ask for conditions
that hold together or for some finite collections
of properties where at least one of them must be
true, system knowledge may be seen as a lattice
structure.
Those lattices of knowledge are introduced. The
usage of the lattice of knowledge perspective is
exemplified within the area of validating learning
systems.

Copyright (~) 1999, American Association for Artificial In-
telligence (www.aa~i.org). All rights reserved.

Science is knowledge which we understand so well
that we can teach it to a computer;

and if we don’t fully understand something,
it is an art fo deal with it.

... we should continually be striving
to transform every art into a science:

in the process, we advance the art.

DONALD E. KNUTH
Turing Award Lecture ]974

Motivation and Introduction

Validation is the art of investigating whether or not a
given system is "the right one" according to the users’
expectations and to the necessities of the application
domain (cf. (Boehm 1984) and (O’Keefe & O’Leary
1993), e.g.). Researchers are currently striving hard 
transform intelligent systems validation into a science.

The present investigations aim at a rather narrow
contribution to this concerted endeavor. The goal is to
develop concepts and methodologies towards locating
knowledge needs in intelligent systems validation such
that these intellectual tools allow for a more systematic
development, reduction, and application of test cases
for interactive validation.

Even in case the authors do not completely succeed,
they hope to advance the art slightly.

The novelty proposed in the present paper is the
concept of lattices of knowledge and its usage in test
case development and reduction.

The authors refrain from any introduction into the
necessities of validation and verification of complex sys-
tems. Interested readers may find several convincing
arguments in the topical publications collected in the
list of references below.

The present introductory chapter aims at a sketch
of the authors’ underlying assumptions. The focus
of the investigations is on validation scenarios like
those developed resp. used in (Knauf ctal. 1998b)
and in related publication like (Knauf, Philippow, 
Gonzalez 1997), (Knauf et al. 1997), or (Knauf et al.
1998a), e.g. The interested reader may consult (Jan-
tke, Abel, & Knauf 1997) for the fundamentals of so-
called TURIN(] test approach adopted and, furthermore
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(Abel, Knauf, &. Gonzalez 1996), (Arnold & Jantke
1997), (Gonzalez, Gupta, & Chianese 1996), (Jantke
1997), and (Terano gg Takadama 1998) for a variety 
applications in different areas.

Interactive approaches to system validation based on
experimentation with the target system consist of the
following main stages of

¯ test case generation and optimization,

¯ experimentation by feeding in test cases and receiv-
ing system response,

¯ evaluation of experimentation results, and

¯ validity assessment based on experimentation re-
suits,

which ,,fight be looped and dovetailed, in several ways.
The key computational process underlying this pub-

lication is the reduction of test sets, and the key per-
spective of is knowledge processing approach is circum-
scribed by the concept of a lattice of knowledge.

There is abundant evidence for the need of test ca.se
reduction. If one takes, carelessly, just all imagin-
able combinations of system inputs as potential test
data, one arrives at computationally unfeasible sets
of test cases. (Michels el ai. 1998) reports about 
quite small knowledge based system with an original
set of 35 108736000 test cases. ’Fhe reader may con-
suit (Michels, Abel, &; (’~onzalcz I998), for details.

This paper extends work formerly published, but not
mentioned here, according to the submission policy.

The present focus is on locating knowledge sources
which allow tbr the substantial reduction of sets of test
data without any loss of validation power. Emph~is
is on system knowledge of different strength forming
some lattice. (cf. (Grfitzer 1978), e.g.).

The crux is that if test case reduction of this type
succeeds, this implies the existence of some induc].ion
principle which, in turn, allows for an induction step
from the system’s validity on a rather small set of test
cases to its validity on the usually much larger set of
all relevant cases.

In its right perspective, the crucial process of test
ease reduction is the abductive construction of assump-
tions supporting some suitable step of induction.

From Karl Pepper’s seminal work on the logic of
scientific discovery (cf. (Popper 1934) resp. (Popper
1965)), it is already well-known - and also discussed
in (Herrmann, Jantke, & Knauf 1998), in some detail
- that there does not exist any universal approach to-
wards a deductive justification of induction. Thus, one
has to search for dornain-specific and even for system-
specific variants of validity and their inheritance.

