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Abstract

The PESI(I tllrobahilities, Expvrt Sysl.euls, I(uowl-
edge, and htferent:e) system attempts t.¢, address sonic:
of tl,e probh.ms in expert system oh.sign thr,,,gh the
use of the Bayesian Knowledge, Base (Ill(B) represen-
tation. Knowlo:lge gathered fi’unt a domaio expert is
placed into this framework am] iJd’ercncirtg t,nder un-
certail,ty is performed ovt.,r it. ]lowever. by the l|al.ure
of BKBs, not all knowledge is incorporaletl, i.e. the
representation need not be a templet e representation of
all combil,ations and possibilities of the knowh.dge, as
this would be impractical in many real-world systems.
Therefore. inherent in such a system is t|w problem of
incomplet.o knowledge, or gaps withb, the knowledge
I~aso where areas of lackis,g knowledge preclude or hin-
d,.r arrival al. a solution. Some of this knowh:dgc is
intentionally omitted because its not. nee&.d for infer-
era’lug, whib. othG,r knowh,dg~, is ~:rrono,)u.qy omitted
I)ut n(,(’,,ssary for valid rc.sull.s. Intentional oniis~ion.
a str,.,ngth of I}w BKJJ relm,Sonl.al.ion, allows tbr cap-
l.uring only the n.h.val,t porliol,s t,f knuwlolge critical
to ntodeling an exl~ert.’s knowh:dgv wit.hiti a domain.
q’his research t)rol)OSo~, a method fi~r ha,ldliug t.hc htt t,.r
lbrm of incompletetwss administered through a graphi-
cal inlerface. Tht’ goal i.-, t.o detv(’t il,cOml)h.tt.m..ss at,tl
be correcl.ed b.,¢ ~.t kulowh.dgv ~.’ltgitleL’r ill art in|oil.ire
fashion.

Introduction
Many issues m,ed to be considerod when constru(’t.ittg 
COml)lete knowledge based system. First.. in the knowl-
edge acquisition phase of a system, knowletlge engi-
neers must thoroughly extract knowledge front an ex-
pert. Methods of extracting this knowledge are numer-
ous. A representation scheme fi)r this knowledge nmst
then be chosen. The knowledge engineer must cm’efully
buihl this knowledge representatitm into an expert sys-
tem for which it can be inferenced ow~r. Thert’ are ntany
oi)portunities for inputting incorrect, incomplete, or in-
concise information whih) building a new system. Often
many modifications to the knowledge base are neeessm’y
in existing systems as well, which can often adversely
~dfect other areas unintentionally. For these reasons
mnong others, verification and v~di(lation (V & V) 
these knowledge based systems is all incre;.u~ingly im-
portant part of today’s sophisticated knowh,dge ba.sed
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syst.e:lllS.
A great amount of research has been performed in the

area of V K: V over the pa.st few years (Ram 8,.-. Ram
1996; Pr(,ece 1995; Bass, Ernst-Fortim &: Small 1997;
O’Leary 1997). However, with the. large number of
knowledge representations, inferencing techniques, and
knowledge acquisition technktues, there is no common
consensus tm the bes! method t)f V & V. This research
will center on one particular rt:I)rescntat.ion scheme
known as BGvesian Knowledge Bases (BKBs) which
captures uncertainty and its associated issues. This
BKB rel)resentation scheme is part. of an overall expert
system shell known as Probabilities, Expert System,
Knowledge, and Inh’rence (PESKI), which is an inte-
grated fl’aanework fi)r expert system development (San-
tos, Baaks. & Bmiks 1997; Santos: Gleason, & Banks
1997).

This r,search fi)cusos on developing a methodology
it) correct one 1)roblentatic t~rea of V & V, ttam(,ly 
intent.tonal irtcoml)leteness that may be present in the
knowh,tlge base. Tim incontpleteness is recognized in
the validation phase, and a tool fi)r correcting this lack
of knowledge is introduced. The results of this work
are cttrrt.ntly inO,graced into the PESKI system. Test
cases are the instrttmetat used for validating BKBs in
PESKI. These tt:st cases are suhmitted to the system
and its rt.stflts are compared to expected results. In-
completeness t)ccurs when the inferem’ing cannot reach
an expected solution a.s defined by a test ease. This
incoml)leteness can come from several different so|trees
and are investigated in this paper. After identifying
that incompleteness does exist in the BKB, the graph-
ical incompleteness tool assists the klmwledge engineer
in locating the area of int:ompleteness and then extracts
the missing infbrmation fl’om him/her for insertion into
the knowledge base.

