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Abstract

The PESKI (Probabilities, Expert Systems, Kuowl-
edpe, and Inference) system attempts to address some
of the problems in expert system design throngh the
use ol the Bayesian Knowledge Base (BKB) represen-
tation. Kunowledge gathered from a domain expert is
placed into this framework and inferencing under un-
certainty is performed over it. However. by the nature
of BKDBs, not all knowledge is incorporated, i.c. the
representation need not be a complete representation of
all combinations and possibilitivs of Lthe knowledge. as
this wonld be impractical in many real-world systems.
Therefore. inherent in such a system is the problem of
incomplete knowledge, or gaps within the knowledge
base where areas of lacking knowledge preclude or hiu-
der arrival at a solution. Some of this knowledge is
intentionally omitted because its not needed for infer-
encing, while vther knowledge is erroneously omitted
but necessary for valid results.  Intentional omission.
a strength of the BRB representation, allows for cap-
turing only the relevant portions of knowledge eritical
to modeling an expert’s knowledge within a domain,
This research proposes a method for handling the latuer
form of incompleteness administered through a graphi-
cal interface, The goal is to detect incompleteness and
be corrected by a knowledge engiueer in an intuitive
fashion.

Introduction

Many issues need to be considered when constructing a
cowplete knowledge based system. First. in the knowl-
edge acquisition phase of a system, knowledge cngi-
neers must thoroughly extract knowledge trom an ex-
pert. Methods of extracting this knowledge are numer-
ous. A representation scheme for this knowledge must
then be chosen. The knowledge engineer must carefully
build this knowledge representation into an expert sys-
tem for which it can be inferenced over. There are many
opportunities for inputiing incorrect. incomplete, or in-
concise information while building a new system. Often
many modifications to the knowledge base are necessary
in existing systems as well, which can often adversely
affect other areas unintentionally. For these reasons
among others. verification and validation (V & V) of
these knowledge based systems is an increasingly im-
portant part of today's sophisticated knowledge based
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A grear amount of research has been performed in the
arca of V & V over the past few years (Ram & Ramn
1996:; Preece 1995: Bass, Ernst-Fortin, & Small 1997;
O'Leary 1997). However, with the large number of
knowledge representations, inferencing techniques. and
knowledge acquisition techniques, there is no common
consensus on the hest method of V & V. This research
will center on one particular representation scheme
known as Bavesian Knowledge Bases (BKBs) which
captures uncertainty and its associated issues. This
BB representation scheme is part of an overall export
system shell known as Probabilities, Expert Systen,
Knowledge, and Inference (PESKI). which is an inte-
grated framework for expert system development (San-
tos, Banks. & Banks 1997; Santos, Gleason, & Banks
1997).

This research focuses on developing a methodology
1o corvect one problematic area of V & V, uamely un-
intentional incompleteness that may be present in the
knowledge base. The incompleteness is recognized in
the validation phase, and a tool for correcting this lack
of knowledge is introduced. The results of thix work
are currently integrated into the PESKI system. Test
cases are the instrument used for validating BRKBs in
PESKI. These test cases are submitted to the system
and its results are compared to expected results. ITn-
completeness occeurs when the inferencing cannot reach
an expected solution as defined by a test case. This
incompleteness can come from several different sources
and are investigated in this paper. After identifying
that incompletencss does exist in the BKB, the graph-
ical incompleteness tool assists the knowledge engineer
in locating the area of incompleteness and then extracts
the missing information from him/her for insertion into
the knowledge base.

Verification and Validation

The difficulties in the development of knowledge based
systems. particularly with knowledge representation
and knowledge acquisition, often leads to errors in sev-
eral forms. Onc of these types of errors is incomplete-
ness. This rescarch stems from a need to handle incom-
pleteness during the validation stage of development.
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While the main objectives of V & V are closely knit-
ted together, it is important to understand the distinct
differences between them. Verification is best defined
as making sure the system is built correctly. Critical
to this step is ensuring all information deemed neces-
sary is included and that this information is interpreted
and applied correctly by the system being inspected. If
specifications exist for a particular system, verification
will check for compliance with these specifications. Tt
also oversees the correct software syntax from which it
was built. Verification is often referred to as clear-hox
testing.