Test Cases and Test Data
When humans are probing systems interactively, two
substantially different situations may occur. In the
one situation, thc system is triggered by some input
with somc expected system’s reaction in mind. In the

other situation, the human doing the experiments has
no particular expectations anti is just looking for what
may happen. More abstractly speaking, in the first
case there are related input and output data giwm prior
to experimentation, whereas in the second situation
there are only input data given explicitly.

When human validators are dealing with complex
systems, it is assumed that they have expectations
about the system’s behaviour. The actual behaviour
is then compared to these expectations and ,waluated
accordingly. The overall validity assessment is synthe-
sized upon the results of evaluating a possibly large
number of individual experimeats.

Without any a priori expectations, it might be quite
difficult to evaluate what actually happens and t.o val-
idate the whole system. This case is more ilk,’ explo-
ration rather than validation.

In particular, exploration is mor~ involved th;ul val-
idation, as it has to face several issues being Iwyond
validatiOlL Validation assumes domain knowledge to
some extent, whereas exploration problems may deal
with building theories to inlG~rpret unexpected ,w,nts.
All this is far beyond the present investigations.

To sum up, the behavior of a system uniter validation
may reasonably be abstracted as some relation over
tlw Cartesian product of the system’s input spare and
its omput space. Thus, lest cases arc always pairs
of inputs and related outputs. The inpnt parts of test
cases are called tesl data. The out put ])arts (’orrespolld
to the expected system’s reaction on these t~,st data.

Test Case Reduction
Assume any target system ,b’ under itlvestigation. Dc-
terutined by the needs of the application domain, there
is some relation R.* el’all cases of potentially acceptable
system be.havior. There might be several subsets R° of
R* which are sufficiently comprehensive such that suc-
cessflfl testing of S on R.* would guarantee the wdidity
of ,b’. We are looking for minima of those sets.

For any set of test cases R., the tbrmula valid(,b’, R)
is iatended to express the validity of the system ,S’ on
all test data in R. ’[’here might be several int,.,rpreta-
tions of valid(S. R.). for instance equality vs. st.mantic
equivalence of the system’s output on R and those ex-
pectations which are eucoded in the outpul, part of
any test case. R.t~gardless of that. a poinl.wis~, testing
of valid(S.e), for all cases cE R, nfight be computa-
]tonally unfeasible if R is large.

~l’~st case reduction aims at [inding some fairly small
subset M of R such that (i) valid(S,M) can be experi-
mentally justified and, furthermore, (it) there is an in-
heritance relationship inh~aua(M, R) which allows for
1 he conehtsion:

valid(S.M) A inh,,~ua(M,R) ~ valid(S.R)

In its right perspective, this tbrmula is repr,senting
some scheme of induction.
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Lattice Structures
For the purpose of this paper, an intuitive approach
will be sufficient. More formal knowledge of so-called
lattice theory can be found in standard references like
(Gr~itzer 1978), e.g.

In lattice theory, one is always dealing with paxtially
ordered sets of certain objects. Minima, maxima, in-
flma, and suprema axe understood as usual. Such a
partially ordered set is called a lattice, exactly if any
two objects always have their infimum and their supre-
mum within the set.

Figure 1: Lattice Structure

Usually, knowledge bases axe at least propositional,
i.e. knowledge units may be combined by Boolean oper-
ators forming other admissible knowledge. Under the
assumption of a partial ordering between knowledge
determined by logical implication, knowledge bases
turn out to form lattices, as the logical disjunction
may be interpreted as forming the supremum of its
arguments, whereas the logical conjunction yields the
infimum.

Figure 1 is illustrating the structure of a lattice of
knowledge.

The Present Approach Revisited
From the view of organizing and using knowledge for
test case reduction we are going to propose some con-
cepts for relating system knowledge. These formalized
concepts should support the investigation of questions
like the following:

1. Given a particular validation task, which amount of
knowledge is necessary resp. sufficient for reducing
sets of test cases to a feasible size?