Verification and Validation
The difficulties in the development of knowledge based
systems, particularly with knowledge representation
and knowledge acquisition, often leads to errors in sev-
eral forms. One of these types of errors is incomplete-
ness. This research stems fi’om a need to hat~(lle incom-
plt,teness during the validation stage of deveh)pment.
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While the main objectives of V & V are closely knit-
ted together, it is important to understand the distinct
differences between them. Verification is best defined
as making sure the system is built correctly. Critical
to this step is ensuring all information deeumd neces-
sary is included and that this information is interpreted
and applied correctly by the system being inspected. If
specifications exist for a particular system, verification
will check for compliance with these specifications. It
also oversees the correct software syntax from which it
was built. Verification is often referred to as clear-box
testing.

Validation, on the other hand. is used to ensure the
output of the system is correct. It is also used to check
the system developed is what the users requested. It
must assume the knowledge base was built satisfacto-
rily. Typically, expert system validation consists of run-
ning a sequence of test cases through tile system and
comparing systcm results against known results or ex-
pert opinions (O’Keefe, Balci, & Smith 1987). This 
a time-consuming process and never guaramees finding
all errors, especially in larger systems. O’Keefe et al.
stated ’;Validation can be considered the cornerstone
of evaluation (of an expert system), since highly effi-
cient implementatiox~s of invalid systems are useless"
(O’Keefe, Balci, &" Smith 1987). Validatiou is ohen re-
ferred to as black-box testing. Concern is placed not
upon what is inside the system, but what the results
are coming out of the system. Despite tht’ impor-
tance of validation, tim majority of V & V literature
is solely concerned with verification, specifically auto-
matte rule-based error checking. This aspect of V &
V has now become reasonably mature and many such
automated tools exist (Meseguer & Verdaguer 1993;
Prakash & Mahabala 1993). This automation is often
built into the system so that verificatiou is continually
addressed throughout knowledge base construction to
ensure a quality final product.

Testing, including validation, is best done through-
out the entire development of tim knowledge base. In-
cremental testing can aid iu finding inaccuracies or in-
completeness early in the development of the systcm
rather than later when corrections (’~t be much nmre
difficult, to detect, locate, and correct. In determining
the overall validity of a system., it is often beneficial to
determine how well hurnan experts do in the problem
area mad t.o create reasonable expectations of the sys-
tems performance. Typically, export systems and their
knowledge bases’ performance caax change drastically
from initial release to later stages of use. Sorne systems
can be field tested and validated in its early use with-
out harm. In critical applications where lives may be
at risk, ticld testing is not always 1)ossible. The expert
whose knowledge was modeled should maintain involve-
ment throughout development of the system whenever
possible. This can often assist in identi~’ing errors early
on in tile development cycle that may not have been de-
tected until later stages of validation.

Validating after modifications or enhancements have

been implemented is just as important as earlier test-
ing. Testing needs to ensure that the originaJ system
was not degraded a,s well as that the modifications made
were correctly implemented. Comparison of previous
test case results a~ld their performance after the modifi-
cations is an effective w~w of testing the updated system
remains validated in areas both inside and outside of the
nmdified areas. This type of testing can be particularly
important in probabilistic representations, since chains
of inference caal be unintentionally altered.

Bayesian Knowledge-Bases

BKBs are a new, powerful, and highly flexible knowl-
edge representation (Santos & Santos 1999). BKBs
are closely related to Bayesian networks and in fact
subsume them. BKBs, just as Bayesia~l networks, are
strongly based upon probability theory. This founda-
tion allows a framework for enabling inferencing over
incomplete knowledge. In contrast to BKBs, Bayesim~
networks demaald for a complete specification of prob-
ability distributions can make knowledge acquisition,
knowledge base creation, and inferencing quite diffi-
cuh and cumbersonm. BKBs avoid an over-defined
system easing maintainability, verification, and vali-
dation. They arc more powerful from the fact that
they are specifically designed for allowing incomplete-
ness. However, when desired conclusions are unal~le to
be drawn from the knowledge base given t.he appropri-
at(.: evidence, this incompleteness needs to be corrected
through incorporation into the knowledge base.

In the BKB representation, as in Bayesian networks,
random variables (RVs) are used to represent objects
and/or events in the world. These RVs are then in-
st.anriat.ed with state values azld are used in combina-
tion with one another to model the current state of the
world. Inferencing over this knowledge representation
then involves computing the joint, probabilities of these
RVs. This type of inferencing is known as belief re-
vision. Belief revision is useful in diagnostic domains
where an explanation of the most probably state of the
world is needed.

