
VERITAS – A Verification Tool
For Real-time Applications in Power System Control Centers

Jorge Santos
Luiz Faria

Carlos Ramos

Zita A. Vale Albino Marques

Polytechnic Institute of Porto
Institute of Engineering

Department of Computer Engineering
Rua de S. Tomé – 4200 Porto

Portugal
Fax: 351-2-821159 Phone: 351-2-8300922
Email: { jsantos | lff | csr }@ dei.isep.ipp.pt

Polytechnic Institute of Porto
Institute of Engineering

Department of Electrical Engineering
Rua de S. Tomé – 4200 Porto

Portugal
Fax: 351-2-821159 Phone: 351-2-8300922

Email: zav@dee.isep.ipp.pt

REN – Portuguese Transmission
Network - (EDP Group)

Apartado 3
4471 Maia Codex

Portugal
Fax: 351-2-9486758

Phone: 351-2-9448132

Abstract

During the last years, electrical utilities began to install in-
telligent applications in order to assist Control Centers op-
erators. The Verification and Validation (V&V) process
must assure the reliability of these applications, even under
incident conditions.
This paper addresses the Validation and Verification of
Knowledge-Based Systems (KBS) in general, focussing
particularly on the V&V of SPARSE, a KBS used in the
Portuguese Transmission Network for operator assistance in
incident analysis and power restoration.
VERITAS is a verification tool developed to verify
SPARSE Knowledge Base. This tool performs knowledge
base structural analysis allowing the detection of knowl-
edge anomalies.

Introduction

Nowadays, Control Centers (CC) are of high importance
for the operation of electrical networks. These Centers
receive real-time information about the state of the net-
work and Control Center operators must take decisions
according to this information.

Under incident conditions, a huge volume of informa-
tion may arrive to these Centers, making its correct and
efficient interpretation by a human operator almost impos-
sible. In order to solve this problem, some years ago, elec-
trical utilities began to install intelligent applications in
their Control Centers. These applications are usually
Knowledge-Based Systems (KBS) and are mainly intended
to provide operators with assistance, especially in critical
situations.

The correct and efficient performance of such applica-
tions must be guarantied through Verification and Valida-
tion (V&V). V&V of KBS are not so usual as desirable but
are usually undertaken in a non-systematic way.

The systematic use of formal V&V techniques is a key
for making end-users more confident about KBS, espe-
cially when critical applications are considered.

 Copyright © 1999, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

This paper addresses the Validation and Verification of
Knowledge-Based Systems in general, focussing particu-
larly on the V&V of SPARSE, a KBS to assist operators of
Portuguese Transmission Control Centers in incident
analysis and power restoration.

It is known that knowledge maintenance is an essential
issue for the success of a KBS but it must be guaranteed
that the modified KB remains consistent and will not make
the KBS incorrect or inefficient. Leading to the problems
of Validation and Verification (V&V). There is no general
agreement on the meaning of these terms. For the remain-
ing of this paper, the following definitions will be used:

• Validation - Allows to assure that the KBS provides
solutions that present a confidence level as high as the
ones provided by the expert(s). Validation is then based
on tests, desirably in the real environment and under real
circumstances. During these tests, the KBS is considered
as a “black box” and only the input and the output are
really considered important.

• Verification - Allows to assure that the KBS has been
correctly conceived and implemented and does not
contain technical errors. Verification is intended to ex-
amine the interior of the KBS and find any possible er-
rors.

Most KBS are only validated and verified. Although vali-
dation process can guarantee that when the system is de-
ployed, its performance is correct, the existing problems
may arise when there is a need to change the Rule Base.

Verification should rely on formal methods requiring
the development of tools to implement these methods. Al-
though there are already some available verification tools
in the market, specific needs of Power System applications
usually require the development of specific tools.

As formal methods of verification rely on mathematical
foundations, they are able to detect a large number of pos-
sible problems. In this way, it is possible to guarantee that
a KBS that has passed through a verification phase is cor-
rect and efficient. Moreover, it is possible to assure that it
will provide correct performance with examples that have
not been considered in the validation phase.