2. Given some particular knowledge, which additional
knowledge may be required?

3. Is there any way to trade knowledge of the one type
against knowledge of another type?

The approach exhibits the necessity to specify a few
more details. Just for illustration, what precisely is a
validation task?

We have undertaken a case study in the validation of
learning systems. This may be seen as a prototypical
example of how to invoke the formalisms developed
towards reasoning in an partially informal way.

Towards Lattices of Knowledge

There are, at least, the following knowledge sources to
be taken into account:

¯ domain knowledge about the application area where
AI systems have to be validated,

¯ problem knowledge about the particularly chosen test
cases for validation,

¯ system knowledge about the individual system actu-
ally under inspection.

Prior to all validation problems, there is the applica-
tion domain. A remarkable amount of domain knowl-
edge is rather independent of any validation tasks.

Syslem knowledge may or may not come with the
system to be validated. This knowledge is normally
not tailored towards system validation, but it is, doubt-
less, essential. In the extreme, a system is only given
as a black box, that means that nothing but the sys-
tem’s behavior is accessible. In the other extreme, the
system is given as a so-called white box (cf. (Gupta
1993)) which provides internal details of the system’s
mechanisms to be exploited for validation.

The chosen test cases relate to particular problems
which, intuitively, fbrm a bunch of prototypical appli-
cation problems to which the system currently under
investigation has to be applied experimentally. The
property of exhaustiveness means that these problems
are chosen well enough such that validity on these
problems implies validity, in general. Such problem
knowledge must be somehow essential, because of the
rather axnbitious implicit property of exhaustiveness.

Even more important, the problem knowledge is the
only of these three knowledge sources which can be
intentionally tailored towards the needs of system vali-
dation, whereas domain knowledge is determined prior
to any validation attempt and system knowledge can
hardly be influenced, if a large class of unforeseeable
systems shall be potentially validated. In the conse-
quence, we are especially interested in questions like
these:

¯ Under which circumstances is problem knowledge
sufficient?

¯ How to tailor problem knowledge appropriately such
that it supports validation substantially?
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Inductive Learning- A Case for
Intelligent Systems Validation

The problems addressed seern to be hard, and there
is not much hope for universal answers to any of the
questions stated in the preceding section.

Under these circurnstances, a case study in an appli-
cation domain which, on the onc hand, is sulficicntly
complex and, on the other hand., is well-understood, is
deemed a reasonable way towards a better understand-
ing of key phenomena, towards prototypical results,
and towaxds a new perspective which might allow for
guiding future research and development.

The area of inductive inference of recursive func-
tions has been chosen as a prototypical application do-
main, because there is very recent preparatory work
(of. (Beick 1998), (Grieser, Jaatke, &-Lange 1998a),
(Grieser, Jantke, &Lange 1998b), (Grieser, Jaatke, 
Lunge 1998c), (Grieser, Jantke, & Lunge 1998d), artd
(Grieser, Jantke, &Langc 1998e)) which is providing
scenarios, formalizations, as well as particular topical
results.

The authors refrain from an introduction into this
domain and direct the reader to (Angluin & Smith
1983) and (Angluin & Smith 1992), for excellent sur-
veys. and to (Jantkc & Beick 1981), e.g., for a collection
of results illustrating a variety of system types which
might be subject to validation.

In the area of inductive inference, information about
target functions to be learnt is presented as a finite
setj of input/output examples describing the target
function’s behavior, it is one of the oversimplifications
assumed here that such a linite set, denoted by f[n],
is always an initial segment of the goal fimction f, i.e.
it contains exactly all input/output pairs (at,f {x)) 
to some point n:

{ {0,/(0)),(1,It1)),... ,(n,f(n)) 

As learning systems one admits arbitrary com-
putable fimctions S which get fed in some informa-
tion of the form .f[n] and hypothesize about f. Pairs
(f[n],f) form sets of test. cases ((x.,f(z)),pl) corre-
sponding to the dcfinition of test cases above, where
p! denotes some program for computing f.

Hypotheses S(f[n]) are programs which are intended
to compute f. In the formal setting of recursion theory
(of. (Rogers jr. 1967) or (Machtey & Young 1974),
e.g.), those programs are indices with respect to some
Gt)DEL numbering.