BKBs are built through tile combination of instan-
tiation nodes, support nodes, and arcs. An example
BKB iv shown in Figure 0.1. Instantiation nodes, or
I-nodes for short, are represented by an oval. An I-
node represents one instance of an RV. The arcs repre-
sent the relationships between these I-nodes. Support
nodes, or S-nodes, are represented by smaller rectaz~-
gles or circles. S-nodes are a,ssigned probabilities that
eu’e associated with one or more I-nodes. In Figure 0.1,
I-node Clouds -- Heavy is supported by a single S-
node with a probability of 0.1500. I-node Sidewalk
-- Wet is supported by the single I-node Clouds ---
Heavy through an S-node probability of 0.8500. In or-
der for the S-node to be active, the supporting I-node,
in this case Clouds ---- Heavy, must be active.

Some constraints of this BKB representation include
the following:
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Fl(~. 0. I. Examph, BKB.

¯ Supl)ort conditions fi.n" ml RV instant]alien must be
mutually exclusive. Only O]le S-node may ]., a.rtive
at. any one time in the Sul)port of an I-node.

¯ Cyclic knowledge is nut allowed. A nod,’ is not al-
lowed to SUl)port itself.

¯ Prolmbilities fronl ]lie sanle R\r ln;ty not slim t.o v;/]-
ues greater than 1.
For a comi)le.te discussion of these constraints see

Banks (Santos. Banks, & Banks 1997: Santos. Gleason,
& Banks 1997).

Incorrectness and Incompleteness

In]perfect iIfformation is ubiquitous - almost all tile iii-
tbrinalion that w(, have about the real world i.- not cer-
tain, complete, or pret:ise (Parsons 1996). It is crit.iral
fi)r the knowh,(lge enginrer t(, unch,rstand t.hal these
t:ondit.itms exist during creati<m of a knowledge base.
Three concepts that are rssen! ial for V & \: of BKBs are
inronsist(.ncy, incoml)lett,nes,,~, ;tltd incorrvctm,ss (San-
tom Banks, & Banks 1997: Santos, Gleason. &" Bonks
i997), hlconsist.ency in a BKB iN primarily related t~
pl"obtd)iliatir values. For example, ronditional prt~l}a-
bilities sumnfing to greater than one. These tyl)vS of
errors are often discovered and corrected within the
knowledge acquisition process. When this form of in-
consistent knowledge is introduced into the PESKI sys-
teln, the knowledge engineer is immediately informed
through a contimalusly up,.latt,d status window. Tl,is
process assures that knowledge is consistent throughout
the entire knowledge building process.

hl(:orrectness o(.(’lirs when a query to the syst.(:nl re-
milts in iul incorrect solution. Finding the location of
the error can be difficult, mid correcting it even harder.
This aspect of validation will continue to lit, addre.~sed
t hrough a vm:iety of approaches such a.s sensitivity anal-
ysis aud neural network reinforcement learning tech-
niques (Santos, Gleason, & Banks 1997).

Incompleteness exists when a set of input values is
pa.~sed to the system and fails to arrive at a (’onclu-
sion. This type of onfission can be very difficult to
dete(’t and locate as well. Knowledge base im:omplete-
ness can be both intentional, particularly in the (’a.,e
of BKBs. or uninrcntional as in an (iversight. hwom-
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l)leteness can coxne from several different sources. Hu-
man error is often the major source for this type of
error. Experts often have ditiicuh.ies in conveying com-
plete heuristic knowledge to the knowledge engineer.
This lack of inhn’mation often leads to incomplewncss
in the knowledge base. Often information is missiug
during development of the knowledge ba.se Jut(1 is left
ou~ for fidm’e modifications. Oth(,r types of knowledge
are yet to be discovered, particularly in some areas such
as medMne, where new types of drugs and medications
are t:onst.at~tly under development. For these and other
reasons, tlw ability i,o handle iitcomph;teuvss is crii.ical
in the validation of these systems. This abilii.y is wen
i,lc we critical in a represelttation like B KBa. in which the
ability to inc(.)rl)orat.e inct)lnl)lelen(,ss is an a,.lviuitage
and a normally dc..sired quality of the r, qm?senl.ation.