The present section focus the mains aspects related with
KBS knowledge maintenance, stressing its relation with

From: Proceedings of the Twelfth International FLAIRS Conference. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

V&V stages.
Section 2 describes the SPARSE’s characteristics,

namely, architecture, reasoning model, rule selection
mechanism and its implications for Verification and Vali-
dation work.

Section 3 describes the Validation stage of SPARSE de-
velopment, especially the field tests and the need of ap-
plying formal methods in SPARSE’s V&V.

Section 4 presents VERITAS, a verification tool based
on formal methods. This tool has been successfully applied
to several KBS: SPARSE; ARCA, an expert system ap-
plied to Cardiology diseases diagnosis; and another expert
system created to assist in Otology diseases diagnosis and
therapy. Finally, section 5 presents some conclusions and
future work.

SPARSE

SPARSE is a KBS developed for the Control Centers of
the Portuguese Transmission network, owned and operated
by REN1. This KBS assists Control Centers operators in
incident analysis and power restoration (Vale and Moura
1993) (Vale et al. 1994) (Vale et al. 1996).

SPARSE´s architecture (Figure 1) include, besides the
modules that are always included in a KBS, the following
modules:

• Knowledge acquisition assistant

• Knowledge update assistant

• V&V assistant.
The inclusion of these modules allows to provide the users
of the KBS with assistance to solve the most commonly
operating problems.

Software
Interface

V&V
Assistant

Konowledge
Update

Assistant

Knowledge
Acquisit ion
Assistant

User
Interface

Inference Engine

Knowledge Base

Fact
Base

Rule
Base

Explanations

Events

Orders

Figure 1 – SPARSE Architecture

In fact, several disadvantages pointed to KBS are due to
the use of an incomplete KBS, lacking one or more of
these modules.

SPARSE has been developed using PROLOG and C
language and runs on-line in a DECstation 5000/240 under
ULTRIX operating system. This machine is connected,
through a Local Area Network Ethernet of duplicate con-
figuration, with two MicroVAX II machines that support
SCADA (Supervisory Control And Data Acquisition)

1 REN - Rede Eléctrica Nacional - REN is the Portuguese Transmis-
sion Network

functions in the Control Center.
SPARSE presents some features that make the verifica-

tion work more difficult than for most KBS. These features
include nonmonotonic behavior, temporal reasoning and
the meta-rules used in rule triggering. Considering the
following rule:

UXOHUXOH [[�
(;$03/(
 �[[�
(;$03/(
 �
>>

>&� DQG &� DQG &�@>&� DQG &� DQG &�@
RURU

>&� DQG &�@>&� DQG &�@
@@
 ! !
>$�>$��$�@��$�@�

The conditions considered in the LHS (Left Hand Side)
(C1 to C5 in this example) may be of one of the following
types:

• A fact which truth must be proved (normally these facts
are time-tagged);

• A temporal condition;
The actions/conclusions to be taken (A1 to A2 in this ex-
ample) may be of one of the following types:

• Assertion of facts (conclusions to be inserted to the
knowledge base);

• Retraction of facts (conclusions to be deleted from the
knowledge base);

• Interaction with the user interface.
The rule selection mechanism uses facts with the following
structure:

WULJJHU�1)�15�7��7��WULJJHU�1)�15�7��7��

This fact means that rule number NR should be triggered,
until it is successful, between instant T1 and T2, because
of the arrived fact NF.

SPARSE has passed through a validation phase and is
presently installed in one of the two Control Centers of
REN - Vermoim Control Center, providing real-time as-
sistance to operators.

SPARSE’s Validation and Verification have been espe-
cially important for the success of this project, namely in
what concerns knowledge updating.

Validation

The process of Verification and Validation should start as
early as possible during the development of the applica-
tion. The SPARSE V&V have been considered since the
very beginning and special arrangements have been made
in order to provide conditions for this process performing.