Validation. on the other hand. is used to ensure the
output of the system is correct. It is also used to check
the system developed is what the users requested. It
must assume the knowledge base was built satisfacto-
rily. Typically, expert system validation consists of run-
ning a sequence of test cases through the system and
comparing system results against known results or ¢x-
pert opinions (O'Keefe, Balci, & Smith 1987). This is
a time-consuming process and never guarantees finding
all crrors, especially in larger systems. O'Keefe ot al.
stated “Validation can be considered the cornerstone
of evaluation (of an expert system), since highly offi-
cient implementations of invalid systems are useless™
(O'Keefe, Balci, & Smith 1987). Validation is often re-
ferred to as black-box testing. Comncern is placed not
upon what is inside the system, but what the results
are coming out of the system. Despite the impor-
tance of validation, the majority of V & V literature
is solely concerned with verification. specifically auto-
matic rule-based error checking. This aspect of V &
V has now become reasonably mature and many such
automated tools exist {(Mescguer & Verdaguer 1993;
Prakash & Mahabala 1993). This automation is often
built into the system so that verification is continually
addressed throughout knowledge base construction to
ensure a quality final product.

Testing, including validation. is best done through-
out the entire development of the knowledge base. In-
cremental testing can aid in finding inaccuracies or in-
completeness early in the development of the svstem
rather than later when corrections can be much more
difficult to detect. locate, and correct. In determining
the overall validity of a system, it is often benoficial to
determine how woell human experts do in the problem
area and to create reasonable expectations of the sys-
tems performance. Typically, expert systems and their
knowledge bases’ performance can change drastically
from initial release to later stages of use. Some systeins
can be ficld tested and validated in its early use with-
out harm. In critical applications where lives may be
at risk, ficld testing is not always possible. The expert
whose knowledge was modeled should maintain involve-
ment throughout development of the system whenever
possible. This can often assist in identifying errors early
on in the development cycle that may not have been de-
tected until later stages of validation.

Validating after modifications or enhancements have

been implemented is just as important as earlier test-
ing. Testing nceds to cnsure that the original system
was not degraded as well as that the modifications made
were correctly implemented. Comparison of previous
test case results and their performance after the modifi-
cations is an cffective way of testing the updated system
remains validated in areas both inside and outside of the
modified areas. This type of testing can be particularly
important in probabilistic representations, since chains
of inference can be unintentionally altered.

Bayesian Knowledge-Bases

BKBs are a new, powerful, and highly flexible knowl-
edge representation (Santos & Santos 1999). BKBs
arce closely related to Bayesian networks and in fact
subsume them. BKBs, just as Bayesian networks, are
strongly based upon probability theory. This founda-
tion allows a framework for enabling inferencing over
incomplete knowledge. In contrast to BKDBs, Bayesian
networks demand for a complete specification of prob-
ability distributions can make knowledge acquisition,
knowledge base creation, and inferencing quite diffi-
cult and cumbersome. BKDBs avoid an over-defined
system easing maintainability. verification, and vali-
dation. They arc more powerful from the fact that
they are specifically designed for allowing incomplete-
ness. However, when desired conclusions are unable to
be drawn from the knowledge base given the appropri-
ate evidence, this incompleteness needs to be corrected
through incorporation into the knowledge base.

In the BB representation, as in Bayesian networks,
random variables (RVs) are used to represent objects
and/or events in the world. These RVs are then in-
stantiated with state values and are used in combina-
tion with one another to model the current state of the
world. Inferencing over this knowledge representation
then involves computing the joint probabilities of these
RVs. This type of inferencing is known as belief re-
vision. Belief revision is useful in diagnostic domains
where an explanation of the most probably state of the
world is needed.

BKDBs are built through the combination of instan-
tiation nodes, support nodes, and arcs. An example
BKD is shown in Figure 0.1. Instantiation nodcs. or
I-nodes for short, are represented by an oval. An I-
node represents one instance of an RV. The arcs repre-
sent the relationships between these I-nodes. Support
nodes, or S-nodes, are represented by smaller rectan-
gles or circles. S-nodes are assigned probabilities that
are associated with one or more I-nodes. In Figure 0.1,
I-node Clouds = Heavy is supported by a single S-
node with a probability of 0.1500. I-node Sidewalk
= Wet is supported by the single I-node Clouds =
Heavy through an S-node probability of 0.8500. In or-
der for the S-node to be active, the supporting I-node,
in this case Clouds = Heavy, must be active.

Some constraints of this BKB representation include
the following:
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Fia. 0.1. Example BRKB.

e Support conditions for an RV instantiation nmst be
mutually exclusive. Only one S-node may he active
at any one time in the support of an I-node.

e Cyelic knowledge is not allowed. A node is not al-
lowed to support itself.

e Probabilities from the same RV may not sum to val-
ues greater than 1.

For a complete discussion of these constraints sce

Banks (Santos. Banks, & Banks 1997: Santus. Gleason,

& Banks 1997).