Success of learning any function f within a setting
like this, naturally, means to come up, eventually, with
some program p correctly describing2 the target f. It is

t For the purpose of te present investigation, we adopt
every possible simplification. Though the overall approach
works in more general settings as well, there is no need for
this generality.

2In terms of computability theory, this is abbreviated by
9v = f, where ~ denotes the underlying G6nEL numbering.
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a quite intuitive standard requirement that after some
point in time such aa ultimately correct hypothesis is
never changed.

Classes U of computablc and totally defined func-
tions are posing a learning problem. Does there exist
any learning device ,5" such that. given any fimction f
of U and feeding growing samples f[n] to S, the hy-
potheses generated by S’ eventually conw~rgc to a cor-
rect program p for f ? All those classes of uniformly
learnable functions are forming what one calls an iden-
tification type. Variants of identification types can be
determined by posing additional criteria of success (of.
(Jantke & Beick 1981)).

Combining U, S and I, a validafion task becomes a
triple [U,S,I], where the question is whether or not S
is able to learn all functions f of U according to the
criteria of success specifying the identification type 1.

By means of a case study we exemplify tmw to solve
ta.sks [l.!,S, i], respectively, how to use different knowl-
edge sources in a prototypical validation scenario.

Two Sample Validation Tasks
Wc assume two slightly different validation tasks with
the following three parameters each. respectively.

The identification type sketched above (which is
called LIM in (Jantke & Beick 1981), and EX in (An-
gluin & Smith 1992)) is adopted and briefly named
/. Intuitively. a learning system S learns a partic-
ular function f on subsequently prcseuted informa-
tion f[n] (with growing n) according to I. exactly
if after, perhaps, finitely many rnistakes it comes up
with a Iinal program p=.b’(f[n]) that computes 
3n.Vm > n ( ~st/[,,,] J = f 

The one example problem class Ui belongs to II¢on~,,
the class of all functions which are almost everywhere
constant, l"ormally, the domain is defined ~m

U¢o,,,t = {fl3cf E/’N V°°z (.f(z) el) }.

The other problem U2 belongs to Upoty, the class of
all polynomials in one variable which have exclusively
integer roots:

~.)oly = {fl3ke tN3al ..... ak EZ

V~.(f(:~:) = I]~=1 (,e -ai} ) 

Both samples l.:t and I.:., are finite, arbitrarily fixed
subclasses of the corresponding domain. Thus, UI C
[;~o,,.,, and U.., C Urot,j, respectively.

For the beginning, any cornputable learning device
S is assumed. This leads to validation tasks [U!,,b’, []
and [Uz,S,[]. In case particular knowledge needs to
become obvious in the course of investigation, S may
be further specified.

Specific System Knowledge
for Test Case Reduction

As seen from previous inw~stigations, system knowl-
edge is inevitable tbr checking the correctness of the



particularly chosen scheme of induction, underlying
the test case reduction. Instead of illustrating this
matter in more detail wc refer to (Herrmann 1998),
e.g.

For the present case study we premise the class of
systems under consideration:

s(f[0]) 

+ 11) S(f[n
(

S(f[n]) if -~cr(f[n+l])

#(S(f[n]),n+ 1,/(n + 1))
otherwise

Figure 2: The Normal l~brm of a
Learning Systcm S

Systems comply with a fixed standard or normal
form. The normal form is the extra system knowledge
provided, and the individual settings of parameters are
used for tuning a device towards some particular prob-
lem. It remains a still sufficiently difficult task to val-
idate those normal form learning systems.

In the sample normal form, there is some default
mechanism 6 for constructing initial hypotheses. The
subroutine e determines how to update hypotheses in-
crementally, and the condition tr when to do that.

Extra system knowledge means (i) to krlow that 
system is of that normal form, (ii) to know the default
mechanism b, (iii) to know the subroutine #, and (iv)
to know the condition a for applying Q.

For example, 6 may return for every value y--f(x)
some program for computing tile constant function be-
ing everywhere equal to y. This is an appropriate de-
fault when learning functions of U~.onst.