The project team aimed to perform the validation of
SPARSE using examples as close as possible to the ones
that the application should face in the real environment.
According to this, it was considered that validation should
be based mainly on real information about the network.

Another important aspect that has been considered since
an early stage of development is the software required to
interface SPARSE with SCADA applications used in the
Control Center. In fact, it was realized that some limita-
tions imposed by SCADA should be considered since the
very beginning in order to allow to take them into account
during the development of the prototype, namely during
the knowledge acquisition phase.

When integration issues are not addressed in an early

phase of the project, the changes that are required when
the system is integrated in the real environment may be
very significant and impose almost a complete rebuilding
of the system. The experts should namely, consider these
issues during the knowledge acquisition phase.

REN's staff developed an application named TTLOGW
(Rosado 1993) to acquire real-time information from
SCADA and to send it to SPARSE. It acquires information
related to the state of electrical network equipment, which
is used to generate material for SPARSE's validation.

This application acquires the information related to the
state of the equipment of the electrical network.
In this way, files concerning real incidents have been ob-
tained and have been used in order to validate SPARSE
conclusions. Experts involved in the project commented
these conclusions and corrections in the Knowledge Base
were made whenever necessary.

New validation techniques need to be applied after
SPARSE was first installed in the control center, since it
now received real-time information from TTLOGW. The
validation of SPARSE considering real-time information
was very important due to several reasons:

• Temporal reasoning should be tested under real situa-
tions in order to assure its correction;

• Consideration of multiple faults is an important aspect
of SPARSE performance that is very dependent from
the way information flows;

• Processing times should be tested in order to guarantee
real-time performance, even under incident conditions.

As nowadays electrical networks are very reliable it was
not possible to completely validate SPARSE with real in-
cidents. A large number of different types of incidents had
to be simulated to allow validation. As this simulation
should be as accurate as possible, two different techniques
have been used:

(1) Simulation of incidents by operators located in chosen
substations

(2) Simulation of incidents using a programmable im-
pulse generator and a Remote Terminal Unit (RTU).

These two techniques complement each other, allowing a
complete validation.

The simulation of incidents by operators allowed to ob-
tain real-time information that was forced to be generated
but presenting exactly the same characteristics as the in-
formation obtained during a real incident. During these
tests, operators, making the whole system act as if a real
incident was taking place simulated the behavior of the
protection equipment. In this way, the information, used
by SPARSE was generated, as it would be under a real
incident.

Due to the difficulties of co-ordinating operators in sev-
eral substations, the simulation is not always correct and
the whole process may have to be repeated several times in
order to obtain a good test case.

In spite of all the difficulties and costs involved, this
kind of tests has been considered absolutely essential for
the validation of SPARSE, allowing to increase the confi-
dence in its real-time behavior.

In order to undertake a complete set of tests without the
extremely high costs required by this technique, a different
technique of test has also been used. This technique in-

volves the use of a Remote Terminal Unit (RTU) and of a
programmable impulse generator (PIG). The PIG gener-
ates impulses in order to force the alarm messages creation
by the SCADA system. This technique was used to simu-
late a wide set of incidents allowing a more complete
SPARSE Knowledge Base validation with reduced costs.

These methods of validation have been considered suf-
ficient to put SPARSE in service, without the need to un-
dertake formal verification of SPARSE Knowledge Base.
However, when a Knowledge-Based System, as SPARSE,
is in continuous use, the necessity to make changes in the
Rule Base arises sooner or later. In the case of the Portu-
guese Transmission network, the introduction of new sub-
stations, with different types of operation or layout, has
already imposed some modifications. Under these circum-
stances, it is not possible to accept the need to undertake
complete validation tests, as the ones described before.
Even if the costs are acceptable, the required time would
oblige the Knowledge-Based System to be either out of
service or to be in service without a validated Rule Base
for longer than desirable. This problem must be addressed
with a verification tool using formal methods. The use of
this kind of tools to detect possible problems in the modi-
fied Rule Base allows to reduce the time required in Veri-
fication and validation process.