Incorrectness and Incompleteness

Iuperfeet information is ubiquitous - almost all the in-
formation that we have about the real world is not cor-
tain, complete, or precise (Parsons 1996). Tt is eritical
for the knowludge engineer to understand that these
conditions exist during creation of a knowledge base.
Three concepts that are essential for V & V of BRKBs are
inconsistency, incompleteness, and incorrectness (San-
tos, Banks, & Banks 1997: Sautos, Gleason. & Banks
1997). Inconsistency in a BRDB is primatily related ro
probabilistic values. For example, conditional proba-
bilities swnming to greater than one. These types of
errors are often discovered and corrected within the
knowledge acquisition process. When this form of in-
consistent, knowledge 1s introduced into the PESKI sys-
tem, the knowledge engineer is immedliately informed
through a continuously updated status window, This
process assures that knowledge is consistent throughout
the entire knowledge building process.

Incorrectness occurs when a query to the system re-
sults in an incorrect solution. Finding the location of
the error can be difficult, and correcting it even harder.
This aspect of validation will continue to be addressed
through a variety of approaches such as sensitivity anal-
vsis and neural network reinforcement learning tech-
niques (Santos, Gleason, & Banks 1997).

Incompleteness exists when a set of input values is
passed to the system and fails to arrive at a conclu-
sion. This type of omission can be very difficult to
detect and locate as well. Knowledge base incomplete-
ness can be both intentional. particularly in the case
of BKBs. ur uninrentional as in an oversight. Incow-
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pleteness can come from several different sources. Hu-
man crror is often the major source for this type of
error. Experts often have difficulties in conveying com-
plete heuristic knowledge to the kuowledge engineer,
This lack of information often leads to incompleteness
in the knowledge base. Often information is missiug
during development of the knowledge hase and is left
out for future modifications. Other types of knowledge
arce yet. to be discovered. particularly in some arcas such
as medicine, where new types of drugs and wedications
are constantly under development. For these and other
reasons, the ability to handle incompletencss is eritical
in the validation of these systems, This ability is even
more critical in a representation like BKBs. in which the
ability to incorporate incompleteness is an advantage
and a normally desired quality of the representation.
Incomplereness ean be identified in a BKB through
the direct dependency region (formally defined in next.
section) of an evidence itew from a test case. This re-
gion must be modified through the additon of & link
or links to the corresponding answer item or it's dircet
dependencey region in the BKB. This addition of a link
must be done in a manner that places the answer item in
the divect dependency region of the evidence. Only then
is the incompleteness dissipated. The methodology de-
veloped through this rescarch graphically presents the
BKD in a manner suitable for a knowledge engineer to
locate this area of incompleteness. The incompleteness
link can then be added to the BKB for future infer-
cucing. This link is addded by the tool in a wanner that
forces maintaining the rules of the BIKB representation.

Methodology

Woe now describe o methodology to handle incomplete-
ness caused by missing links in a Bayesian knowledge
base (BKDB). The incompleteness links are identified
and located in the BKB using test cases. When test
cases lack a direet dependeney connection from the evi-
dence and answer items. we can correct the ineomplete-
ness through a graph-based approach. This graphical
presentation of the BKB gives the knowledge engineer
a means of locating and correcting the incompletencss
found in the test case. Some other desived traits of this
methodology include the following:

e Maiutain the structure of the previous information
contained in the BKB. An assumption is made that
information not addressed by the current test case in
the BB is correct.

e Disallow the knowledge engineer from iuputting in-
formation into the BIKB that violates the knowledge
representation rules (e.g. circularity, mutual exclu-
sion, ete) (Santos, Banks, & Banks 1997).

e Inherent with any large knowledge base is the prob-
lem of finding where the incompleteness exists in or-
der to fix the problem. The tool should avoid pre-
senting too much information that overwhelms the
knowledge engineer, particularly in larger knowledge
bases.
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Fi1G. 0.2. Test case processing.

A test-case consists of two set of distinct RV assign-
ments, A and E. The first set, A, consists of the an-
swers while E consists of the evidences. These test cases
are submitted to the system and the results are com-
pared to expected results. The test cases arc used to
validate the BKB through a number of steps using the
PESKI system. Figure 0.2 depicts the flow of a test case
through PESKI. The PESKI system validation tools
place some assumptions upon the supplied test cases.
The test cases used in knowledge base validation are
constrained in that they are assumed correct in their
entirety. The knowledge engineer’s burden is to ensure
that cach test case is completely valid. In addition, it
is important to understand that each evidence item is
directly related to each answer item, and vice versa. If
this is not so, the non-contributing evidence or answer
item should not be a part of the “valid” test case. Since
all answers are in each cvidence item’s dependency re-
gion, the intersection of all the evidence dependency re-
gions should be non-empty and contain, at a minimum,
all answer instances.