hwon~pler.eness can be identified iu a BKB through
the direct delwndency region (formally defined in nt,xt
section) of an evi(lamce item fl’om a teat cast,. This re-
gion must. b,.’ modified through /.lit, addition of a /ink
or links to the rorreslmnding answer item or it’s din.rt
dependency region in the BKB. This ,ulditiou of a link
tlnlSt hi? dtlne in a manner that lflaces the answer item iu
the direct (lelJendt’]tcy region of the evidence. Only then
iN the illCOlllplt:telless dissipatcd. The methodohJgy tlc-
veloped through this research graph]rally presems the
BKB in a mann(,r suitabl(, for a knowledge engim~er 
locate this area of incompleteness. The incomlfletem~ss
link can then be added to the BKB fi~r fitture infi:r-
(,ncing. This link is a, dded by the tool in a manner that
forces maint aining the rules of the BKB n,l)roaentalion.

Methodology

We now describe a. methodology to handle in,’omph,te-
heSS ca.tlsed l~y missing links ill a Bayesian knowledge
bast, (BKB). Tlv, ineomlflet.ent’sa links arc identified
an.l hwated in t.ho BKB using test cases. Wh(.n test
cases htck a dirt,ct del)emh:ncy ronne,’ticm fl’om the evi-
dt,ilt:e alld alnswer items, we can (’orrect tilt’ incoml)lote-
n(’ss through a graph-bi~ed apl)roa.(’h. This graphical
present&tion of the BKB gives the knowledge engim,er
a means of locating and eorrerting the inc(nnpleteness
found in the test t"a~e. St)me other desired traits of this
nwthodology include the following:
¯ Maintain the structure of the previous information

contained in the BKB. An a.ssumption is made that
information IlOt athh’essed by the current test case in
the BKB is correct.

¯ Disallow the knowh;dge engineer fl’om inputting in-
formation into the BKB that violates the knowledge
representation rules (e.g. circularity, nmtual exclu-
sion, et(’) (Santos, Banks, & Banks 1997).

¯ Inherent with any hu’ge knowledge base is the prob-
lem of finding where the incompleteness exists in or-
der to fix the problem. The tool should avoid pre-
senting to() much information that overwhelms the
knowledge engineer, particulm’ly in larger knowledge
bases.
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FIG. 0.2. l~st case processing.

A test-case consists of two set of distinct l:tV assign-
ments, A and E. The first set, A, consists of the an-
swers while E consists of the evidences. These test cases
are submitted to the system and the results are com-
pared to expected results. The test cases are used to
validate the BKB through a number of steps using the
PESKI system. Figure 0.2 depicts tim flow of a test case
through PESKI. The PESKI system validation tools
place some assumptions upon the supplied test ca~es.
Tile test cases used in knowledge base validation are
constrained in that they are assumed correct in their
entirety. The knowledge engineer’s burden is to ensure
that each test case is completely valid. In addition, it
is important to understand that each evidence item is
directly related to each answer item, and vice versa. If
this is not so, the non-contributing evidence or answer
item should not be a part of the "valid" test case. Since
all answers are in each evidence item’s dependency re-
gion, the intersection of all the evidence dependency re-
gions should be non-empty and contain., at a minimum,
all answer instances.

Direct dependency regions are the key to valida-
tion efforts in the PESKI environment and arc formally
defined below. RV instances directly dcpendent upon
one another are connected by a sequence of parent or
child relationships. Therefore, I-node A is directly de-
pendent upon I-node B if there is a sequence of parent
nodes, or a sequence of child nodes, between A and B
that connect the two nodes. Figure 0.3 shows the di-
rect dependency region for the evidence item D = 1.
Formally,

DEFINITION 0.1. A random variable inst.ance A is di-
rectly dependent on a random variable instance B,
i] and only if there exists a sequence o] n random vari-
able instances {XI -- A, X2,. .... Yn-l, X,, - B}. where.
n is positive integer, and

I. Each element Xi in the sequence of random va.n-
able instances is an element of a support condition
of Xi-z, for all i, 2 < i <_ n, or

9. Each element Xi in the sequence of random vari-
able instances is an element of a support condition
ofXi+l, for all i, l < i < n-1.

~ ..... o-

FIG. 0.3. Direct dependency region.

After validating a test case, the next step is to check
for direct dependency region connections between the
evidence and answer items. If the evidence and an-
swer(s) are found to be both contained in the same di-
rect dependency region, in the case that no incomplete-
hess exists, the BKB is then passed to a tool for prob-
abilistic validation (Sa~ltos, Gleason, & Banks 1997).