VERITAS, a verification tool

In what concerns SPARSE, there were two major reasons
to start the verification work. First, the SPARSE team car-
ried out a set of tests (see section Validation) in order to
assure the quality of the answers of SPARSE to a set of
real and simulated cases. Considering the expected high
reliability and confidence of the tools to be applied in
power systems area, it was decided to develop a verifica-
tion tool to perform anomaly detection in SPARSE KB,
assuring the consistency of the represented knowledge. On
the other hand, tests applied in the Validation phase,
namely the field tests, are very expensive because during it
was necessary to assign a lot of technical personnel and
physical resources for their execution (e.g. transmission
lines). It seems obvious that it is impossible to carry out
those tests after each knowledge updating so the developed
verification tool offers an easy and inexpensive way to
assure the knowledge quality maintenance.

A specific tool, named VERITAS (Santos 1997) has
been developed to be used in the verification of the
SPARSE, performing structural analysis allowing to detect
knowledge anomalies.

VERITAS is knowledge-domain and rule-grammar in-
dependent. It has been developed with an open and modu-
lar architecture (Figure 2) allowing user-interaction along
all the verification process. Since the tool is independent of
KB grammar, theoretically any rule-based system can be
analyzed by VERITAS.

The Converter module allows the representation of ex-
ternal rules in an internal canonical form that is recognized
by the other modules. Notice that this module works in
two directions. It can also convert the canonical form into
an external KB, generating new rules during knowledge
updating, after anomaly detection, using an external
grammar.

86(5

Cannonical
Form

Internal
DataBase

Detected
Anomal ies

Database
Operat ions

Ref inement
Operat ions

KB 1

Grammar 1

Converter

Internal DB
Administrat ion

Verif ication
Tools

...
n Blocks

...

Ref inement
Tools

Proposed
Correct ions

KB n

Grammar n

Figure 2 – VERITAS Architecture

The Internal DB Administration module is responsible
for the extraction and classification of all the information
needed during the anomaly detection phase. In the first
step all literals extracted from rules are classified accord-
ing to the following schema:

• Fact – if it just appears in rule antecedents;

• Conclusion – if it just appears in rule consequents;

• Hypotheses – if it appears in both sides of the rules.
Notice that this classification is domain independent and

just makes sense for verification procedures. This classifi-
cation offers the advantages of a more compact knowledge
representation and the reduction of the complexity of the
rule expansion generating process. As it will be described
later, this process corresponds to the analytical calculation
of all possible inference chains.

In the second step, the Internal DB Administration
module generates useful information about existing rela-
tions between literals (previously obtained). That informa-
tion will be used not just to make the expansions genera-
tion process faster but also in the automatic detection of
Single Value Constraints. VERITAS considers some type
of constraints already described in literature (Zlatareva and
Preece 1994). Considered constraints can be classified in
the following classes:

• Semantic Constraints – this type of impermissible set is
formed by literals that cannot be present at the same
time in the KB. Semantic constraints have to be intro-
duced by the user.

• Logical Constraints – there are just two types of logical
constraints: A and not(A) (where A stands for a literal);
A and notPhysical(A); this designation is obtained by
analogy with logical negation and allows to represent
the constraint defined by a literal and by its retraction
from the KB.

• Single Value Constraints – this type of impermissible set
is formed by only one literal but considering different
values of its parameters. Notice that those potential con-
straints are automatically detected. After this, the con-
straint can be either confirmed or changed by users.

The anomaly detection module (included in the Verifica-
tion Tools) works in an autonomous way with no user in-
teraction (i.e. it can run in batch mode). Presently this

module can be used integrated with a developed tool
(knowledge update assistant) that, among other functions,
allows rule edition. This functionality shows the existing
relations between the rules that are to be modified and the
remaining existing knowledge in the KB. This information
is supplied in a graphical interface using a graph type rep-
resentation. Moreover, it is possible to verify the rule in
question immediately and to assure the KB consistency
after the insertion of that rule.