Under the system knowledge of this default, the jus-
tification of the induction scheme above depends on
the specific subroutine ~ and on a.

Suppose ~a(f[n + 1]) implies that the system under
consideration does never change its hypotheses on f
after f[n + 1] has been processed. If now one can jus-
tify (perhaps, even verify by means of some theorem
proving techniques and tools) for all hypotheses h and
h~ = ~(h,n+ 1,f(n+ I)) the truth 

(~h(z)if z<n
ph,(z) = f(n+l) otherwise

then this yields the justification of induction.
Let us change the para~mter settings of S so that S

will be able to learn any class U2_ Upoly in the sense
of [U2,S,/].

For the default ~ we require

(x-n) if f(n)=0
P6tl[’q)(x) = 1

otherwise

The condition t~ is set to ct(f[z]) (f (x) ¢ 0)and
o(S(f[n]),n+ 1,f(n+ 1)) = r complies with

p~(x) = Ps(/[-l)* P~C/[n+I)).
Obviously, now the algorithm is characterized by the
following properties:

¯ [1] S works incrementally (with some initial hypoth-
esis h0).

¯ [2] h0 is the constant 1.
¯ [3] S is conservative, i.e. if hypothesis hn, produced

on f[n], is consistent with the new information in
fin + 1] then S will not substitute hn: h,+l = h,.

* [4] S is ignorant on IN x IN+, i.e.:
f(n+ l) > ~ hn+l = h, ~

¯ [5] f(n+l) = 0 --* ~ = (z-(n-F1))
These five characteristics are sufficient for learning

l.:,, from sequences f[n] according to 1. The question
is, how may one check this ability of S if initially any
of these characteristics is unknown?

The first proposal was to test S for some appropriate
test set. Without having any knowledge concerning S
the task [U2, S, I] is undecideable. Though U2 shall be
finite, its elements are functions on IN, i.e. they are
infinite objects. This is the same problem as in case of

We will analyse the situation for l,~ozy by means of
lattices over the system characteristics listed above.

Figure 2: Validation Task [U2,S, 1]

Figure 3 illustrates some of the relations in S. As
shown, thc five characteristics are not independent of
each other:

[4] A [5] ~ [1]
[4] ̂  [5] --. [a]

By proving ([4]A [5]) we do possess already four 
five prerequisites for stating that S is valid in terms of
[U2, S, I]. It remains to prove [2] only.

Again, if [4] and [5] are valid the task is easy. One
might check [2] simply by testing, not for infinite
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amounts of information but for finite only. There even
is a really small work to do. f[0] = (0,0) provides a min-
imal set of test data, sufficient for checking [2] against
the output of ,b’. For comparison, an analogous test of
some initial hypothesis in Ueo,,,t would be unfeasible.

To be precise, [2] is testable if one of the two condi-
tions [4] or [5] is known to be valid.

Beside that opportunity of verifying [2] by testing,
one could draw [2] by looking into the system defini-
tion, i.e. into 6.

It turns out, that, [4] is the only property that might
neither be tented nor be concluded from other prop-
erties. This exhibits the necessity to start validation
even in this point by falling back upon available syst.em
knowledge.

Conclusions
The present work mainly reflects insights from a c0se
study in the validation o1" inductive inference systems.
Although it is somehow risky to generalize, the resuhs
bear evidence of some nmre general phenomena, at
least. As inductive inference of recursive functions is ;~
rather narrow, thoroughly formalized, and sufficiently
understood area, one might expect that intelligent sys-
tems validation can hardly do better in application do-
mains which are less constrained.

The first general insight is that black box validation
does not work. Ew’n more, white box validation can
only succeed, if the system to be validated can be as-
sunmd to belong to some subclass of candidates.

Second, knowledge sources for intelligent systems
validation have been classified into domain knowledge.
problem knowledge, and system knowledge. System
knowledge is considered as a lattice, to allow for navi-
gation to separate system properties which can be ver-
ified by testing from those which have to be known in
advance. This yields a well-formalized background of
determining testability issues.
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