Direct dependency regions are the key to valida-
tion efforts in the PESKI environment and arc formally
defined below. RV instances directly dependent upon
one another are connected by a sequence of parent or
child relationships. Therefore, I-node A is directly de-
pendent upon I-node B if there is a sequence of parent
nodes, or a sequence of child nodes, between A and B
that connect the two nodes. Figure 0.3 shows the di-
rect dependency region for the evidence item D = 1.
Formally,

DerFINITION 0.1. A random veriable instance A is di-
rectly dependent on a random variable instance B,
if and only if there exists a sequence of n random vari-
able instances {X| = A, Xy, ..., Xn_1.Xn = B}. where
n is positive integer, and

1. Each element X; in the sequence of random vari-
able instances is an element of a support condition
of Xi—1, for alli,2< i< n, or

FEach element X; in the sequence of random vari-
able instances is an element of a support condition
of Xiy1, forall i, 1 <i<n-—1.

FiG. 0.3. Direct dependency region.

After validating a test case, the next step is to check
for direct dependency region connections between the
cvidence and answer items. If the evidence and an-
swer(s) are found to be both contained in the same di-
rect dependency region, in the case that no incomplete-
ness exists, the BKB is then passed to a tool for prob-
abilistic validation (Santos, Gleason, & Banks 1997).

If the direct dependency region check fails. incom-
pleteness exists in the test case and nceds to be cor-
rected in the knowledge base structure.

Graphical Incompleteness Tool (GIT)

A visual interactive approach allows the knowledge en-
gineer to examine the knowledge base for completeness
as well as accuracy. The tool actively assists in the gen-
cration of possible solutions from which the engineer
must select a preferred choice. This type of correction
also avoids any non-sensical modifications and/or as-
sumptions that an automatic validation tool may make.
The ability to view the relevant portions of the knowl-
cdge basc where problems are occurring is key. The
incompleteness methodology extends the graphical pre-
scntation of the BKB into a display for allowing incom-
pleteness correction in an intuitive fashion.

We have defined incompleteness in three ways: miss-
ing links, missing RVs, and missing states. Incomplete-
ness caused by missing RVs or states can be corrected
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through data mining or through the normal knowl-
edge acquisition modes of PESKI. Of concern in the
remainder of this research is unintentional incomplete-
ness caused by missing links or relationships between
I-nodes. After the test case direct dependency region
check has discovered this type of incompleteness. the
methodology begins by presenting the BKB in a graph-
ical format that allows for the location of the incom-
pleteness. This is further aided by distinctly displaying
the direet dependency regions of the evidence and an-
swer items from the incotplete {est case in the BKB.
The ability to traverse anywhere in the BKDB is also
allowed ro assist the knowledge cngineer by allowing
him/her to search for pertinent information. The in-
completeness link should be allowed irregardless of the
location of the nodes within the BRB. as long as the
BKB representation constraines are not violared. The
addition of a link can cause constraints to be violated if
care is not taken to avoid these sitnations. Some links
between nodes cannot be allowed at all, while others
mst be specially handled.

This methodology contains two modes of incomplete-
ness correction - an add (link) mode as well as an insert
(S-node) mode. These modes allow for correction of in-
cowpleteness in several forms.

After locating the source node(s) of incompleteness.
the knowledge engineer is allowed to seleet an I-node
for correction of the incompleteness. The I-node must
be either the evidence or answer node or a direct de-
pendency descendant of either the evidence or answer
node. The location of the target S-node is dependent
upon the currently active mode. In add mode, the tar-
get node must, be a direct dependency ancestor of the
corresponding evidence or answer node. Tn insert mode.
the target node way be any node. either descendant or
ancestor. in the direct dependency region of the corre-
sponding evidence or answer node. These restrictions
cusure that the directed link will be placed in the cor-
rect cause/elleet divection and will also resolve the cur-
rent incompleteness problem.  Selection of the souree
I-node and target S-node in any other manuer will not
correct the incompleteness due to the direct dependency
relationships between the nodes.

After extending the I-node, these allowed target S-
nodes are clearly identified to the knowledge engincer.
These allowed target S-nodes will guarantee the cor-
rection of the incompleteness and avoid any BRDB con-
straint violations.

Conclusion

With the understanding of the functionality of the
graphical incompleteness tool, the question arises
whether or not this functionality allows for any addi-
tion of an incompleteness link between two nodes” direct
dependency regions. For preliminary testing purposes,
the functionality of the add and insert modes together
have been used to recrcate a highly connected BKB
starting with only non-connected I-nodes. All links in
this BKB were removed so that only the required single
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S-node existed above each of the I-nodes. The graph-
ical incompleteness tool was then able to recreate the
BKB links after receiving the necessary number of test
cases. The order the test cases were given to PESKI
determined the amount of insertions versus additions
that were necessary. Since this BKB was able to be to-
tally coustructed using only the graphical incomplete-
ness tool, this demonstrates that any one incomplete-
ness link may be handled by the graphical incomplete-
ness tool for even a highly connected BKB.

This work was supported in part by AFOSR Project
#940006.
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