When the verified Knowledge Base has large dimen-
sions according to the number of rules and inference
chains, the information generated during anomaly detec-
tion can be huge.

The detected anomalies have to be reported using a form
suitable for easing its analysis. Special care has been put in
this task, in order to reduce the time needed for the infor-
mation analysis, so, it is possible to aggregate or select
information by type of anomaly, number of rule and literal
identification.

The anomaly detection relies on the rule expansions and
constraint analysis. This method is also used by some well
known V&V tools, as KB-REDUCER (Ginsberg 1987)
and COVER (Preece 1990). As it has been described be-
fore, SPARSE has some specific features, due to these
features the used technique is a variation of common
ATMS (Assumption-based Truth Maintenance System)
(Kleer 1986). Namely, the knowledge represented in the
meta-rules had to be considered in rule expansion genera-
tion.

VERITAS allows the rule expansion generation to be
done in two different modes: normal or exhaustive.

As an example, consider the following KB:
U�� W�;� DQG U�D�U�� W�;� DQG U�D� ÆÆ V�D�V�D�
U�� I�D�U�� I�D� ÆÆ W�D�W�D�
U�� I�E�U�� I�E� ÆÆ W�E�W�E�
U�� K�D�U�� K�D� ÆÆ U�D�U�D�
U�� M�D�U�� M�D� ÆÆ U�D�U�D�

Table 1 shows the expansions that will be generated in
each mode:

Table 1 – Rule Expansions Calculation

Normal Mode Exhaustive Mode
W�;� DQG K�D�W�;� DQG K�D�ÆÆ V�D�V�D�
W�;� DQG M�D�W�;� DQG M�D�ÆÆ V�D�V�D�

I�D� DQG K�D�I�D� DQG K�D�ÆÆ V�D�V�D�
I�D� DQG M�D�I�D� DQG M�D�ÆÆ V�D�V�D�
I�E� DQG K�D�I�E� DQG K�D�ÆÆ V�D�V�D�
I�E� DQG M�D�I�E� DQG M�D�ÆÆ V�D�V�D�

It is possible to notice that “normal mode” generates
fewer expansions but, on the other hand, the information
obtained after anomaly detection is more useful. The “ex-
haustive mode” wastes a lot of time generating the rule
expansions implying also more wasted time to analyse
them, but, in principle, it will be possible to detect more
potential errors.

The detected anomalies could be grouped in three major
classes: redundancy, circularity and inconsistency, as pre-
sented in Figure 3.

There is another type of anomaly that is not, yet, de-
tected by VERITAS, named deficiency. To detect this
anomaly it is not enough to know the KB and its syntax,
since deficiency detection requires that all inputs and out-
puts to/from the system are known. For the SPARSE sys-
tem this work can be done using all types of SCADA mes-
sages.

&LUFXODULW\

'LUHFW

&RQVLGHULQJ
,GHQWLFDO &RQFOXVLRQV

,QGLUHFW

5HGXQGDQF\

)URP GLIIHUHQW

LQIHUHQFH FKDLQV

)URP D VLQJOH

FKDLQ RI LQIHUHQFH

%HWZHHQ 5XOH

*URXSV

'XSOLFDWH 5XOH &RQVLGHULQJ
,GHQWLFDO &RQFOXVLRQV

6XEVXPHG RU

'XSOLFDWH 5XOH

8QXVDEOH 5XOH

$PELYDOHQFH

5HGXQGDQW

/LWHUDO

Figure 3 –Anomaly Classification

This classification is based on Preece classification (Preece
and Shinghal 1994) with some modifications. First, the
matching values are considered in rule analysis, meaning
that a new set of anomalies will arise. Considering the
following circular rules:

U�� W�D� DQG U�;�U�� W�D� DQG U�;� ÆÆ V�D�V�D�
U�� V�D�U�� V�D� ÆÆ U�D�U�D�

For ; ; DD some inference engines could start an infinite
loop.