If the direct dependency region check fails, incom-
pleteness exists in the test case and needs to be cor-
rected in the knowledge base structure.

Graphical Incompleteness Tool (GIT)
A visual interactive approach allows the knowledge en-
gineer to examine the knowledge base for completeness
as well as accuracy. The tool actively assists in the gen-
eration of possible solutions from which the engineer
nmst select a preferred choice. This type of correction
also avoids any non-sensical modifications and/or as-
sumptions that an automatic validation tool may make.
The ability to view the relevant portions of the knowl-
cdge base where problems are occurring is key. Tim
incompleteness methodology extends the graphical pre-
sentation of the BKB into a display for allowing incom-
pleteness correction in an intuitive fashion.

We have defined incompleteness in three wa~,s: miss-
ing links, missing RVs.. and missing states. Incomplete-
ness caused by missing R,Vs or states can be corrected
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through data mining or du’ough the normal kr,owl-
edge acquisition modes of PESKI. Of concern in the
remainder of this research is unintentional incoml)lete-
ness caused 1)y nfissing links or relationships between
I-nodes. After the test case direct dependency region
check has discovered this type of incoInph,teness, the
methodology hegins by preseot.ing the BKB in a graph-
ical format that allows for the location of the incom-
pleteness. This is further aided by distincl.ly displaying
the direct depen(lel,cy regions of the evidence and an-
swer items fro,n the incomplete lest t’~L~e in the BKB.
Thc ability Io t.raver.se m,ywhcre in the BKB is also
allowed to a.ssist the knowledge engineer by allowing
him/her to searcl, for pertinent infonr, atkm. Tl,e in-
completeness link shouhl be allowed irregardless of the
local.ion of the nodes within tl,’ BKB. ~Ls long a.~ the
BKB representation constraints :tre not violated. The
addition of a link can cause conslraints to ],o violah.d if
care is not taken to avoid these situations. Some lit,ks
Iml.wevn nodes Callnot lm allowed a! a11, while others
Imlsl be sperially handh,d.

This methodology contains two ntodes of incomplete-
ness correction - an add (link) lnode as well as an insert
(S-node) nmde. Tl,ese modes alh)w for correction of 
completeness in several forms.

After locating the source node(s) of incompleteness.
the knowledge engil,eer is allowed to st.let’, }tll I-node
for correcl.ion of the incomlfleteness. The l-node must
be either the evidence or answer node or a direct de-
pentlPll(’y descon, lant of either the evidem..e or aalswer
node. The location of the target S-node is dependent
upol, flu. mlrrent.ly acl.ive mode. In add mode, the tar-
get node must be a. dir(.cl dependency ancestor of tim
(xitrrost)ondillg evi(.](*n(:{, or allSWe/" no(h,. [Ii illsc,rf file(h,.

the target node may be any node. either descendant or
ancestor, in the direct del)endency region of tile corre-
Slionding evidence or answer node. These restrictions
ensure that the directed link will lit? placed in the (’or-
t’Oc[ (’ause/ctl’(’ct direction and will also resolve the cur-
rent in(’omlfl~*teness problen,. Selection of tile source
I-node and target S-node il, iLny other maturer will not
correct the im’Oml)leteness due to the direct delienden(:y
rrlat.ionships between tim re)des.

After extending the I-node, these allowed target S-
nodes are clearly i,le,,tified to the knowledge engineer.
These allowed target S-nodes will guarantee tile cor-
rection of tl,e inconlpleteness mul avoid any BKB con-
straint viola, ions.

Conclusion
With tile understanding of the flmctionality of the
graphical incompleteness tool. the question arises
whether or not this fltnctiomdity allows for any addi-
tion of an incompleteness link between two nodes’ dirrct
dependency regions. For prelinfinary testing purposes,
the fimctiomdity of the add trod insert modes together
have been used to re(’reate a highly connected BKB
starting with only non-connected I-nodes. All links in
this BKB were removed so that only the required single
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S-node existed above each of the I-nodes. Tile graph-
ical incompleteness tool was then able. to recreate the
BKB links after receiving the necessary number of test
cases. The order the test cases were given to PESKI
determined the aanount of insertkms versus additions
that were necessary. Since this BKB was able to be to-
tally constructed using only the graphical in(’omplete-
hess tool, this demonstrates that any one incomplete-
ness link may be handled by the graphical in(’omplcte-
hess tool for even a highly connected BKB.

This work was supported in part by AFOSR Project
#940006.
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