Another situation concerns to redundancy between
groups of rules. In the following example:

U�� D DQG E DQG FU�� D DQG E DQG F ÆÆ]]
U�� QRW D DQG FU�� QRW D DQG F ÆÆ]]
U�� QRW E DQG FU�� QRW E DQG F ÆÆ]]

rules U�U�, U�U� and U�U� could be replaced by U[U[rule:
U[� D DQG E DQG F RU QRW D DQG F RU QRW E DQG FU[� D DQG E DQG F RU QRW D DQG F RU QRW E DQG F ÆÆ]]

Applying logical simplifications to rule U[U[, it is possible to
obtain the following rule:

U[·� FU[·� F ÆÆ]]

Redundancy between groups of rules is a generalisation of
the unused literal situation already studied by Alun de
Preece (Preece and Shinghal 1994). Notice that this type of
redundancy could be desirable. VERITAS can detect these
situations using an improved Quine-McCluskey method
for logical expression simplification.

Conclusions

This paper dealt with some important aspects for the prac-
tical use of KBS in Control Centres, namely knowledge
maintenance and its relation to the Verification and Vali-
dation process.

The systematic use of Verification and Validation meth-
ods is very important for the acceptance of Knowledge-
Based Systems by their end-users, especially when critical
applications are considered. The use of Verification tools,
based on formal methods, increases the confidence of the
user and eases the process of changing KB, reducing the
testing costs and the time needed to implement them.

This paper described SPARSE’s V&V process, focusing

on field-tests and techniques used during the validation
phase. For the verification of SPARSE it was decided to
implement a tool using a formal verification method.

VERITAS is a verification tool that performs the struc-
tural analysis in order to detect knowledge anomalies. We
argue that the usefulness of VERITAS increases propor-
tionally with KB size and the number of knowledge modi-
fications, which must be undertaken.

Presently, VERITAS is being improved in order to al-
low the detection of anomalies related to temporal and
nonmonotonic reasoning. We are also envisaging the use
of VERITAS in verification of knowledge generated by
Data Mining applications.

References

Ginsberg, A. 1987. A new aproach to checking knowledge
bases for inconsistency and redundancy. In Procedings of
the 3rd Annual Expert Systems in Government Conference.
102-111. Washington, D.C., IEEE Computer Society.

Kleer, J. 1986. An assumption-based TMS. Artificial
Intelligence (Holland). 28(2):127-162

Preece, A. 1990. Towards a methodology for evaluating
expert systems. Expert Systems (UK). 7(4):215-223.

Preece, A; and Shinghal, R.1994 Foundation and
Application of Knowledge Base Verification. Intelligence
Systems. 9:683-701.

Rosado, C. 1993. Process TTLOGW. EDP Technical
Report, RESP/SCDS 20/93, Electricidade de Portugal

Santos, J. 1997. Verificação e Validação de Sistemas
Baseados em Conhecimento – VERITAS, uma Ferramenta
de Verificação. MSc Thesis diss., Dept. de Engenharia
Electrotecnica e Computadores, Faculdade de Engenharia
do Porto.
Vale, Z. and Moura, A. 1993. An Expert System with
Temporal Reasoning for Alarm Processing in Power
System Control Centers. IEEE Transactions on Power
Systems 8(3):1307-1314.

Vale, Z.; Faria, L.; Ramos, C.; Fernandes, M.; and
Marques, A. 1996. Towards More Intelligent and Adaptive
User Interfaces for Control Center Applications. In
Proceedings of the International Conference on Intelligent
Systems Applications to Power Systems (ISAP'96). 2-6.
Orlando, Florida.

Vale, Z.; Moura, A.; Fernandes, M.; and Marques, A.
1994. SPARSE - An Expert System for Alarm Processing
and Operator Assistance in Substations Control Centers.
Applied Computing Review. 2(2):18-26. ACM Press.

Zlatareva, N.; and Preece, A. 1994. An Effective Logical
Framework for Knowledge-Based Systems Verification.
International Journal of Expert Systems. 7(3):239-260.

